Supporting Information For

Catalytic Intermolecular Carbon Electrophile Induced Semipinacol Rearrangement

Qing-Wei Zhang, Xiao-Bo Zhang, Bao-Sheng Li, Kai Xiang, Fu-Min Zhang, Shao-Hua Wang and

Yong-Qiang Tu*

State Key Laboratory of Applied Organic Chemistry and Department of Chemistry

Lanzhou University, Lanzhou 730000, P. R. China

Fax: (+) 86 931-8912582, E-mail: tuyq@lzu.edu.cn

Table of contents

General information and procedures	
Preparation of substrates and spectroscopic data of key compounds	-S4-S10
ORTEP drawing of compounds 3a and 3fB	-S11
Copies of ¹ H and ¹³ C NMR spectra for products	-S12-S51
Copies of HPLC spectra	S52-S55

General information

All reactions under standard conditions were monitored by thin-layer chromatography (TLC) on gel F₂₅₄ plates. The silica gel (200-300 meshes) was used for column chromatography, and the distillation range of petroleum was 60-90 °C. All other solvent were purified according to standard conditions. ¹H and ¹³C NMR spectra were recorded in CDCl₃ or CD₃COCD₃ solution on Bruker AX-400 MHz instruments and spectral data were reported in ppm with tetramethylsilane (TMS) as internal standard. High-resolution mass spectral analysis (HRMS) data were measured on the Bruker ApexII by means of the ESI technique. Enantioselectivities were determined by high performance liquid chromatography (HPLC) analysis employing a Darcel Chiracel AD column and optical rotation was detected on RUDOLPH A21202-J APTV/GW.

General procedure of the catalytic intermolecular carbon electrophile induced semipinacol rearrangement (Table 2):

To an oven dried Schlenk tube charged with a magnetic stirring bar was sequentially added substrate (0.2 mmol), ethylglyoxalate (0.4 mmol.), 5Å molecular sieve (200 mg), THF (2 mL, acetone for the preparation of **3d**) and Cu(OTf)₂ (10 mol%) at room temperature (-10 °C for **3d**) (For synthesis of **3b**, the substrate **1b** was dissolved in half of the solvent and was added in 1 h with syringe pump). The reaction was monitored by TLC until all the substrate disappeared and the mixture was directly subjected to column chromatography on silica gel for purification.

The reaction system above containing **3b** was filtered and washed with additional THF (3 mL), HF (40% aq., 0.5 mL) was added and the mixture was stirred for 1h and quenched with K_2CO_3 . The mixture was filtered with a short pad of Celite, concentrated and subjected to column chromatography on silica gel to afford **3a** (2 steps, 79% yield).

General procedure of the three component reaction (Table 3):

For 3g-3i (entries 1-3):

To an oven dried Schlenk tube charged with a magnetic stirring bar was sequentially added ethyl glyoxalate (2.0 mmol.) 5Å molecular sieve (1 g), aniline derivatives (1.0 mmol), $Cu(OTf)_2$ (2 mol%) and acetone (5 mL). **1b** (1.0 mmol in 5 mL acetone) was then added to the system using syringe pump in 1 h at room temperature. The reaction was monitored by TLC until all the substrate disappeared and the mixture was directly subjected to column chromatography on silica gel for purification. (PE:DCM:EA = 25:75:1)

For 3j (entry 4):

To an oven dried Schlenk tube charged with a magnetic stirring bar was sequentially added substrate **1b** (0.2 mmol), ethyl glyoxalate (0.4 mmol), 5Å molecular sieve (200 mg), aniline derivative **4b** (0.2 mmol), THF (2 mL) and Cu(OTf)₂ (15 mol%) at room temperature. The reaction was monitored by TLC until all the substrate disappeared and the mixture was directly subjected to column chromatography on silica gel for purification.

Catalytic asymmetric enantioselective version of the reaction (Scheme 3 in the manuscript):

To an oven dried Schlenk tube charged with a magnetic stirring bar was sequentially added **1g** (0.2 mmol), ethyl glyoxalate **2** (0.4 mmol), 5Å molecular sieve (100 mg/mL solvent), THF (2 mL) and (*S*, *S*)-^{*t*}BuBOX (15 mol%), finally Cu(OTf)₂ (15 mol%) was added. The reaction was monitored by TLC until all the substrate disappeared and the mixture was directly subjected to column chromatography on silica gel for purification (PE:DCM:EA = 5:5:1, then PE:EA = 2:1). **3ea**: (60.0 mg, 76%, dr 11:1), **3eB**: (15.8 mg, 20%).

Preparation of substrates and spectroscopic data of key compounds:

Preparation of substrates:

The tertiary alcohol substrates were dissolved in DCM followed by addition of imidazole. After being cooled to 0 °C TBSCl was added in one portion. After fully conversion of the substrates, the reaction was quenched with saturated NaHCO₃ (aq.) and extracted with DCM, the combined organic layer was dried with Na₂SO₄, filtered, concentrated under reduced pressure and purified by column chromatography on silica gel.

The tertiary alcohol substrate was dissolved in DCM followed by addition of Et₃N. After being cooled to 0 °C TMSCl was added in one portion. After fully conversion of the substrates, the reaction was quenched with saturated NaHCO₃ (aq.) and extracted with DCM, the combined organic layer was dried with Na₂SO₄, filtered, concentrated under reduced pressure and purified by column chromatography on silica gel.

Spectroscopic data of key compounds:

Colorless oil.

¹**H NMR** (400 MHz, CDCl₃, ppm): δ 4.89 (t, J = 4.0 Hz, 1H), 4.02 (t, J = 5.2 Hz, 2H), 2.33 (tt, $J_1 = 2.8$ Hz, $J_2 = 9.2$ Hz, 2H), 2.14-2.02 (m, 4H), 1.81 (quint, J = 5.6 Hz, 2H), 1.75-1.60 (m, 1H), 1.51 (sext, J = 9.6 Hz, 1H), 0.89 (s, 9H), 0.05 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃, ppm): δ 155.7, 94.9, 76.4, 66.0, 35.5, 25.9, 22.2, 20.2, 18.0, 13.2, 3.3; HRMS (ESI) calcd for C₁₅H₂₉O₂Si [M+H]⁺: 269.1931, found 269.1934.

Colorless oil.

¹**H NMR** (400 MHz, CD₃COCD₃, ppm): δ 4.91 (t, J = 4.0 Hz, 1H), 4.00 (t, J = 5.2 Hz, 2H), 2.38-2.27 (m, 2H), 2.11-2.00 (m, 5H), 1.82-1.74 (m, 2H), 1.73-1.61 (m, 1H), 0.07 (s, 3H); ¹³**C NMR** (100 MHz, CD₃COCD₃, ppm): δ 156.7, 95.8, 77.4, 66.7, 36.3, 23.0, 20.9, 13.9, 1.9; **HRMS** (ESI) calcd for C₉H₁₅O₂⁺[M-TMS+H]⁺: 155.1067, found 155.1070.

Colorless oil.

¹**H NMR** (400 MHz, CD₃COCD₃, ppm): δ 4.97 (t, J = 2.0 Hz, 1H), 4.34 (t, J = 9.2 Hz, 2H), 2.64 (dt, $J_1 = 2.4$ Hz , $J_2 = 9.2$ Hz, 2H), 2.32 (tt, $J_1 = 2.8$ Hz , $J_2 = 8.8$ Hz, 2H), 2.13 (dq, $J_1 = 2.8$ Hz , $J_2 = 9.6$ Hz, 2H), 1.69 (tq, $J_1 = 2.8$ Hz , $J_2 = 9.6$ Hz, 1H), 1.55 (sext, J = 9.2 Hz, 1H), 0.88 (s, 9H), 0.06 (s, 6H); ¹³C NMR (100 MHz, CD₃COCD₃, ppm): δ 161.9, 95.8, 73.7, 70.7, 37.0, 30.6, 26.3, 18.6, 13.8, -3.1; **HRMS** (ESI) calcd for C₁₄H₂₇O₂Si [M+H]⁺: 255.1775, found 255.1773.

Colorless oil.

¹**H NMR** (400 MHz, CD₃COCD₃, ppm): δ 4.84 (t, J = 2.4 Hz, 1H), 4.31 (t, J = 9.2 Hz, 2H), 2.61 (dt, $J_1 = 2.4$ Hz, $J_2 = 9.6$ Hz, 2H), 1.88-1.72 (m, 6H), 1.70-1.56 (m, 2H), 0.87 (s, 9H), 0.08 (s, 6H); ¹³**C NMR** (100 MHz, CD₃COCD₃, ppm): δ 162.5, 95.1, 81.6, 70.3, 39.9, 30.6, 26.3, 23.9, 18.9, -3.0; **HRMS** (ESI) C₁₅H₂₉O₂Si [M+H]⁺: 269.1931, found 269.1937.

Colorless crystal, **MP** 65-67 °C.

¹**H NMR** (400 MHz, CDCl₃, ppm): δ 4.85 (brs, 1H), 4.44 (d, J = 8.8 Hz, 1H), 4.33-4.20 (m, 1H), 4.20-4.05 (m, 1H), 3.32-3.81 (m, 1H), 3.48 (dt, $J_I = 3.6$ Hz , $J_2 = 7.2$ Hz, 1H), 2.32-2.23 (m, 1H), 2.13-2.02 (m, 2H), 2.02-1.92 (m, 1H), 1.89-1.75 (m, 2H), 1.75-1.65 (m, 1H), 1.63-1.53 (m, 1H), 1.48-1.30 (m, 3H), 2.02-1.92 (t, J = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 174.2, 116.3, 84.4, 79.1, 63.1, 61.6, 43.8, 37.2, 34.9, 20.6, 20.3, 19.0, 14.0; **HRMS** (ESI) calcd for C₁₃H₂₄NO₅ [M+NH₄]⁺: 274.1649, found 274.1653.

Colorless oil.

¹**H NMR** (400 MHz, CD₃COCD₃, ppm): δ 4.50 (d, J = 5.6 Hz, 1H), 4.40-4.28 (m, 1H),

4.20 (q, J = 7.2 Hz, 2H), 3.68-3.55 (m, 1H), 2.25-2.12 (m, 1H), 2.01-1.82 (m, 4H), 1.81-1.70 (m, 1H), 1.68-1.57 (m, 1H), 1.57-1.33 (m, 4H), 1.26 (t, J = 7.2 Hz, 1H), 0.93 (s, 9H), 0.28 (s, 3H), 0.24 (s, 3H); ¹³**C NMR** (100 MHz, CD₃COCD₃, ppm): δ 170.6, 115.4, 85.6, 79.1, 64.3, 61.1, 44.4, 41.3, 39.8, 26.5, 24.5, 22.0, 21.6, 18.6, 14.8, -2.6, -2.8; **HRMS** (ESI) calcd for C₁₉H₃₄NaO₅Si [M+Na]⁺: 393.2068, found 393.2072.

Colorless oil, inseparable mixture (dr = 5:1), for major isomer:

¹**H NMR** (400 MHz, CDCl₃, ppm): δ 4.55 (d, J = 6.0 Hz, 1H), 4.21 (q, J = 7.2 Hz, 2H), 4.06 (q, J = 8.0 Hz, 1H), 3.93 (q, J = 8.0 Hz, 1H), 2.78 (dt, $J_I = 6.4$ Hz, $J_2 = 9.2$ Hz, 1H), 2.10-1.94 (m, 5H), 1.80-1.58 (m, 2H), 1.49-1.32 (m, 1H), 1.28 (t, J = 7.2 Hz, 1H), 0.91 (s, 9H), 0.23 (s, 3H), 0.17 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃, ppm): δ 170.4, 113.4, 96.4, 76.9, 69.2, 60.8, 50.6, 39.3, 35.3, 28.9, 25.7, 21.1, 17.8, 14.2, -3.3; **HRMS** (ESI) calcd for C₁₈H₃₂NaO₅Si [M+Na]⁺: 379.1911, found 379.1915.

Colorless oil.

¹**H NMR** (400 MHz, CDCl₃, ppm): δ 4.29 (d, J = 7.2 Hz, 1H), 4.28-4.22 (m, 2H), 3.97 (dt, $J_1 = 4.0$ Hz, $J_2 = 8.0$ Hz, 1H), 3.70 (q, J = 8.0 Hz, 1H), 2.97 (brs, 1H), 2.80-2.70 (m, 1H), 2.53-2.42 (m, 1H), 2.33-2.25 (m, 1H), 2.21-2.12 (m, 1H), 2.12-1.88 (m, 5H), 1.32 (t, J = 7.2 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃, ppm): δ 215.8, 174.2, 87.2, 69.9, 66.6, 62.3, 42.6, 34.9, 32.2, 26.5, 18.8, 14.1; **HRMS** (ESI) calcd for C₁₂H₁₈NaO₅ [M+Na]⁺: 265.1046, found 265.1041.

Colorless crystal, MP 76-78.

¹**H NMR** (400 MHz, CDCl₃) δ 4.65 (s, 1H), 4.35-4.22 (m, 3H), 3.98 (dd, $J_I = 7.2$ Hz, $J_2 = 15.2$ Hz, 1H), 3.83 (dt, $J_I = 5.6$ Hz, $J_2 = 8.0$ Hz, 1H), 3.61 (d, J = 3.2 Hz, 1H), 3.01-2.87 (m, 1H), 2.22-2.18 (m, 1H), 2.06-1.94 (m, 2H), 1.85-1.58 (m, 8H), 1.30 (t, J = 7.1 Hz, 3H), 0.88 (s, 9H), 0.15 (s, 3H), 0.12 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃, ppm): δ 173.2, 108.7, 89.5, 70.2, 66.2, 61.8, 44.3, 36.1, 36.0, 26.0, 24.9, 24.7, 24.7, 18.4, 14.1, -2.7, -2.7; **HRMS** (ESI) calcd for C₁₉H₃₆NaO₆Si [M+Na]⁺: 411.2173, found 411.2179.

Colorless viscous oil. Column chromatography (PE:DCM:EA = 5:5:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 5.24 (s, 1H), 4.64 (d, J = 8.4 Hz, 1H), 4.20 (dq, $J_I = 3.8$, $J_2 = 10.8$ Hz, 2H), 3.38-3.30 (m, 2H), 3.21 – 3.03 (m, 1H), 2.91 (dt, $J_I = 8.0$ Hz, $J_2 = 12.4$ Hz, 1H), 2.41 (s, 3H), 2.15 – 2.06 (m, 1H), 1.97 – 1.79 (m, 4H), 1.79 – 1.66 (m, 1H), 1.55 – 1.40 (m, 1H), 1.25 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 143.6, 140.2, 130.3, 128.2, 116.2, 83.6, 78.5, 62.3, 57.9, 50.6, 38.1, 36.9, 25.0, 21.4, 21.4, 14.5; **HRMS** (ESI) calcd for C₁₉H₂₅NNaO₆S [M+Na]⁺: 418.1295, found 418.1263.

HPLC Enantiomeric excess is 91.5% determined by HPLC (Chiralcel AD, Hexane/Isopropanol 60/40, flow rate=1.0 mL/min, 240 nm): major isomer: $t_R = 16.9$ min; minor isomer: $t_R = 17.8$ min, $[a]^{25}_{D}$ -26° (*c* 1.0, CHCl₃).

 $3e\beta$, X = NTs

Colorless crystal MP 148-149 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 4.38 (d, J = 10.0 Hz, 1H), 4.22 (q, J = 7.2, 2H), 3.71 (brs, 1H), 3.68-3.52 (m, 2H), 2.67 (dd, $J_I = 7.6$ Hz, $J_2 = 9.6$ Hz, 1H), 2.91 (dt, $J_I = 7.2$ Hz, $J_2 = 12.8$ Hz, 1H), 2.43 (s, 3H), 2.21 (dd, $J_I = 6.0$ Hz, $J_2 = 12.8$ Hz, 1H), 1.99 – 1.82 (m, 3H), 1.79 – 1.63 (m, 2H), 1.63 – 1.48 (m, 1H), 1.34 (t, J = 7.2 Hz, 3H); ¹³C **NMR** (100 MHz, CDCl₃) 170.1, 143.3, 138.7, 129.7, 126.7, 113.7, 83.3, 77.7, 61.3, 58.9, 49.1, 37.6, 35.5, 25.0, 21.4, 20.6, 14.1; **HRMS** (ESI) calcd for C₁₉H₂₅NO₆S [M+NH₄]⁺: 395.1403, found 395.1697.

HPLC Enantiomeric excess is 82% determined by HPLC (Chiralcel AD, Hexane/Isopropanol 60/40, flow rate=1.0 mL/min, 246 nm): major isomer: $t_R = 15.2$ min; minor isomer: $t_R = 16.8$ min, $[a]^{25}_D + 53^\circ$ (*c* 1.0, CHCl₃).

Colorless amorphous solid.

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 7.75 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H), 5.06 (s, 1H), 4.50 (d, J = 9.2 Hz, 1H), 3.40-3.35 (m, 2H), 3.05-2.87 (m, 2H), 2.40 (s, 3H), 2.16 (dt, $J_I = 6.8$ Hz, $J_2 = 12.8$ Hz 1H), 2.09 – 2.03 (m, 1H), 1.95-1.83 (m, 2H), 1.77 (dt, $J_I = 6.8$ Hz, $J_2 = 13.2$ Hz, 2H), 1.44 (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃, ppm) δ 173.0, 142.8, 138.1, 129.3, 127.3, 116.0, 83.6, 83.3, 78.9, 57.7, 49.3, 37.2, 36.9, 27.9, 23.9, 21.4, 20.4; **HRMS** (ESI) calcd for C₂₁H₃₃N₂O₆S [M+NH₄]⁺: 441.2054, found 441.2050.

¹**H NMR** (400 MHz, CDCl₃, ppm) δ 7.75 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 4.27 (d, *J* = 10.4 Hz, 1H), 3.70 -3.52 (m, 2H), 2.67-2.58 (m, 1H), 2.58-2.50 (m, 1H), 2.44

(s, 3H), 2.22 (dd, $J_1 = 5.6$ Hz, $J_1 = 12.4$ Hz, 1H), 1.97-1.86 (m, 2H), 1.78-1.63 (m, 2H), 1.63-1.52 (m, 2H), 1.48 (s, 9H). **HRMS** (ESI) calcd for $C_{21}H_{33}N_2O_6S$ [M+NH₄]⁺: 441.2054, found 441.2050. (together with **3fa**)

Yellowish oil.

¹**H NMR** (400 MHz, CD₃COCD₃, ppm): δ 7.63 (d, J = 2.4 Hz, 1H), 7.54 (dd, $J_I = 1.2$ Hz, $J_2 = 8.8$ Hz, 1H), 7.41 (t, J = 8.0 Hz, 1H), 7.11 (dd, $J_I = 2.4$ Hz, $J_2 = 8.4$ Hz, 1H), 4.66 (d, J = 10.0 Hz, 1H), 4.13 (q, J = 7.2 Hz, 2H), 3.94 (dd, $J_I = 3.2$ Hz, $J_2 = 10.0$ Hz, 1H), 3.53 (t, J = 4.0 Hz, 1H), 2.52-2.38 (m, 2H), 2.27 (d, J = 9.6 Hz, 1H), 2.23-2.12 (m, 1H), 2.10-1.98 (m, 1H), 1.96-1.92 (m, 3H), 1.92-1.70 (m, 2H), 1.61-1.49 (m, 1H), 1.14 (t, J = 7.2 Hz, 3H), 0.70 (s, 9H), 0.09 (s, 3H), -0.18 (s, 3H); ¹³**C NMR** (100 MHz, CD₃COCD₃, ppm): δ 171.3, 149.6, 146.7, 130.1, 122.4, 113.5, 111.4, 104.4, 88.0, 64.6, 63.1, 61.5, 41.5, 38.5, 36.2, 26.8, 22.8, 21.5, 20.9, 19.8, 14.7, -1.0, -1.8; **HRMS** (ESI) calcd for C₂₅H₃₉N₂O₆Si [M+H]⁺: 491.2572, found 491.2568.

3gβ

Yellowish crystal, MP 110-111 °C.

¹**H NMR** (400 MHz, CD₃COCD₃, ppm): δ 7.85 (t, J = 2.4 Hz, 1H), 7.60 (dd, $J_I = 1.6$ Hz, $J_2 = 8.0$ Hz, 1H), 7.43 (t, J = 8.4 Hz, 1H), 7.18 (dd, $J_I = 2.0$ Hz, $J_2 = 8.0$ Hz, 1H), 4.53 (d, J = 8.4 Hz, 1H), 4.16 (q, J = 7.2 Hz, 2H), 4.04-3.96 (m, 1H), 3.68-3.59 (m, 1H), 2.60-2.48 (m, 1H), 2.43-2.33 (m, 1H), 2.25-2.02 (m, 3H), 1.95-1.83 (m, 1H), 1.80-1.67 (m, 2H), 1.67-1.55 (m, 1H), 1.55-1.41 (m, 1H), 1.32-1.23 (m, 1H), 1.20 (t, J = 7.2 Hz, 3H), 0.95 (s, 9H), 0.34 (s, 3H), 0.22 (s, 3H); ¹³**C NMR** (100 MHz, CD₃COCD₃, ppm): δ 173.5, 149.7, 146.2, 130.3, 122.8, 112.8, 111.3, 105.1, 88.9, 65.0, 63.6, 61.8, 43.6, 40.5, 29.8, 27.0, 22.2, 21.3, 20.1, 19.8, 14.6, -1.3, -2.4; **HRMS** (ESI) calcd for C₁₉H₂₃N₂O₅ [M-OTBS]⁺: 359.1601, found 359.1597.

Yellowish oil.

¹**H NMR** (400 MHz, CD₃COCD₃, ppm): δ 7.57 (d, J = 8.8 Hz, 1H), 7.27 (d, J = 2.8 Hz, 1H), 6.90 (dd, $J_1 = 2.8$ Hz, $J_2 = 9.2$ Hz, 1H), 4.63 (d, J = 10.0 Hz, 1H), 4.15 (q, J = 7.2 Hz, 2H), 3.97-3.90 (m, 1H), 3.38-3.50 (m, 1H), 2.46-2.32 (m, 2H), 2.26 (dt, $J_1 = 4.0$ Hz, $J_2 = 10.0$ Hz, 1H), 2.18-2.10 (m, 1H), 2.04-1.97 (m, 1H), 1.97-1.87 (m, 3H), 1.87-1.78 (m, 1H), 1.78-1.69 (m, 1H), 1.58-1.49 (m, 1H), 1.17 (t, J = 7.2 Hz, 3H), 0.74 (s, 9H), 0.10 (s, 3H), -0.14 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃, ppm): δ 173.2, 151.0, 145.4, 135.2, 121.6, 113.4, 105.1, 100.1, 88.8, 64.8, 63.6, 62.0, 43.5, 40.1, 29.7, 27.1, 22.1, 21.2, 20.1, 19.9, 14.6, -1.3, -2.4; HRMS (ESI) calcd for C₂₅H₃₈BrN₂O₆Si [M+H]⁺: 569.1677, found 569.1670.

Yellowish crystal, MP 145-147 °C.

¹**H NMR** (400 MHz, CD₃COCD₃, ppm): δ 7.59 (d, J = 8.8 Hz, 1H), 7.49 (d, J = 3.2 Hz, 1H), 6.95 (dd, $J_1 = 3.2$ Hz, $J_2 = 8.8$ Hz, 1H), 4.50 (d, J = 8.8 Hz, 1H), 4.23-4.10 (m, 2H), 4.00-3.90 (m, 1H), 3.65-3.55 (m, 1H), 2.60-2.50 (m, 1H), 2.42-2.32 (m, 1H), 2.21-2.00 (m, 3H), 1.92-1.70 (m, 3H), 1.63-1.44 (m, 2H), 1.40-1.25 (m, 1H), 1.21 (t, J = 7.2 Hz, 3H), 0.92 (s, 9H), 0.27 (s, 3H), 0.20 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃, ppm): δ 171.1, 151.0, 145.9, 135.1, 121.0, 113.1, 104.5, 100.6, 88.2, 64.5, 62.9, 61.6, 41.3, 38.2, 35.5, 26.8, 22.6, 21.6, 20.6, 19.7, 14.6, -1.1, -1.9; HRMS (ESI) calcd for C₂₅H₃₈BrN₂O₆Si [M+H]⁺: 569.1677, found 569.1664.

Yellowish oil.

¹**H NMR** (400 MHz, CD₃COCD₃, ppm): δ 7.48 (t, J = 8.0 Hz, 1H), 7.19 (s, 1H), 7.13 (dd, $J_I = 3.2$ Hz, $J_2 = 8.0$ Hz, 2H), 4.77 (d, J = 10.0 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 4.08 (dd, $J_I = 3.6$ Hz, $J_2 = 6.4$ Hz, 1H), 3.69 (dd, $J_I = 9.6$ Hz, $J_2 = 11.6$ Hz, 1H), 2.68-2.56 (m, 1H), 2.56-2.47 (m, 1H), 2.43-2.35 (m, 1H), 2.33-2.22 (m, 1H), 2.22-2.10 (m, 1H), 2.10-1.93 (m, 4H), 1.93-1.82 (m, 1H), 1.73-1.60 (m, 1H), 1.26 (t, J = 7.2 Hz, 3H), 0.84 (s, 9H), 0.21 (s, 3H), 0.03 (s, 3H); ¹³**C NMR** (100 MHz, CD₃COCD₃, ppm): δ 173.6, 145.6, 131.5 (q, $J_F = 31.0$ Hz), 130.1, 125.7 (d, $J_F = 270$ Hz), 120.6, 114.9 ($J_F = 3.8$ Hz), 113.5 ($J_F = 4.0$ Hz), 105.0, 88.8, 65.1, 63.5, 61.6, 43.6, 40.8, 30.0, 27.1, 22.3, 21.4, 20.2, 19.8, 14.5, -1.4, -2.3; **HRMS** (ESI) calcd for C₂₀H₂₅F₃NO₄ [M-TBS+H]⁺: 400.1730, found 400.1758.

Yellowish crystal, **MP** 48-52 °C.

¹**H NMR** (400 MHz, CD₃COCD₃, ppm): δ 7.37 (t, J = 8.0 Hz, 1H), 7.32 (s, 1H), 7.10-7.02 (m, 2H), 4.50 (d, J = 8.4 Hz, 1H), 4.14 (q, J = 7.2 Hz, 2H), 4.07-3.97 (m, 1H), 3.68-3.58 (m, 1H), 2.55-2.45 (m, 1H), 2.41-2.30 (m, 1H), 2.18-2.00 (m, 3H), 1.95-1.84 (m, 1H), 1.75-1.57 (m, 3H), 1.57-1.43 (m, 1H), 1.28-1.15 (m, 1H), 1.18 (t, J = 7.2 Hz, 3H), 0.96 (s, 9H), 0.30 (s, 3H), 0.22 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃, ppm): δ 171.4, 146.2, 131.0 (q, $J_F = 31.0$ Hz), 130.0, 125.8 (d, $J_F = 270$ Hz), 120.1, 115.5 ($J_F = 2.9$ Hz), 113.8 ($J_F = 3.6$ Hz), 104.2, 87.9, 64.5, 63.1, 61.3, 41.6, 38.0, 36.6, 26.8, 23.0, 21.5, 21.0, 19.7, 14.6, -1.0, -1.8; **HRMS** (ESI) calcd for C₂₀H₂₃F₃NO₃ [M-OTBS]⁺: 382.1625, found 382.1626.

Yellowish viscous oil.

¹**H NMR** (400 MHz, CD₃COCD₃, ppm) δ 7.81 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 6.4 Hz, 1H), 7.62 (s, 1H), 7.41 (d, J = 8.0 Hz, 2H), 7.27 (dd, $J_1 = 2.8$ Hz, $J_2 = 8.8$ Hz, 1H), 4.69 (d, J = 8.4 Hz, 1H), 4.16 (q, J = 7.2 Hz, 2H), 3.63 (dt, $J_1 = 4.0$ Hz, $J_2 = 8.8$ Hz, 1H), 3.39 (td, $J_1 = 6.8$ Hz, $J_2 = 8.8$ Hz, 1H), 3.11 (dd, $J_1 = 3.6$ Hz, $J_2 = 12.8$ Hz, 1H), 2.97 (dt, $J_1 = 8.0$ Hz, $J_2 = 12.8$ Hz, 1H), 2.82 (s, 1H), 2.43 (s, 3H), 2.36 (dd, $J_1 = 6.0$ Hz, $J_2 = 12.8$ Hz, 1H), 2.82 (s, 1H), 1.69-1.57 (m, 1H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CD₃COCD₃, ppm) δ 171.3, 151.2, 146.2, 144.0, 140.0, 135.2, 130.5, 128.1, 123.0, 114.6, 102.3, 101.9, 83.6, 62.6, 62.2, 53.2, 50.6, 35.8, 35.2, 26.0, 21.5, 21.4, 21.4, 14.6; HRMS (ESI) calcd for C₂₅H₂₇BrN₃O₆S [M-OH]⁺: 576.0798, found 576.0780.

ORTEM drawing of 3hß

bpm

99.97 00.77 25.77 11.67 26.48

L2.911 -----

8T.PT -----

mdd

0

10

20

zqw–913

—________

9°0*L*T-----

τ·6*L*----

9.28----

89.621 — 99°88T ——

69·97T —

₽*L*•EII ——

98.82 -----tt.t9 -----10.00 10

52.01.64 21.45 25.01

Þī.Þí ——

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

م من المنظر المراجم فناقدهم إذاري أمقيته اداهرين فتعلاقا ودكالا بمستعا إقتاره فاست ي من المراجع من المراجع المراجع المراجع المراجع من المراجع المراجع المراجع المراجع المراجع المراجع المراجع الم المسلح المراجع ا وللتلطية المحاليات للتلبير إنجاب الكر ين المراجعة الم

mdd

0

10

20

30

6

50

09

70

80

06

100

110

120

130

140

150

160

170

180

190

200

210

zqw-952-u

ς0	• 8	L	τ	 	_

EI.8EI -----145.544

∠6°STT ——

20°.25 21°.00 21°.00 20°.27 20°.28 20°.28 20°.28 20°.28 20°.28

30.89 61.75

£7.72 ——

51.40 51.40 53.88 τ6·*L*Ζ ——

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

mdd

EE.04 -----


```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013
```

Data File C:\HPCHEM\1\DATA\ZHANGQW\ZQW07212.D AD hex:ipr=60:40 1ml/min Sample Name: zqw-N

Injection Date : 7/25/2002 1:00:54 AM Sample Name : zqw-N Location : Vial 1 Acq. Operator : zhangqw Acq. Method : C:\HPCHEM\1\METHODS\ZHANGQW.M Last changed : 7/25/2002 12:59:11 AM by zhangqw (modified after loading) Analysis Method : C:\HPCHEM\1\METHODS\ZHANGQW.M Last changed : 7/25/2002 2:05:55 AM by ZDY


```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{O} The Royal Society of Chemistry 2013
```

Data File C:\HPCHEM\1\DATA\ZDY\ZDY00032.D AD hex:ipr=90:10 1ml/min Sample Name: zqw-Box-tBu-u

```
______
Injection Date : 7/25/2002 12:40:41 AM
Sample Name
           : zqw-Box-tBu-u
                                    Location : Vial 1
          : ZDY
Acq. Operator
Acq. Method
          : C:\HPCHEM\1\METHODS\ZHANGQW.M
          : 7/25/2002 12:41:15 AM by ZDY
Last changed
             (modified after loading)
Analysis Method : C:\HPCHEM\1\METHODS\ZHANGQW.M
Last changed
          : 7/25/2002 2:05:55 AM by ZDY
_____
```


Data File C:\HPCHEM\1\DATA\ZHANGQW\ZQW07224.D
 AD hex:ipr=60:40 1ml/min

	===			==:	=====	====
Injection Date	:	7/25/2002 4:03:09 AM				
Sample Name	:	zqw-N-d-race	Location	:	Vial	1
Acq. Operator	:	zhangqw				
Acq. Method	:	C:\HPCHEM\1\METHODS\ZHANGQW.M				
Last changed	:	7/25/2002 3:45:21 AM by zhangqw				
		(modified after loading)				
Analysis Method	:	C:\HPCHEM\1\METHODS\ZHANGQW.M				
Last changed	:	7/25/2002 4:24:59 AM by zhangqw				
		(modified after loading)				

		Area Percent Report			
	=========		====		
Sorted By	:	Signal			
Multiplier	:	1,0000			

Signal 1: DAD1 D, Sig=246,16 Ref=360,100

Dilution

Totals : 1.07861e4 263.59848

: 1.0000

Results obtained with enhanced integrator! Summed Peaks Report Signal 1: DAD1 D, Sig=246,16 Ref=360,100

Final Summed Peaks Report

Signal 1: DAD1 D, Sig=246,16 Ref=360,100

PDF created with pdfFactory Pro trial version www.softwarelabs.com

Data File C:\HPCHEM\1\DATA\ZHANGQW\ZQW07215.D
AD hex:ipr=60:40 1ml/min

Sample Name: zqw-N-chiral-d

	===		
Injection Date	:	7/25/2002 1:45:47 AM	
Sample Name	:	zqw-N-chiral-d	Location : Vial 1
Acq. Operator	:	zhangqw	
Acq. Method	:	C:\HPCHEM\1\METHODS\ZHANGQW.M	
Last changed	:	7/25/2002 12:41:15 AM by ZDY	
		(modified after loading)	
Analysis Method	:	C:\HPCHEM\1\METHODS\ZHANGQW.M	
Last changed	:	7/25/2002 1:48:54 AM by ZDY	
		(modified after loading)	

	Area	a Percent Report
Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000

Signal 1: DAD1 D, Sig=246,16 Ref=360,100

Peak RetTime Type Width Area Height Area Width Area [min] [mAU*s] # [min] [mAU] 00 ----|-----|-----|-----|-----| 1 14.842 VV 0.6101 2905.15674 74.64555 8.8810 2 15.933 VBA 0.6005 2.98069e4 742.27356 91.1190

Totals : 3.27121e4 816.91911

Results obtained with enhanced integrator! Summed Peaks Report Signal 1: DAD1 D, Sig=246,16 Ref=360,100

Final Summed Peaks Report

Signal 1: DAD1 D, Sig=246,16 Ref=360,100

PDF created with pdfFactory Pro trial version www.softwarelabs.com