Supporting Information

Aminocatalyzed Asymmetric Diels-Alder Reaction of

2,4-Dienals and Rhodanine/Hydantoin Derivatives †

Kailong Zhu, Huicai Huang, Wenbin Wu, Yuan Wei and JinxingYe* Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. yejx@ecust.edu.cn

A: General Information and Starting Materials	S2
B: Experimental Details	S3
C: Characterization of Diels-Alder Raction Products	S4
D: Elaboration of Diels-Alder Cycloaddition Adduct	S14
E: HPLC Charts of Diels-Alder Reaction Products	S15
F: NMR Spectra of Diels-Alder Reaction Products	S40
G: Absolute Configuration and X-Ray Analysis Data	S65

A: General Information and Starting Materials

General Information. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker AV-400 spectrometer (400 MHz and 100 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CDCl₃: δ 7.26) Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃: δ 77.16). Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz). High resolution mass spectrometry (ESI) were carried out using a Waters Quatro Macro triple quadrupole mass spectrometer Mass spectra (EI) were measured on a Waters Micromass GCT spectrometer. Optical rotations were measured on an Autopol III automatic polarimeter (Rudolph Research analytical). Melting points were measured on a XT3A apparatus. High Performance Liquid Chromatography (HPLC) was performed on an Agilent 1200 Series chromatographs using chiral columns (DAICEL CHIRALPAK AD-H, IA, IC) as noted.

Starting Materials. All solvents and inorganic reagents were from commercial sources and used without purification unless otherwise noted. 2,4-dienals 4 were synthesized following the literature procedure^[1]. Substrates 5 were synthesized following the literature procedure^[2-4].

Reference.

- 1 Z.-J. Jia, Q. Zhou, Q.-Q. Zhou, P.-Q. Chen, Y.-C. Cheng, *Angew. Chem. Int. Ed.*, **2011**, *50*, 8638.
- 2 N. K. El-Aasar, K. F. Saied. J. Heterocylic. Chem., 2008, 45, 645.
- 3 Y. Dürüst, F. Nohout. Synth. Commun., 1999, 29, 1997.
- 4 N. Faucher, P. Martres, A. Laroze, O. Pineau, F. Potvain, D. Grillot. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 710.

B: Experimental Details

General procedure for the asymmetric Diels-Alder reaction

To a solution of catalyst **3** (0.02 mmol, 0.20 equiv.) and o-F-C₆H₄CO₂H (0.02 mmol, 0.20 equiv.) in CDCl₃ (1.0 mL), was added **4** (0.20 mmol, 2.0 equiv), then substrate **5** (0.10 mmol, 1.0 equiv.) was added. The reaction mixture was stirred at 50°C for a specified time and then the solvent was removed under vacuum. The residue was purified by silica gel chromatography (petroleum ether/ethyl acetate) to afford the desired product.

C: Characterization of Diels-Alder Raction Products

6a:2-((5S,6R,10S)-10-(4-bromophenyl)-3-cyclohexyl-4-oxo-2-thioxo-1-thia-3-azaspiro[4.5]dec -7-en-6-yl)acetaldehyde

The product was obtained in 90% yield, yellow oil. $[\alpha]^{25}_{D}$ – -18.9 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.74 (s, 1H), 7.39-7.37 (m, 2H), 7.24-7.21 (m, 2H), 5.91-5.87 (m, 1H), 5.76-5.72 (m, 1H), 4.49 (brs, 1H), 3.59-3.49 (m, 2H), 3.37 (q, *J* = 5.6 Hz, 1H), 2.60-2.59 (m, 2H), 2.45-2.37 (m, 1H), 2.02-1.93 (m, 1H), 1.76-1.73 (m, 1H), 1.63-1.38 (m, 4H), 1.21-0.96 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 200.3, 198.8, 177.0, 136.4, 131.3, 131.1, 128.4, 127.4, 122.1, 58.0, 45.2, 42.1, 40.1, 30.3, 27.3, 26.6, 25.9, 25.8, 25.0; HRMS (EI): exact mass calculated

for M^+ (C₂₂H₂₄BrNO₂S₂) requires m/z 477.0432, found m/z 477.0435; The enantiomeric excess was determined by HPLC after **6a** was converted to the corresponding α , β -unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 7:3, 0.80 mL/min]: 6.2 min (minor), 7.1 min (major), ee 94%.

6b:2-((5S,6R,10S)-10-(4-fluorophenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-e n-6-yl)acetaldehyde

The product was obtained in 82% yield, yellow solid. Mp 87-89 °C. $[\alpha]^{25}_{D}$ -16.4 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.71 (s, 1H), 7.41-7.35 (m, 5H), 7.04-7.00 (m, 2H), 5.96-5.93 (m, 1H), 5.82-5.78 (m, 1H), 3.80 (brs, 1H), 3.61 (dd, *J* = 19.2, 8.8 Hz, 1H), 3.52 (dd, *J* = 11.2, 5.6 Hz, 1H), 2.72-2.58 (m, 2H), 2.46 (m, 1H). ¹³C NMR(100 MHz, CDCl₃): δ 199.3, 199.1, 176.4, 163.8, 161.4, 134.7, 133.1, 133.0, 131.3, 131.2, 129.6, 129.4, 128.2, 128.0, 127.5, 115.4, 115.2, 67.3, 45.6, 42.0,

40.1, 30.2; HRMS (EI): exact mass calculated for M^+ ($C_{22}H_{18}FNO_2S_2$) requires m/z 411.0763, found m/z 411.0762; The enantiomeric excess was determined by HPLC after **6b** was converted to the corresponding α,β -unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 7:3, 0.80 mL/min]: 8.6 min (minor), 9.4 min (major), ee 93%.

6c:2-((5S,6R,10S)-10-(4-nitrophenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en -6-yl)acetaldehyde

The product was obtained in 91% yield, yellow solid. Mp $105-107^{\circ}$ C. $[\alpha]^{25}{}_{D} - 45.7$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.71 (s, 1H), 8.19-8.17 (m, 2H), 7.64-7.61 (m, 2H), 7.46-7.35 (m, 3H), 6.00-5.97 (m, 1H), 5.85-5.81 (m, 1H), 3.84 (brs, 1H), 3.67-3.55 (m, 2H), 2.76-2.62 (m, 2H), 2.52 (m, 1H). ¹³C NMR(100 MHz, CDCl₃): δ 198.9, 198.4, 176.1, 147.7,

145.0, 134.5, 130.7, 129.7, 129.5, 128.4, 127.8, 127.0, 123.4, 66.7, 45.4, 42.4, 40.5, 29.8; HRMS (EI): exact mass calculated for M^+ (C₂₂H₁₈N₂O₄S₂) requires m/z 438.0708, found m/z 438.0710; The enantiomeric excess was determined by HPLC after **6c** was converted to the corresponding α,β-unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IC column, 254nm, *n*-Hexane: EtOH = 7:3, 1.0 mL/min]: 10.4 min (major), 12.0 min (minor), ee 90%.

6d:2-((5S,6R,10S)-4-oxo-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetalde hyde

The product was obtained in 84% yield, brown oil. $[\alpha]^{25}_{D}$ –14.8 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.72 (s, 1H), 7.43-7.41 (m, 2H), 7.36-7.32 (m, 6H), 5.98-5.94 (m, 1H), 5.83-5.79 (m, 1H), 3.80 (brs, 1H), 3.65 (dd, *J* = 18.8, 8.4 Hz, 1H), 3.52 (dd, *J* = 11.6, 5.6 Hz, 1H), 2.79-2.71 (m, 1H), 2.61 (dd, *J* = 18.8, 4.0 Hz, 1H), 2.49 (m, 1H). ¹³C NMR(100 MHz, CDCl₃): δ 199.7, 199.2, 176.4, 137.3, 134.8, 129.6, 129.5, 129.3,

128.5, 128.3, 128.2, 128.1, 127.7, 67.4, 45.6, 42.9, 40.0, 30.0; HRMS (EI): exact mass calculated for M^+ (C₂₂H₁₉NO₂S₂) requires m/z 393.0857, found m/z 393.0852; The enantiomeric excess was determined by HPLC after **6d** was converted to the corresponding α,β-unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 7:3, 0.80 mL/min]: 7.4 min (MINOR), 8.4 min (mAJOR), ee 91%.

6e:2-((5S,6R,10S)-10-(4-methoxyphenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7 -en-6-yl)acetaldehyde

The product was obtained in 64% yield. yellow solid. Mp 71-73°C; $[\alpha]^{25}_{D} - 13.9$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.72 (s, 1H), 7.34-7.32 (m, 5H), 6.86-6.84 (m, 4H), 5.96-5.94 (m, 1H), 5.82-5.78 (m, 1H), 3.81 (s, 4H), 3.64 (dd, *J* = 18.8, 8.4 Hz, 1H), 3.49 (dd, *J* = 11.6, 5.2 Hz, 1H), 2.73-2.58 (m, 2H), 2.46 (m, 1H). ¹³C NMR(100 MHz, CDCl₃): δ 199.8, 199.2, 176.5, 159.6, 134.9, 130.6, 129.4, 129.3, 129.2, 128.2, 128.1, 127.8, 113.8, 67.7, 55.4, 45.6, 42.0, 40.0, 30.2; HRMS (EI): exact mass calculated for M⁺ (C₂₃H₂₁NO₃S₂) requires m/z

423.0963, found m/z 423.0960; The enantiomeric excess was determined by HPLC after **6e** was converted to the corresponding α , β -unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 7:3, 0.80 mL/min]: 8.8 min (minor), 10.2 min (major), ee 91%.

6f:2-((5S,6R,10S)-10-(3-nitrophenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetaldehyde

The product was obtained in 95% yield, brown solid. Mp 60-62 °C. $[\alpha]^{25}_{D}$ – 12.7 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.72 (s, 1H), 8.30-8.22 (m, 2H), 7.83-7.81 (m, 1H), 7.56-7.52 (m, 1H), 7.35-7.33 (m, 3H), 6.01-5.98 (m, 1H), 5.86-5.82 (m, 1H), 3.85 (brs, 1H), 3.69-3.57 (m, 2H), 2.30-2.72 (m, 1H), 2.66 (dd, *J* = 19.2, 3.2 Hz, 1H), 2.55 (m, 1H). ¹³C NMR(100 MHz, CDCl₃): δ 199.0, 198.3, 176.2, 148.1, 139.8, 135.6, 134.5, 129.7, 129.5, 129.4, 128.4, 127.9, 127.0, 124.8,

123.2, 66.7, 45.4, 42.2, 40.4, 29.9; HRMS (EI): exact mass calculated for M^+ ($C_{22}H_{18}N_2O_4S_2$) requires m/z 438.0708, found m/z 438.0712; The enantiomeric excess was determined by HPLC after **6f** was converted to the corresponding α , β -unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 4:1, 1.0 mL/min]: 10.8 min (minor), 11.8 min (major), ee 92%.

6g:(5S,6S,10R)-ethyl-4-oxo-10-(2-oxoethyl)-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-8-en e-6-carboxylate

The product was obtained in 93% yield, yellow oil. $[\alpha]^{25}_{D}$ –111.4 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.64 (s, 1H), 7.54-7.44 (m, 3H), 7.34-7.32 (m, 2H), 5.87-5.85 (m, 1H), 5.76-5.72 (m, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.72 (brs, 1H), 3.39 (dd, *J* = 11.6, 6.4 Hz, 1H), 3.26 (dd. *J* = 18.8, 8.4 Hz, 1H), 2.79 (m, 1H), 2.48 (dd, *J* = 19.2, 4.0 Hz, 1H), 2.42-2.34 (m, 1H), 1.26

(t, J = 7.2 Hz, 3H). ¹³C NMR(100 MHz, CDCl₃): δ 200.4, 198.7, 177.9, 171.0, 135.6, 129.5, 129.4, 128.6, 128.5, 126.1, 61.8, 61.7, 45.4, 41.9, 40.0, 26.6; HRMS (EI): exact mass calculated for M⁺ (C₁₉H₁₉NO₄S₂) requires m/z 389.0755, found m/z 389.0760; The enantiomeric excess was determined by HPLC after **6g** was converted to the corresponding α , β -unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [AD-H column, 254nm, *n*-Hexane: EtOH = 7:3, 0.60 mL/min]: 14.2 min (major), 18.2 min (minor), ee 94%.

6h:2-((5S,6R,10S)-10-(4-bromophenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-e n-6-yl)acetaldehyde

The product was obtained in 76% yield, brown solid. Mp 146-148 °C; $[\alpha]^{25}_{D} - 30.5$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.72 (s, 1H), 7.46-7.44 (m, 2H), 7.36-7.28 (m, 5H), 5.96-5.93 (m, 1H), 5.82-5.78 (m, 1H), 3.80 (brs, 1H), 3.60 (dd, *J* = 18.8, 8.4 Hz, 1H), 3.48 (dd, *J* = 11.6, 5.6 Hz, 1H), 2.72-2.58 (m, 2H), 2.47 (m, 1H). ¹³C NMR(100 MHz, CDCl₃): δ 199.2, 199.0, 176.3, 136.3, 134.7, 131.5, 131.2, 129.6, 129.4, 128.3, 128.0, 127.4, 122.4, 67.0, 45.5, 42.3, 40.0, 29.9; HRMS (EI):

exact mass calculated for M^+ ($C_{22}H_{18}BrNO_2S_2$) requires m/z 470.9962, found m/z 470.9960; The enantiomeric excess was determined by HPLC after **6h** was converted

to the corresponding α,β -unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 9:1, 1.0 mL/min]: 11.8 min (minor), 13.3 min (major), ee 93%.

6i:2-((5S,6R,10S)-3-cyclohexyl-4-oxo-10-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl) acetaldehyde

The product was obtained in 88% yield, yellow oil. $[\alpha]^{25}_{D}$ +19.7 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.75 (s, 1H), 7.35-7.33 (m, 2H), 7.24-7.23 (m, 3H), 5.91-5.89 (m, 1H), 5.76-5.72 (m, 1H), 4.46 (brs, 1H), 3.61-3.53 (m, 2H), 3.40 (dd, *J* = 11.6, 5.6 Hz, 1H), 2.66-2.50 (m, 2H), 2.43 (m, 1H), 2.01-1.92 (m, 1H), 1.74-1.71 (m, 1H), 1.53-1.42 (m, 4H), 1.25-1.00 (m, 4H). ¹³C NMR(100 MHz, CDCl₃): δ 200.8, 198.9, 177.1, 137.3,

129.4, 128.4, 128.3, 128.2, 128.0, 127.7, 57.9, 45.3, 42.6, 40.2, 30.4, 27.3, 26.5, 25.9, 25.8, 25.0; HRMS (EI): exact mass calculated for M^+ (C₂₂H₂₅NO₂S₂) requires m/z 399.1327, found m/z 399.1320; The enantiomeric excess was determined by HPLC after **6i** was converted to the corresponding α,β-unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 9:1, 1.0 mL/min]: 4.6 min (minor), 5.0 min (major), ee 94%.

6j:2-((5S,6R,10S)-10-(4-bromophenyl)-3-isopropyl-4-oxo-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetaldehyde

The product was obtained in 89% yield, yellow solid. Mp 168-169 °C; $[\alpha]^{25}_{D}$ +77.0 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.74 (s, 1H), 7.39-7.37 (m, 2H), 7.24-7.22 (m 2H), 5.91-5.88 (m, 1H), 5.76-7-5.73 (m, 1H), 4.89-4.82 (m, 1H), 3.60-3.51 (m, 2H), 3.38 dd, *J* = 11.6, 5.6 Hz, 1H), 2.60-2.52 (m, 2H), 2.41 (m, 1H), 1.21 d, *J* = 6.8 Hz, 3H), 0.66 (d, *J* = 5.6 Hz, 3H). ¹³C NMR(100 MHz, CDCl₃): δ 200.1, 198.8, 176.9, 136.3, 131.3, 131.1, 128.4, 127.4, 122.1, 50.0, 45.2, 42.0, 40.1, 30.3, 18.0, 17.3; HRMS (EI): exact mass calculated for M⁺ (C₁₉H₂₀BrNO₂S₂)

requires m/z 437.0119, found m/z 437.0120; The enantiomeric excess was determined by HPLC after **6j** was converted to the corresponding α,β -unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA colum n, 254nm, *n*-Hexane: *i*-PrOH = 7:3, 0.70 mL/min]: 5.5 min (minor), 6.0 min (major) ee 93%.

6k:2-((5S,6R,9S,10S)-10-(4-fluorophenyl)-7,9-dimethyl-4-oxo-3-phenyl-2-thioxo-1-thia-3-aza spiro[4.5]dec-7-en-6-yl)acetaldehyde

The product was obtained in 98% yield, yellow solid. Mp 51-53°C; $[\alpha]^{25}_{D}$ +82.8 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.74 (s, 1H), 7.40-7.35 (m, 5H), 7.07-7.00 (m, 2H), 5.55 (s, 1H), 3.65-3.52 (m, 2H), 3.04 (d, *J* = 10.8 Hz, 1H), 2.75 (brs, 1H), 2.62 (dd, *J* = 18.8, 1.2 Hz, 1H), 1.79 (s, 3H), 0.90 (d, *J* = 6.8 Hz, 3H). ¹³C NMR(100 MHz, CDCl₃): δ

199.9, 199.3, 176.4, 163.8, 161.3, 134.7, 133.4, 132.2, 132.1, 131.4, 129.6, 129.5, 129.4, 128.0, 115.4, 115.2, 68.2, 49.3, 44.2, 43.7, 35.0, 29.7, 22.0, 19.4; HRMS (EI): exact mass calculated for M⁺ (C₂₄H₂₂FN D₂S₂) requires m/z 439.1076, found m/z 439.1072; The enantiomeric excess was determined by HPLC after **6k** was converted to the corresponding α ,β-unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 15:1, 0.8 mL/min]: 9.7 min (minor), 11.0 min (major), ee 96%.

6l:(5S,6S,7S,10R)-ethyl-7,9-dimethyl-4-oxo-10-(2-oxoethyl)-3-phenyl-2-thioxo-1-thia-3-azaspi ro[4.5]dec-8-ene-6-carboxylate

The product was obtained in 91% yield, pale yellow solid. Mp 120-121°C; $[\alpha]^{25}_{D} - 18.5$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.67 (s, 1H), 7.53-7.43 (m, 3H), 7.28-7.26 (m, 2H), 5.42 (s, 1H), 4.20 (q, *J* = 7.2 Hz, 2H), 3.50 (d, *J* = 8.8 Hz, 1H), 3.24 (dd, *J* = 19.2, 8.8 Hz, 1H), 2.99 (d, *J* = 10.4 Hz, 1H), 2.64 (brs, 1H), 2.49 (dd, *J* = 19.2, 2.0 Hz, 1H), 1.73 (s, 3H), 1.28-1.24 (m, 6H). ¹³C NMR(100 MHz, CDCl₃): δ

201.0, 198.9, 177.5, 171.4, 135.5, 133.9, 129.6, 129.4, 128.9, 128.5, 63.9, 61.7, 48.6, 43.9, 43.7, 32.4, 22.0, 21.4, 14.2; HRMS (EI): exact mass calculated for M⁺ (C₂₁H₂₃NO₄S₂) requires m/z 417.1068, found m/z 417.1071; The enantiomeric excess was determined by HPLC after **6** was converted to the corresponding α ,β-unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 7:3, 0.8 mL/min]: 5.7 min (minor), 6.5 min (major), ee 96%.

6m:2-((5S,6R,9S,10S)-3-cyclohexyl-7,9-dimethyl-4-oxo-10-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetaldehyde

The product was obtained in 94% yield, yellow solid. Mp 146-148°C; $[\alpha]^{25}_{D}$ +109.3 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.80 (s, 1H), 7.33-7.31 (m, 2H), 7.25-7.22 (m, 3H), 5.50 (s, 1H), 4.44 (brs, 1H), 3.54 (dd, *J* = 18.8, 9.2 Hz, 1H), 3.39 (d, *J* = 8.8 Hz, 1H), 2.92 (d, *J* = 10.8 Hz, 1H), 2.69 (brs, 1H), 2.54 (dd, *J* = 18.8, 1.6 Hz, 1H), 1.97-1.89 (m, 1H), 1.74-1.69 (m, 4H), 1.52-1.40 (m, 4H), 1.17-0.97 (m,

4H), 0.86 (d, J = 6.8 Hz, 3H). ¹³C NMR(100 MHz, CDCl₃): δ 201.4, 199.2, 177.0, 136.3, 133.5, 129.7, 128.2, 127.9, 55.8, 49.9, 44.0, 43.8, 35.1, 27.2, 26.4, 25.9, 25.8, 25.0, 21.9, 19.4; HRMS (EI): exact mass calculated for M⁺ (C₂₄H₂₉NO₂S₂) requires m/z 427.1640, found m/z 427.1636; The enantiomeric excess was determined by HPLC after **6m** was converted to the corresponding α,β-unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IC column, 254nm, *n*-Hexane:EtOH = 49:1, 1.0 mL/min]: 5.2 min (minor), 5.6 min (major), ee 97%.

6n:2-((5S,6R,9S,10S)-10-(4-bromophenyl)-3-cyclohexyl-7,9-dimethyl-4-oxo-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetaldehyde

The product was obtained in 95% yield, yellow solid. Mp 102-104°C; $[\alpha]^{25}_{D}$ +63.4 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.77 (s, 1H), 7.39-7.36 (m, 2H), 7.22-7.20 (m, 2H), 5.48 (s, 1H), 4.47 (brs, 1H), 3.50 (dd, J = 18.8, 9.2 Hz, 1H), 3.39 (d, J = 9.2 Hz, 1H), 2.89 (d, J = 10.4 Hz, 1H), 2.63 (brs, 1H), 2.54 (dd, J = 18.8, 1.6 Hz, 1H), 1.99-1.89 (m, 1H), 1.73 (s, 4H), 1.69-1.52 (m, 4H), 1.19-0.98 (m, 4H), 0.85 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): (ppm) 200.9, 199.0, 176.9, 135.5, 133.6, 131.3, 129.4, 122.0, 57.9,

49.4, 43.9, 43.7, 35.0, 27.2, 26.6, 25.9, 25.8, 24.9, 21.9, 19.4; HRMS (EI): exact mass calculated for M^+ ($C_{24}H_{28}BrNO_2S_2$) requires m/z 505.0745, found m/z 505.0750; The enantiomeric excess was determined by HPLC after **6n** was converted to the corresponding α , β -unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 49:1, 1.0 mL/min]: 3.8 min (minor), 4.1 min (major), ee 97%.

60:2-((58,6R,10S)-7-ethyl-10-(3-nitrophenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]d ec-7-en-6-yl)acetaldehyde

The product was obtained in 98% yield, yellow solid. Mp 168-170°C; $[\alpha]^{25}_{D} - 33.6$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.74 (s 1H) 8.29-8.28 (m, 1H), 8.22-8.20 (m, 2H), 7.82-7.81 (m, H), 7.54-7.50 (m, 1H), 7.34 (brs, 3H), 5.69 (s, 1H), 3.77 (d J = 8.8 Hz, 1H), 3.70 (dd, J = 11.2, 6.0 Hz, 1H), 3.59 (dd, J = 19.2, 9.2 Hz, 1H), 2.74-2.53 (m, 3H), 2.18-2.09 (m, 1H), 2.01-1.94 (m, 1H), 1.11 (t, J = 7.2

Hz, 3H). ¹³C NMR(100 MHz, CDCl₃): δ 199.2, 198.7, 176.2, 148.0, 140.3, 139.9, 135.6, 134.5, 129.6, 129.5, 129.4, 127.9, 124.8, 123.1, 120.7, 67.2, 44.3, 42.1, 41.9, 30.0, 27.8, 12.6; HRMS (EI): exact mass calculated for M⁺ ($C_{24}H_{22}N_2O_4S_2$) requires m/z 466.1021, found m/z 466.1019; The enantiomeric excess was determined by HPLC after **60** was converted to the corresponding α ,β-unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 9:1, 1.0 mL/min]: 11.1 min (minor), 12.7 min (major), ee 97%.

6p:(5S,6S,10R)-ethyl-9-ethyl-4-oxo-10-(2-oxoethyl)-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]d ec-8-ene-6-carboxylate

The product was obtained in 95% yield. pale yellow solid. Mp 106-107°C; $[\alpha]_{D}^{25} - 87.9$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.66 (s, 1H), 7.54-7.41 (m, 3H), 7.34-7.32 (m, 2H), 5.56 (s, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.62 (d, *J* = 8.8 Hz, 1H), 3.41 (dd, *J* = 11.6, 6.8 Hz, 1H), 3.26 (dd, *J* = 19.6, 9.2 Hz, 1H), 2.81-2.73 (m, 1H), 2.48

(dd, J = 19.6, 2.0 Hz, 1H), 2.38-2.30 (m, 1H), 2.11-2.02 (m, 1H), 1.94-1.89 (m, 1H),

1.26 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H). ¹³C NMR(100 MHz, CDCl₃): δ 200.8, 198.9, 178.0, 171.2, 140.6, 135.6, 129.5, 129.4, 128.6, 119.7, 62.3, 61.6, 44.4, 42.1, 41.6, 27.8, 26.4, 14.2, 12.3; HRMS (EI): exact mass calculated for M⁺ (C₂₁H₂₃NO₄S₂) requires m/z 417.1068, found m/z 417.1070; The enantiomeric excess was determined by HPLC after **6p** was converted to the corresponding α , β -unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 49:1, 1.0 mL/min]: 15.3 min (minor), 17.2 min (major), ee 97%.

6q:2-((5S,6R,10S)-10-(4-bromophenyl)-3-cyclohexyl-7-ethyl-4-oxo-2-thioxo-1-thia-3-azaspiro [4.5]dec-7-en-6-yl)acetaldehyde

The product was obtained in 93% yield, off-white solid. Mp 170-171°C; $[\alpha]^{25}{}_{D}$ – 77.5 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.78 (s, 1H), 7.39-7.36 (m, 2H), 7.24-7.22 (m, 2H), 5.59 (s, 1H), 4.48 (brs, 1H), 3.58-3.48 (m, 2H), 3.41 (dd, *J* = 11.6, 6.0 Hz, 1H), 2.53-2.38 (m, 3H), 2.11-2.02 (m, 1H), 1.97-1.89 (m, 2H), 1.74 (d, *J* = 12.8 Hz, 1H), 1.62-1.40 (m, 4H), 1.25-1.03 (m, 7H). ¹³C NMR(100 MHz, CDCl₃): δ 200.8, 199.0, 177.1, 140.4, 136.4, 131.3, 131.1, 122.0, 121.0, 57.9, 44.2, 41.8, 41.7,

30.3, 27.8, 27.2, 26.6, 25.9, 25.8, 25.0, 12.5; HRMS (EI): exact mass calculated for M^+ ($C_{24}H_{28}BrNO_2S_2$) requires m/z 505.0745, found m/z 505.0740; The enantiomeric excess was determined by HPLC after **6q** was converted to the corresponding α , β -unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 49:1, 1.0 mL/min]: 7.0 min (minor),7.8 min (major), ee 97%.

6r:2-((5S,6R,10S)-10-(4-bromophenyl)-7-ethyl-3-isopropyl-4-oxo-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetaldehyde

The product was obtained in 98% yield, off-white solid. Mp 125-126°C; $[\alpha]^{25}{}_{D}$ +99.5 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.78 (s, 1H), 7.39-7.37 (m, 2H), 7.27-7.23 (m, 2H), 5.59 (s, 1H), 4.89-4.82 (m, 1H), 3.60-3.49 (m, 2H), 3.42 (dd, *J* = 11.2, 6.0 Hz, 1H), 2.54-2.40 (m, 3H), 2.11-2.02 (m, 1H), 1.94-1.84 (m, 1H), 1.21 (d, *J* = 6.8 Hz, 3H), 1.05 (t, *J* = 7.2 Hz, 3H), 0.66 (d, *J* = 5.6 Hz, 3H). ¹³C NMR(100 MHz, CDCl₃): δ 200.5, 199.0, 177.0, 140.4, 136.4, 131.3, 131.1, 122.0, 121.1, 63.6, 49.9, 44.2, 41.7, 30.3, 27.7, 18.0, 17.3, 12.5; HRMS (EI):

exact mass calculated for M^+ (C₂₁H₂₄BrNS₂O₂) requires m/z 465.0432, found m/z 465.0430; The enantiomeric excess was determined by HPLC after **6r** was converted to the corresponding α , β -unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: i-PrOH = 19:1, 1.0 mL/min]: 6.5 min (minor), 7.8 min (major), ee 97%.

6s:(5S,6S,10R)-ethyl-4-oxo-10-(2-oxoethyl)-3,9-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-8 -ene-6-carboxylate

The product was obtained in 95% yield, pale yellow oil. $[\alpha]^{25}{}_{D} - 92.2$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.50 (s, 1H), 7.55-7.45 (m, 3H), 7.38-7.29 (m, 7H), 6.06-6.05 (m, 1H), 4.36 (d, J = 9.2 Hz, 1H), 4.22 (q, J = 7.2 Hz, 2H), 3.50 (dd, J = 12.0, 6.8 Hz, 1H), 3.24 (dd, J = 19.6, 9.6 Hz, 1H), 2.96 (m, 1H), 2.60-2.52 (m,

1H), 2.37 (dd, J = 19.2, 1.2 Hz, 1H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): (ppm) 200.4, 198.7, 177.8, 171.0, 139.6, 138.8, 135.7, 129.6, 129.5, 128.9, 128.6, 128.3, 126.4, 123.8, 62.3, 61.7, 44.4, 42.1, 41.5, 29.7, 27.2, 14.2; HRMS (EI): exact mass calculated for M⁺ (C₂₅H₂₃NO₄S₂) requires m/z 465.1086, found m/z 465.1087; The enantiomeric excess was determined by HPLC after **6s** was converted to the corresponding α , β -unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 4:1, 1.0 mL/min]: 6.5 min (minor), 7.3 min (major), ee 99%.

6t:2-((5R,6R,10S)-10-(4-bromophenyl)-3-isopropyl-4-oxo-7-phenyl-2-thioxo-1-thia-3-azaspir o[4.5]dec-7-en-6-yl)acetaldehyde

The product was obtained in 91% yield, pale yellow solid. Mp 206-207°C; $[\alpha]^{25}_{D}$ – 86.4 (c 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.63 (s, 1H), 7.42-7.40 (m, 2H), 7.33-7.26 (m, 7H), 6.10-6.08 (m, 1H), 4.93-4.86 (m, 1H), 4.26 (d, *J* = 9.2 Hz, 1H), 3.57-3.48 (m, 2H), 2.79-2.71 (m, 1H), 2.60 (m, 1H), 2.40 (dd, *J* = 19.2, 1.2 Hz, 1H), 1.24 (d, *J* = 6.8 Hz, 3H), 0.69 (d, *J* = 5.6 Hz, 3H). ¹³C NMR(100 MHz, CDCl₃): δ 200.1, 198.7, 176.9, 139.5, 139.0, 136.1, 131.4, 131.2, 128.8, 128.2, 126.5, 125.1, 122.2, 50.0, 44.3, 41.7, 41.5,

30.9, 18.0, 17.4; HRMS (EI): exact mass calculated for M^+ ($C_{25}H_{24}BrNO_2S_2$) requires m/z 513.0432, found m/z 513.0429; The enantiomeric excess was determined by HPLC after **6t** was converted to the corresponding α , β -unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: *i*-PrOH = 7:3, 0.70 mL/min]: 7.5 min (minor), 9.0 min (major), ee 99%.

6u:2-((5R,6R,10S)-10-(4-bromophenyl)-4-oxo-3,7-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]de c-7-en-6-yl)acetaldehyde

The product was obtained in 87% yield, yellow solid. Mp 223-225°C; $[\alpha]^{25}_{D}$ – 74.6 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.59 (s, 1H), 7.48-7.46 (m, 2H), 7.38-7.30 (m, 11H), 6.17-6.15 (m, 1H), 4.62 (d, *J* = 9.2 Hz, 1H), 3.62-3.53 (m, 2H), 2.90-2.83 (m, 1H), 2.67 (m, 1H), 2.47 (dd, *J* = 19.2, 1.6 Hz, 1H), . ¹³C NMR(100 MHz, CDCl₃): δ 199.2, 199.0, 176.3, 139.3, 139.0, 136.1, 134.7, 131.5, 131.3, 129.6, 129.5, 128.9, 128.3, 128.0, 126.5, 125.1, 122.4, 67.6, 44.5, 41.7, 30,5, 29.7; HRMS (EI): exact mass calculated for M^+ ($C_{28}H_{22}BrNO_2S_2$) requires m/z 547.0275, found m/z 547.0280; The enantiomeric excess was determined by HPLC after **6u** was converted to the corresponding α , β -unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 4:1, 1.0 mL/min]: 6.7 min (major), 7.6 min (minor), ee 99%.

6v:2-((5R,6R,10S)-10-(4-nitrophenyl)-4-oxo-3,7-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetaldehyde

The product was obtained in 98% yield, pale yellow solid. Mp 203-205°C; $[\alpha]^{25}_{D}$ – 86.0 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.59 (s, 1H), 8.21-8.19 (m, 2H), 7.68-7.66 (m, 2H), 7.39-7.32 (m, 9H), 6.19-6.17 (m, 1H), 4.51 (d, *J* = 9.2 Hz, 1H), 3.76 (dd, *J* = 12.0, 6.0 Hz, 1H), 3.59 (dd, *J* = 19.2, 9.6 Hz, 1H), 2.94-2.87 (m, 1H), 2.71 (m, 1H), 2.51 (dd, *J* = 19.2, 1.6 Hz, 1H). ¹³C NMR(100 MHz, CDCl₃): δ 199.0, 198.4, 176.0, 147.7, 144.8, 139.4, 138.8, 134.5, 130.7, 129.8, 129.6, 129.0,

128.4, 127.9, 126.5, 124.6, 123.4, 67.3, 44.4, 42.2, 41.8, 30.6; HRMS (EI): exact mass calculated for M^+ ($C_{28}H_{22}N_2O_4S_2$) requires m/z 514.1021, found m/z 514.1023; The enantiomeric excess was determined by HPLC after **6v** was converted to the corresponding α , β -unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 4:1, 1.0 mL/min]: 9.0 min (major), 12.3 min (minor), ee 99%.

6w:(5S,6R,10R)-ethyl-1-methyl-4-oxo-10-(2-oxoethyl)-3-phenyl-2-thioxo-1,3-diazaspiro[4.5]d ec-8-ene-6-carboxylate

The product was obtained in 82% yield, pale yellow oil. $[\alpha]^{25}{}_{D} - 118.0 (c \ 1.0, \ CH_2Cl_2); \ ^1H \ NMR \ (400 \ MHz, \ CDCl_3): \delta \ 9.61 \ (s, \ 1H), \ 7.50-7.42 \ (m, \ 3H), \ 7.36-7.26 \ (m, \ 2H), 5.98-5.95 \ (m, \ 1H), \ 5.79-5.76 \ (m, \ 1H), \ 4.18 \ (q, \ J = 7.2 \ Hz), 3.47 \ (s, \ 3H), \ 3.28-3.22 \ (m, \ 3H), \ 2.83-2.75 \ (m, \ 1H), \ 2.59-2.51 \ (m, \ 1H), \ 2.45-2.37 \ (m, \ 1H), \ 1.24 \ (t, \ J = 7.2 \ Hz, \ 3H) \ ^{13}C$

NMR(100 MHz, CDCl₃): δ 198.6, 182.9, 174.8, 170.3, 133.9, 129.1, 129.0, 128.5, 128.2, 125.4, 65.8, 61.7, 45.5, 41.9, 35.9, 32.2, 25.2, 14.2; HRMS (EI): exact mass calculated for M^+ (C₂₀H₂₂N₂O₄S) requires m/z 386.1300, found m/z 386.1299; The enantiomeric excess was determined by HPLC after **6w** was converted to the corresponding α,β-unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 7:3, 0.8 mL/min]: 11.5 min (minor), 12.0 min (major), ee 92%.

6x:(5S,6R,10R)-ethyl-1-methyl-4-oxo-10-(2-oxoethyl)-3,9-diphenyl-2-thioxo-1,3-diazaspiro[4. 5]dec-8-ene-6-carboxylate

The product was obtained in 86% yield, pale yellow solid. $[\alpha]^{25}_{D} - 90.6$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 9.48 (s, 1H), 7.51-7.32 (m, 10H), 6.20 (s, 1H), 4.21 (q, *J* = 7.2 Hz, 2H), 3.89 (d, *J* = 10.0 Hz, 1H), 3.52 (s, 3H), 3.44 (dd, *J* = 11.6, 8.4 Hz, 1H), 3.31 (dd, *J* = 19.2, 10.0 Hz, 1H), 3.03-2.95 (m, 1H),

2.84-2.76 (m, 1H), 2.28 (d, J = 19.2 Hz, 1H), 1.26 (t, J = 7.2 Hz, 3H). ¹³C NMR(100 MHz, CDCl₃): δ 198.5, 183.2, 174.9, 170.3, 138.8, 138.6, 134.0, 129.1, 129.0, 128.6, 128.4, 126.0, 123.5, 66.1, 61.8, 44.7, 40.9, 37.8, 32.4, 26.0, 14.2; HRMS (EI): exact mass calculated for M⁺ (C₂₆H₂₆N₂O₄S) requires m/z 462.1613, found m/z 462.1618; The enantiomeric excess was determined by HPLC after **6x** was converted to the corresponding α,β-unsaturated ester (Ph₃P=CHCO₂Me in THF, r.t). [IA column, 254nm, *n*-Hexane: EtOH = 7:3, 0.8 mL/min]: 9.2 min (minor), 12.4 min (major), ee 97%.

D: Elaboration of Diels-Alder Cycloaddition Adduct

7a:(5S,6R,10R)-ethyl-10-(4-methoxy-4-oxobut-2-enyl)-1-methyl-2,4-dioxo-3-phenyl-1,3-diaza spiro[4.5]dec-8-ene-6-carboxylate

To a solution of 6w (58.0 mg, 0.15 mmol) in THF (0.3 ml) was added Ph₃P=CH₂CO₂Me (77.0 mg, 0.23 mmol), the reaction mixture was tirred at room temperature. After 2h, solvent was removed in vacuum. The residue was purified by silica gel chromatography to afford 6w' (56.2 mg, 85%). To a solution of 6w' (44.2 mg, 0.1 mmol) in DMF (0.5 ml) was added AcOH (50 µl), the mixture was stirred for 20min at room temperature. Hydrogen peroxide (30%, 0.25 ml) was added, the mixture was heated to 50°C and TLC monitored. After 24h, the mixture was cooled, diluted with H_2O (2 ml) and extracted with EtOAc (2 ml×2). The organic phase was washed with brine, dried with Na₂SO₄, and concentrated in vacuum. The residue was purified by silica gel chromatography to give the product 7a as colorless oil (34 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.42 (m, 3H), 7.33-7.32 (m, 2H), 6.93-6.86 (m, 1H), 5.96-5.87 (m, 2H), 5.80-5.78 (m, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.73 (m, 3H), 3.37 (s, 3H), 3.25-3.21 (m, 1H), 2.94-2.84 (m, 2H), 2.52-2.37 (m, 2H), 2.37-2.29 (m, 1H), 1.27 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 182.6, 173.0, 170.9, 166.4, 144.8, 133.6, 129.2, 129.1, 128.3, 126.7, 125.8, 123.8, 67.8, 61.8, 51.6, 43.0, 39.1, 33.5, 32.0, 25.9, 14.2; HRMS (EI): exact mass calculated for M⁺ (C₂₃₃H₂₆N₂O₆) requires m/z 426.1791, found m/z 426.1795. [IA column, 254nm, *n*-Hexane: *i*-PrOH = 7:3, 0.8 mL/min]: 11.01 min (minor), 11.94 min (major), ee 91%.

2

6.903

473.6

E: HPLC Charts of Diels-Alder Raction Products

6a:2-((5S,6R,10S)-10-(4-bromophenyl)-3-cyclohexyl-4-oxo-2-thioxo-1-thia-3-azaspiro[4.5]dec -7-en-6-yl)acetaldehyde

32.7

0.2055

0.686

52.535

6b:2-((5S,6R,10S)-10-(4-fluorophenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-e n-6-yl)acetaldehyde

#	Time	Area	Height	Width	Symmetry	Area %
1	8.668	1680.1	97.4	0.2874	0.758	48.359
2	9.44	1794.1	91.8	0.3257	0.768	51.641

#	Time	Area	Height	Width	Symmetry	Area %
1	8.615	157	10.2	0.2241	0.816	3.483
2	9.378	4351.6	216.6	0.2868	0.642	96.517

6c:2-((5S,6R,10S)-10-(4-nitrophenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en -6-yl)acetaldehyde

#	Time	Area	Height	Width	Symmetry	Area %
1	10.458	8179.2	242.7	0.4863	0.445	49.846
2	12.105	8229.9	215	0.5484	0.473	50.154
			0 V TO U A V \1 1 0D C V 00000	(D)		

#	Time	Area	Height	Width	Symmetry	Area %
1	10.4	32542.7	979.3	0.478	0.44	94.745
2	12.034	1804.8	47.6	0.5385	0.549	5.255

6d:2-((5S,6R,10S)-4-oxo-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetalde hyde

#	Time	Area	Height	Width	Symmetry	Area %
1	7.461	7975.6	428.8	0.2534	0.484	47.830
2	8.459	8699.5	386.6	0.3077	0.488	52.170

#	Time	Area	Height	Width	Symmetry	Area %
1	7.431	335.3	21.3	0.2233	0.689	4.417
2	8.415	7255.8	394.2	0.2614	0.597	95.583

6e:2-((5S,6R,10S)-10-(4-methoxyphenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7 -en-6-yl)acetaldehyde

#	Time	Area	Height	Width	Symmetry	Area %
1	8.724	1863.1	93.9	0.281	0.643	51.419
2	10.187	1760.3	78.7	0.3192	0.661	48.581
WD1 A,	波长=254 nm	2\U`\OATA\ZHUKL\SHUAN	G X 10 U A N \1 13E S X 00001:	2.D)		

#	Time	Area	Height	Width	Symmetry	Area %
1	8.766	345.7	15.5	0.3047	0.552	4.726
2	10.235	6970.1	263.8	0.3621	0.493	95.274

6f:2-((5S,6R,10S)-10-(3-nitrophenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetaldehyde

#	Time	Area	Height	Width	Symmetry	Area %
1	10.877	2954.5	129.5	0.3274	0.709	48.242
2	11.849	3169.9	125	0.3598	0.722	51.758

#	Time	Area	Height	Width	Symmetry	Area %
1	10.825	234.6	12	0.276	3.156	4.060
2	11.776	5543.5	224	0.3513	0.68	95.940

6g:(5S,6S,10R)-ethyl-4-oxo-10-(2-oxoethyl)-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-8-en e-6-carboxylate

#	Time	Area	Height	Width	Symmetry	Area %
1	14.117	4961.4	178	0.4183	0.633	50.255
2	18.087	4911	142.2	0.5194	0.676	49.745

6h:2-((5S,6R,10S)-10-(4-bromophenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-e n-6-yl)acetaldehyde

#	Time	Area	Height	Width	Symmetry	Area %
1	12.071	588.4	24	0.3525	0.73	48.775
2	13.513	618	22.6	0.39	0.8	51.225

#	Time	Area	Height	Width	Symmetry	Area %
1	4.608	6051.2	553.5	0.1523	0.565	48.089
2	4.984	7078.1	533	0.184	0.509	51.911

#	Time	Area	Height	Width	Symmetry	Area %
1	4.61	372.6	34.6	0.149	1.277	3.224
2	4.986	11185	990.7	0.1579	0.547	96.776

2

6j:2-((5S,6R,10S)-10-(4-bromophenyl)-3-isopropyl-4-oxo-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetaldehyde

6.048	3806.5	306.1	0.1785	0.631

96.316

#	Time	Area	Height	Width	Symmetry	Area %
1	9.753	1231.3	63.7	0.275	0.673	48.882
2	11.032	1287.6	56.6	0.3237	0.675	51.118

#	Time	Area	Height	Width	Symmetry	Area %
1	9.691	80.4	3.7	0.3059	0.573	2.282
2	11.008	3442.3	144.9	0.3354	0.602	97.718

6l:(5S,6S,7S,10R)-ethyl-7,9-dimethyl-4-oxo-10-(2-oxoethyl)-3-phenyl-2-thioxo-1-thia-3-azaspi ro[4.5]dec-8-ene-6-carboxylate

1 5.734 105.2 0.1705 0.696 8.8 2 6.52 4820 337.2 0.2032 0.605 97.864

#	Time	Area	Height	Width	Symmetry	Area %
1	5.138	894.5	68.8	0.1837	0.439	46.902
2	5.542	1012.7	67.6	0.2082	0.445	53.098

#	Time	Area	Height	Width	Symmetry	Area %
1	5.156	49.1	3.8	0.1872	0.824	1.632
2	5.561	2957.5	176.4	0.2393	0.408	98.368

#	Time	Area	Height	Width	Symmetry	Area %
1	3.846	479.2	54.7	0.1284	0.797	47.101
2	4.149	560.2	52.6	0.1519	0.686	52.899

#	Time	Area	Height	Width	Symmetry	Area %
1	3.841	44.3	5.7	0.1132	1.411	1.546
2	4.136	2819.2	265.6	0.1544	0.642	98.454

60:2-((5S,6R,10S)-7-ethyl-10-(3-nitrophenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]d ec-7-en-6-yl)acetaldehyde

#	Time	Area	Height	Width	Symmetry	Area %
1	11.157	2060.8	91.1	0.3237	0.718	48.123
2	12.585	2221.6	81.8	0.3868	0.731	51.877

2

17.216

3444

86.7

0.574

0.616

98.653

6q:2-((5S,6R,10S)-10-(4-bromophenyl)-3-cyclohexyl-7-ethyl-4-oxo-2-thioxo-1-thia-3-azaspiro [4.5]dec-7-en-6-yl)acetaldehyde

#	Time	Area	Height	Width	Symmetry	Area %
1	6.838	9721.5	576.9	0.2446	0.604	48.817
2	7.537	11043.6	510.6	0.3106	0.599	51.183

#	Time	Area	Height	Width	Symmetry	Area %
1	7.021	193.7	11.4	0.2456	0.733	1.561
2	7.804	12213.4	557.9	0.3165	0.578	98.439

6r:2-((5S,6R,10S)-10-(4-bromophenyl)-7-ethyl-3-isopropyl-4-oxo-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetaldehyde

#	Time	Area	Height	Width	Symmetry	Area %
1	6.401	1942	114.8	0.2367	0.404	49.685
2	7.576	1966.6	85.4	0.327	0.428	50.315

#	Time	Area	Height	Width	Symmetry	Area %
1	6.543	13.2	7.6E-1	0.29	0.429	1.411
2	7.817	924.7	41.4	0.3173	0.426	98.589

6s:(5S,6S,10R)-ethyl-4-oxo-10-(2-oxoethyl)-3,9-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-8 -ene-6-carboxylate

#	Time	Area	Height	Width	Symmetry	Area %
1	6.444	3050.8	203.2	0.2116	0.646	48.823
2	7.226	3328.5	188.2	0.2515	0.615	51.177

#	Time	Area	Height	Width	Symmetry	Area %
1	6.495	18.3	1.4	0.2154	0.685	0.459
2	7.284	3973.7	236.6	0.2381	0.596	99.541

6t:2-((5R,6R,10S)-10-(4-bromophenyl)-3-isopropyl-4-oxo-7-phenyl-2-thioxo-1-thia-3-azaspir o[4.5]dec-7-en-6-yl)acetaldehyde

#	Time	Area	Height	Width	Symmetry	Area %
1	7.526	14907.7	899.2	0.2342	0.572	49.391
2	9.038	15275.4	714.4	0.3564	0.53	50.609

6u:2-((5R,6R,10S)-10-(4-bromophenyl)-4-oxo-3,7-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]de c-7-en-6-yl)acetaldehyde

#	Time	Area	Height	Width	Symmetry	Area %
1	6.777	1258.2	80.8	0.2211	0.606	49.309
2	7.669	1293.5	70.8	0.2582	0.626	50.691

#	Time	Area	Height	Width	Symmetry	Area %
1	6.707	2588.2	181.5	0.2328	0	99.778
2	7.635	5.8	9.1E-1	0.1055	0	0.222

6v:2-((5R,6R,10S)-10-(4-nitrophenyl)-4-oxo-3,7-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetaldehyde

#	Time	Area	Height	Width	Symmetry	Area %		
1	8.953	2271.8	86.3	0.3743	0.442	50.673		
2	12.223	1960.9	57.4	0.4903	0.469	49.327		

#	Time	Area	Height	Width	Symmetry	Area %
1	9.007	4713.7	186.7	0.3616	0.444	99.504
2	12.313	23.5	8.1E-1	0.4819	0.527	0.496

6w:(5S,6R,10R)-ethyl-1-methyl-4-oxo-10-(2-oxoethyl)-3-phenyl-2-thioxo-1,3-diazaspiro[4.5]d ec-8-ene-6-carboxylate

#	Time	Area	Height	Width	Symmetry	Area %
1	11.467	4655.3	261.3	0.2661	0.984	49.829
2	12.08	4687.2	254.5	0.276	0.966	50.171

#	Time	Area	Height	Width	Symmetry	Area %
1	11.483	380.8	20.7	0.2608	2.294	4.180
2	12.037	8728.3	477.4	0.2744	0.985	95.820

6x:(5S,6R,10R)-ethyl-1-methyl-4-oxo-10-(2-oxoethyl)-3,9-diphenyl-2-thioxo-1,3-diazaspiro[4. 5]dec-8-ene-6-carboxylate

#	Time	Area	Height	Width	Symmetry	Area %
1	9.281	3587.9	219.2	0.2463	0.872	49.665
2	12.447	3636.4	163.1	0.3359	0.895	50.335

#	Time	Area	Height	Width	Symmetry	Area %
1	9.247	37.2	2.1	0.2659	0.813	1.218
2	12.441	3014.6	118.1	0.388	0.744	98.782

#	Time	Area	Height	Width	Symmetry	Area %
1	10.999	1032.3	65.8	0.2341	0.623	49.839
2	11.943	1039	60.1	0.2571	0.608	50.161

#	Time	Area	Height	Width	Symmetry	Area %
1	11.01	106.8	7	0.2276	0.688	4.466
2	11.943	1847.8	106.3	0.2566	0.577	95.534

F: NMR Spectra of Diels-Alder Raction Products

6a:2-((5S,6R,10S)-10-(4-bromophenyl)-3-cyclohexyl-4-oxo-2-thioxo-1-thia-3-azaspiro[4.5]dec -7-en-6-yl)acetaldehyde

6b:2-((5S,6R,10S)-10-(4-fluorophenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-e n-6-yl)acetaldehyde

6c:2-((5S,6R,10S)-10-(4-nitrophenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en -6-yl)acetaldehyde

6d:2-((5S,6R,10S)-4-oxo-3,10-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetalde hyde

6e:2-((5S,6R,10S)-10-(4-methoxyphenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7 -en-6-yl)acetaldehyde

6f:2-((5S,6R,10S)-10-(3-nitrophenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetaldehyde

6g:(5S,6S,10R)-ethyl-4-oxo-10-(2-oxoethyl)-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-8-en e-6-carboxylate

6h:2-((5S,6R,10S)-10-(4-bromophenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-e n-6-yl)acetaldehyde

6i:2-((5S,6R,10S)-3-cyclohexyl-4-oxo-10-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl) acetaldehyde

6j:2-((5S,6R,10S)-10-(4-bromophenyl)-3-isopropyl-4-oxo-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetaldehyde

6k:2-((5S,6R,9S,10S)-10-(4-fluorophenyl)-7,9-dimethyl-4-oxo-3-phenyl-2-thioxo-1-thia-3-aza spiro[4.5]dec-7-en-6-yl)acetaldehyde

6l:(5S,6S,7S,10R)-ethyl-7,9-dimethyl-4-oxo-10-(2-oxoethyl)-3-phenyl-2-thioxo-1-thia-3-azaspi ro[4.5]dec-8-ene-6-carboxylate

S52

6n:2-((5S,6R,9S,10S)-10-(4-bromophenyl)-3-cyclohexyl-7,9-dimethyl-4-oxo-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetaldehyde

Т

100

150

200 ppm (t1)

Т

50

- 0

0

60:2-((5S,6R,10S)-7-ethyl-10-(3-nitrophenyl)-4-oxo-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]d ec-7-en-6-yl)acetaldehyde

6p:(5S,6S,10R)-ethyl-9-ethyl-4-oxo-10-(2-oxoethyl)-3-phenyl-2-thioxo-1-thia-3-azaspiro[4.5]d ec-8-ene-6-carboxylate

6q:2-((5S,6R,10S)-10-(4-bromophenyl)-3-cyclohexyl-7-ethyl-4-oxo-2-thioxo-1-thia-3-azaspiro [4.5]dec-7-en-6-yl)acetaldehyde

S57

6s:(5S,6S,10R)-ethyl-4-oxo-10-(2-oxoethyl)-3,9-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-8 -ene-6-carboxylate

6t:2-((5R,6R,10S)-10-(4-bromophenyl)-3-isopropyl-4-oxo-7-phenyl-2-thioxo-1-thia-3-azaspir o[4.5]dec-7-en-6-yl)acetaldehyde

6u:2-((5R,6R,10S)-10-(4-bromophenyl)-4-oxo-3,7-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]de c-7-en-6-yl)acetaldehyde

6v:2-((5R,6R,10S)-10-(4-nitrophenyl)-4-oxo-3,7-diphenyl-2-thioxo-1-thia-3-azaspiro[4.5]dec-7-en-6-yl)acetaldehyde

6w:(5S,6R,10R)-ethyl-1-methyl-4-oxo-10-(2-oxoethyl)-3-phenyl-2-thioxo-1,3-diazaspiro[4.5]d ec-8-ene-6-carboxylate

6x:(5S,6R,10R)-ethyl1-methyl-4-oxo-10-(2-oxoethyl)-3,9-diphenyl-2-thioxo-1,3-diazaspiro[4. 5]dec-8-ene-6-carboxylate

7a:(5S,6R,10R)-ethyl-10-(4-methoxy-4-oxobut-2-enyl)-1-methyl-2,4-dioxo-3-phenyl-1,3-diaza spiro[4.5]dec-8-ene-6-carboxylate

G: Absolute Configuration and X-Ray Analysis Data

Data / restraints / parameters

Absolute structure parameter

Largest diff. peak and hole

Goodness-of-fit on F²

R indices (all data)

Final R indices $[I \ge 2\sigma(I)]$

Identification code	6j			
Empirical formula	$C_{19}H_{20}BrNO_2S_2$			
Formula weight	438.39			
Temperature	293(2) K			
Wavelength	0.71073 Á			
Crystal system	Monoclinic			
Space group	P2(1)			
Unit cell dimensions	$a = 9.9067 (13) \text{ Å} \alpha = 90 ^{\circ}.$			
	$b = 9.1539 (13) \text{ Å} \beta = 106 ^{\circ}.$			
	$c = 10.9950 (15) \text{ Å} \gamma = 90^{\circ}.$			
Volume	956.9 (2) Å ³			
Ζ,	2			
Calculated density	1.521 Mg/m^3			
Absorption coefficient	2.378 mm ⁻¹			
F(000)	448			
Crystal size	0.312 x 0.211 x 0.156 mm ³			
θ range for data collection	1.93 to 25.99 °. -12≤h≤11, -11≤k≤7, -13≤l≤13			
Limiting indices				
Reflections collected / unique	$5756 / 2911 [R_{int} = 0.0302]$			
Completeness to $\theta = 26.00^{\circ}$	100.0 %			
Absorption correction(μ)	Empirical			
Max. and min. transmission	1.00000 and 0.43771			
Refinement method	Full-matrix least-squares on F^2			

Table 1. Crystal data and structure refinement for 6	j.
--	----

2911 / 1 / 229

 $R_1 = 0.0299, wR_2 = 0.0733$

 $R_1 = 0.0329, wR_2 = 0.0745$

0.426 and -0.354 e $\dot{\rm A}^{-3}$

1.065

0.005(8)