Electronic supplementary information

Chirality transcription and amplification by [2]pseudorotaxanes

Shunsuke Kuwahara,^{†,‡} Rie Chamura,[†] Sho Tsuchiya,[†] Mari Ikeda,^{†,‡} and Yoichi Habata^{*,†,‡} [†]Department of Chemistry, Faculty of Science, and [‡]Research Center for Materials with Integrated Properties, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan

E-mail: habata@chem.sci.toho-u.ac.jp

1.	Materials and methods	2
2.	Synthesis of crown ether 1	2
3.	¹ H and ¹³ C NMR spectra of 1	3
4.	Synthesis of ammonium salts (R)-2a-H•PF ₆ , (S)-2a-H•PF ₆ , (R)-2b-H•PF ₆ ,	
	and (S) - 2b -H•PF ₆	4
5.	¹ H and ¹³ C NMR spectra of (R)-2a-H•PF ₆ , (S)-2a-H•PF ₆ , (R)-2b-H•PF ₆ ,	
	and (S) - 2b -H•PF ₆	5-8
6.	ORTEP drawing of (R) -2a-H•PF ₆	9
7.	Crystal data and structure refinement for (R) -2a-H-PF ₆	10
8.	¹³ C NMR spectra of [2]pseudorotaxane $[1 \cdot (R) - 2a - H][PF_6]$	11
9.	NOESY spectrum of [2]pseudorotaxane $[1 \cdot (R) - 2a - H][PF_6]$	12
10.	¹ H NMR spectral changes of 1 in the absence and presence of	
	(<i>R</i>)-2b-H•PF ₆	13
11.	¹³ C NMR spectral changes of 1 in the absence and presence of	
	(<i>R</i>)-2b-H•PF ₆	14
12.	¹ H NMR spectra of $[1 \cdot (R) - 2a - H][Cl]$	15
13.	¹³ C NMR spectra of $[1 \cdot (R) - 2a - H]$ [Cl]	16
14.	CD and UV spectra of [2]pseudorotaxane $[1 \cdot (R) - 2a - H][PF_6]$ and	
	[1 •(<i>R</i>)- 2a -H][Cl]	17
15.	CD spectra of $[1 \cdot (R) - 2a - H][PF_6]$ and $[1 \cdot (S) - 2a - H][PF_6]$ with varying	
	%ee values	18
16.	Optimized structures of $[1 \cdot (R) - 2a - H]^+$ complex	19

Materials and methods

IR spectra were obtained as KBr disks on a JASCO FT/IR-410 spectrophotometer. ¹H-NMR spectra were recorded on Jeol ECP400 (400 MHz) spectrometers. ¹³C NMR spectra were obtained on Jeol ECP400 (100 MHz) spectrometers. All NMR spectroscopic data of CDCl₃ solutions are reported in ppm (δ) downfield from TMS. UV and CD spectra were recorded on JASCO V-650 and JASCO J-820 spectrometers, respectively. Silica gel 60 F254 precoated plates on glass from Merck Ltd. were used for thin layer chromatography (TLC).

Synthesis of crown ether 1

1,1':3',1"'-quaterphenyl-4',6"-diol 7¹ and 1,2-Bis[2-[2-(2-tosyloxyethoxy)ethoxy]ethoxy] -benzene **10**² was synthesized according to literature procedure. A mixture of diol 7 (0.959 g, 2.8 mmol), ditosylate **10** (1.94 g, 2.8 mmol), and Cs₂CO₃ (2.14 g, 6.6 mmol) in acetonitrile (200 mL) was refluxed for 28 h. After cooling down to room temperature, the mixture was filtered and evaporated, and then CHCl₃ was added. After washing with brine, the organic phase was dried over Na₂SO₄ and evaporated to dryness. The crude product was purified by column chromatography on silica gel (hexane/EtOAc, v/v 1:1) to yield crown ether **1** (1.12 g, 58%) as a white solid: mp 100.0-101.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.57 (m, 4H), 7.52-7.50 (m, 4H), 7.41-7.38 (t, *J* = 7.6 Hz, 4H), 7.30-7.28 (m, 2H), 7.04 (dd, *J* = 8.8, 6.5 Hz, 2H), 6.93-6.88 (m, 4H), 4.20-4.09 (m, 8H), 3.87-3.56 (m, 16H); ¹³C NMR (100 MHz, CDCl₃) δ 68.7, 69.1, 69.8, 69.9, 70.97, 70.99, 112.8, 114.4, 121.5, 126.6, 126.7, 127.1, 128.7, 128.9, 130.1, 133.6, 140.7, 149.0, 156.2 ; IR (KBr) 3058, 3026, 2927, 2868, 1739, 1601, 1506, 1451, 1256, 1129, 1056, 922, 828, 765, 689 cm⁻¹; m/z (matrix: *m*-NBA) = 764 ([M+1]⁺ 50 %), 787 ([M+Na]⁺ 70%); Anal. Calcd for C₄₂H₄₄O₈•1/4H₂O: C, 74.04; H, 6.58. Found. C, 74.02; H, 6.68.

^{1.} S. Facchetti, D. Losi and A. Iuliano, *Tetrahedron-Asymmetr.*, 2006, 17, 2993.

^{2.} X. Z. Zhu and C. F. Chen, J. Am. Chem. Soc., 2005, 127, 13158.

Fig. S1. ¹H NMR Spectrum (400 MHz, $CDCl_3$) of **1**.

Fig. S2. 13 C NMR Spectrum (100 MHz, CDCl₃) of **1**.

Synthesis of ammonium salts (*R*)-2a-H·PF₆, (*S*)-2a-H·PF₆, (*R*)-2b-H·PF₆, and (*S*)-2b-H·PF₆

Secondary amines (*R*)-13a, (*S*)-13a, (*R*)-13b, and (*S*)-13b was prepared by reductive amination of 1-phenylethanamine (*R*)-11 or (*S*)-11 and benzaldehyde 12^3 . To a solution of secondary amine 13 (2.23 mmol) in CH₂Cl₂ (1 mL) was added 5 M HCl (10 mL). After stirring for 1 h, a white precipitate was formed. The solvents were evaporated and the residue was dissolved in water (3 mL). The solution was added to a saturated aqueous NH₄PF₆ and stirred for 1h. The reaction mixture was extracted with CHCl₃. The organic layer was washed with brine, dried over Na₂SO₄ and evaporated to dryness. The crude product was purified by recrystallization from CH₂Cl₂/hexane to give ammonium salts.

(*R*)-**2a**-H·PF₆ as colorless crystals (82%): mp 125.4-126.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.24 (m, 10H), 4.30 (q, *J* = 6.8 Hz, 1H), 3.97 (s, 2H), 1.67 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 134.4, 130.3, 130.1, 130.0, 129.9, 129.4, 128.8, 127.3, 59.8, 50.7, 19.8; IR (KBr) v_{max} 2933, 2761, 2422, 1588, 1496, 1446, 845, 768, 742, 696, 561 cm⁻¹; m/z (matrix: DTT/TG) = 212 ([M–(PF₆⁻)]⁺ 100 %); $[\alpha]_D^{25}$ +42.1 (*c* 1.47, CHCl₃). Anal. Calcd for C₁₅H₁₈NF₆P: C, 50.43; H, 5.08; N, 3.92. Found. C, 50.45; H, 4.90; N, 3.84.

(*S*)-**2a**-H·PF₆ as colorless crystals (84%): mp 125.2126.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.507.24 (m, 10H), 4.30 (q, *J* = 6.8 Hz, 1H), 3.97 (s, 2H), 1.67 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 134.4, 130.3, 130.1, 130.0, 129.9, 129.4, 128.8, 127.3, 59.8, 50.7, 19.8; IR (KBr) v_{max} 2936, 2761, 2422, 1588, 1458, 842, 768, 697, 560 cm⁻¹; m/z (matrix: DTT/TG) = 212 ([M–(PF₆⁻)]⁺ 100 %); [α]_D²⁵–41.9 (*c* 1.53, CHCl₃). Anal. Calcd for C₁₅H₁₈NF₆P: C, 50.43; H, 5.08; N, 3.92. Found. C, 50.31; H, 4.93; N, 3.84.

(*R*)-**2b**-H·PF₆ as colorless crystals (89%): mp 111.0-112.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.40 (m, 5H), 4.36 (m, 1H), 2.91 (m, 1H), 2.70 (m, 1H), 1.82-1.64 (m, 2H), 1.81 (d, *J* = 6.9 Hz, 3H), 0.90 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 134.4, 130.3, 130.0, 127.2, 60.8, 49.0, 19.6, 19.3, 10.6; IR (KBr) v_{max} 2964, 2794, 2515, 2427, 1577, 1498, 1457, 1383, 1212, 1078, 840, 768, 703, 561 cm⁻¹; m/z (matrix: DTT/TG) = 164 ([M–(PF₆–)]⁺ 20 %); $[\alpha]_D^{25}$ +28.8 (*c* 1.52, CHCl₃). Anal. Calcd for C₁₁H₁₈NF₆P: C, 42.72; H, 5.87; N, 4.53. Found. C, 42.85; H, 5.77; N, 4.55.

(*S*)-**2b**-H·PF₆ as colorless crystals (89%): mp 111.0-112.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.40 (m, 5H), 4.36 (m, 1H), 2.91 (m, 1H), 2.70 (m, 1H), 1.82-1.64 (m, 2H), 1.81 (d, *J* = 6.9 Hz, 3H), 0.90 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 134.4, 130.3, 130.0, 127.2, 60.8, 49.0, 19.6, 19.3, 10.6; IR (KBr) v_{max} 2964, 2794, 2515, 2427, 1577, 1498, 1457, 1383, 1212, 1078, 840, 768, 703, 561 cm⁻¹; m/z (matrix: DTT/TG) = 164 ([M–(PF₆⁻)]⁺ 80 %); $[\alpha]_D^{25}$ -29.5 (*c* 1.43, CHCl₃). Anal. Calcd for C₁₁H₁₈NF₆P: C, 42.72; H, 5.87; N, 4.53. Found. C, 42.75; H, 5.71; N, 4.24.

3. C. M. Cain, R. P. C. Cousins, G. Coumbarides and N. S. Simpkins, *Tetrahedron*, 1990, 46, 523.

Fig. S3. ¹H NMR Spectrum (400 MHz, CDCl₃) of (R)-2a-H·PF₆.

Fig. S4. ¹³C NMR Spectrum (100 MHz, CDCl₃) of (R)-2a-H·PF₆.

Fig. S5. ¹H NMR Spectrum (400 MHz, CDCl₃) of (S)-2a-H·PF₆.

Fig. S6. ¹³C NMR Spectrum (100 MHz, $CDCl_3$) of (S)-2a-H·PF₆.

Fig. S7. ¹H NMR Spectrum (400 MHz, CDCl₃) of (R)-**2b**-H·PF₆.

Fig. S8. ¹³C NMR Spectrum (100 MHz, $CDCl_3$) of (*R*)-2b-H·PF₆.

Fig. S9. ¹H NMR Spectrum (400 MHz, CDCl₃) of (S)-2b-H·PF₆.

Fig. S10. ¹³C NMR Spectrum (100 MHz, CDCl₃) of (S)-2b-H·PF₆.

Fig. S11. ORTEP drawing of (R)-2a-H·PF₆ (50% probability level).

Table S1 Crystal data and structure refinement for (R)-2a-H·PF₆.

Empirical formula	C15 H18 F6 N P		
Formula weight	357.27		
Temperature	173 K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P2(1)2(1)2(1)		
Unit cell dimensions	a = 8.7662(6) Å	α=90°.	
	b = 11.1969(7) Å	β=90°.	
	c = 16.9395(12) Å	$\gamma = 90^{\circ}$.	
Volume	1662.68(19) Å ³		
Ζ	4		
Density (calculated)	1.427 Mg/m ³		
Absorption coefficient	0.222 mm ⁻¹		
F(000)	736		
Crystal size	0.21 x 0.18 x 0.09 mm ³		
Theta range for data collection	2.18 to 24.81°.		
Index ranges	-9<=h<=10, -13<=k<=13, -16	5<=l<=20	
Reflections collected	8693		
Independent reflections	2864 [R(int) = 0.0425]		
Completeness to theta = 24.81°	100.0 %		
Absorption correction	Empirical		
Max. and min. transmission	0.9799 and 0.9557		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2864 / 0 / 280		
Goodness-of-fit on F ²	1.038		
Final R indices [I>2sigma(I)]	$R_1 = 0.0490, wR_2 = 0.1174$		
R indices (all data)	$R_1 = 0.0738, wR_2 = 0.1331$		
Absolute structure parameter	-0.09(19)		
Largest diff. peak and hole	0.386 and -0.225 e.Å ⁻³		

Fig. S12. ¹³C NMR spectra (100 MHz, CDCl₃, 298K, [1] = [ammonium salts] = 14 mM) of (*R*)-2a-H·PF₆ (a), 1 (b), and $[1 \cdot (R)-2a-H][PF_6]$ (c).

Fig. S13. NOESY spectrum (400 MHz, CDCl₃, 298K, 14 mM) of $[1 \cdot (R) - 2a - H][PF_6]$.

Fig. S14. ¹H NMR spectral changes of **1** in the absence and presence of (*R*)-**2b**-H·PF₆ (400 MHz, CDCl₃, 273K, [**1**] = 3.3 mM) (a), non-linear curve-fitting (b).

Fig. S15. ¹³C NMR spectral changes of 1 in the absence and presence of (*R*)-2b-H·PF₆ (100 MHz, CDCl₃, 298K, [1] = 47 mM).

Fig. S16. ¹H NMR spectra (400 MHz, CDCl₃, 298K, [1] = [ammonium salts] = 32 mM) of (*R*)-2a-H·Cl (a), 1 (b), and $[1 \cdot (R)-2a-H][Cl]$ (c).

Fig. S17. ¹³C NMR spectra (100 MHz, CDCl₃, 298K, [1] = [ammonium salts] = 32 mM) of (*R*)-2a-H·Cl (a), 1 (b), and $[1 \cdot (R)-2a-H][Cl]$ (c).

Fig. S18. CD spectra (CHCl₃, 273 K, [1] = [ammonium salts] = 3.0 mM) of $[1 \cdot (R) \cdot 2\mathbf{a} \cdot H][\text{PF}_6]$ (pink) and $[1 \cdot (R) \cdot 2\mathbf{a} \cdot H][\text{Cl}]$ (black) (a). UV spectra (CHCl₃, 293 K, [1] = [ammonium salts] = 0.20 mM) of $[1 \cdot (R) \cdot 2\mathbf{a} \cdot H][\text{PF}_6]$ (pink) and $[1 \cdot (R) \cdot 2\mathbf{a} \cdot H][\text{Cl}]$ (black) (b).

Fig. S19. CD spectra (CHCl₃, 273 K, [1] = [ammonium salts] = 3.0 mM) of $[1 \cdot (R) \cdot 2\mathbf{a} \cdot H][PF_6]$ and $[1 \cdot (S) \cdot 2\mathbf{a} \cdot H][PF_6]$ with varying %ee values.

Fig. S20. Optimized structures of $[1 \cdot (R) - 2a - H]^+$ complex. The B3LYP/6-31G^{*}(a), B3LYP/3-21G^{*}(b), HF/6-31G^{*}(c), HF/3-21G^{*}(d) methods were used.