Supporting Information

for

Reduction of the dihalocyclopentasilanes. Quest for a homocyclic silylene

Xu-Qiong Xiao, Hui Zhao, Zheng Xu, Guoqiao Lai*, Xiao-Lin He and Zhifang Li*

Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou

Normal University, Hangzhou, 310012, China Tel: (+86) 571-2886-8529 Fax: (+86) 571-2886-5135

Email: gqlai@hznu.edu.cn, zhifanglee@hznu.edu.cn,

Contents:

- (1) Experimental details
- (2) ¹H, ¹³C and ²⁹Si NMR Spectra of Compounds **2-4**.
- (3) X-ray crystallography
- (4) Possible mechanism for the formation of compounds 3 and 4.
- (5) Theoretical studies of model compounds
- (6) References

(1) Experimental details

Manipulation of air-sensitive compounds was performed under a controlled dry argon atmosphere using standard Schlenk techniques. Tetrahydrofuran (THF), hexane, and toluene were distilled from sodium-benzophenone. The starting material, 1,1,1,3,3,4,4,6,6,6-decamethyl-2,2,5,5-tetrakis(trimethylsilyl)hexa -silane 1,¹ was prepared according to the literature procedures. All the other reagents were obtained from commercial suppliers and used without further purification. ¹H (400 MHz), ¹³C (100.6 MHz) and ²⁹Si (79.5 MHz) NMR spectra were recorded on a Bruker AV-400 spectrometer at room temperature. Elemental analyses were carried out on an Elementar III Vario EI Analyzer. GC-MS spectrometery was performed with Agilent 7890a gas chromatography instrument coupled to an Agilent 5975c mass spectrometer and Agilent MSD ChemStation software.

Synthesis of 2a

Potassium tert-butoxide (7.39 g, 66 mmol) was added to a solution of **1** (18.33 g, 30 mmol) in 30 mL THF. The mixture was stirred at 60 °C overnight. After removing the solvent and adding 50 mL tolulene, SiCl₄ (3.8 mL, 33 mmol) in 50 mL toluene was introduced in 10 min at -50 °C. The mixture was slowly warmed to room temperature and stirred for 20 h. After aqueous workup and recrystallization from hexane, **2a** (10.32 g, 61%) was obtained as white crystals. ¹H NMR (CDCl₃, 400MHz): $\delta = 0.36$ (s, 12H, SiMe₂), 0.30 (s, 36H, SiMe₃). ¹³C NMR (CDCl₃, 100.6 MHz): $\delta = 3.12$ (SiMe₃), -2.09 (SiMe₂). ²⁹Si NMR (CDCl₃, 79.5 MHz): $\delta = 64.81$ (SiCl₂), -5.77 (SiMe₃), -27.57 (SiMe₂), -113.26 (Si(SiMe₃)₂). GC-MS (m/z): 563.8 ([M⁺]). Anal. Calcd for C₁₆H₄₈Cl₂Si₉ (564.23): C, 34.16; H, 8.61. Found: C, 34.24; H, 8.68%.

Synthesis of 2b

Potassium tert-butoxide (7.39 g, 66 mmol) was added to a solution of **1** (18.33 g, 30 mmol) in 30 mL THF. The mixture was stirred at 60 °C overnight. After removing the solvent and adding 50 mL tolulene, SiBr₄ (4.1 mL, 33 mmol) in 50 mL toluene was introduced in 10 min at -50 °C. The mixture was slowly warmed to room temperature and stirred for 20 h. After aqueous workup and recrystallization from hexane, **2b** (4.90 g, 25%) was obtained as white crystals. ¹H NMR (CDCl₃, 400MHz): $\delta = 0.37$ (s, 12H, Si*Me*₂), 0.33 (s, 36H, Si*Me*₃). ¹³C NMR (CDCl₃, 100.6 MHz): $\delta = 3.26$ (Si*Me*₃), -2.01 (Si*Me*₂). ²⁹Si NMR (CDCl₃, 79.5 MHz): $\delta = 41.70$ (*Si*Br₂), -4.72 (*Si*Me₃), -26.97 (*Si*Me₂), -109.04 (*Si*(SiMe₃)₂). GC-MS (m/z): 651.8 ([M⁺]). Anal. Calcd for C₁₆H₄₈Br₂Si₉ (653.13): C, 29.42; H, 7.41. Found: C, 29.50; H, 7.49%.

Synthesis of 3

Freshly prepared KC₈ (324 mg, 2.4 mmol) and **2a** (564 mg, 1 mmol) was added 15 mL dry THF and stirred for 8h.The colour of the solution turned red slowly. The volatiles were removed by evaporation under reduced pressure at 0°C and the residue was dissolved in hexane. Filtration of the resulting salt gave a red solution, which was recrystallized under -20°C to give pure **3** (221 mg, 27%) as red crystals. Compound **3** is air and moisture sensitive. ¹H NMR (C₆D₆, 400MHz): $\delta = 0.34$ (s, 18H, Si*Me*₃), 0.35 (s, 18H, Si*Me*₃), 0.39 (s, 9H, KSiSi*Me*₃), 0.40 (s, 6H, SiMe₂), 0.42 (s, 6H, SiMe₂), 1.42 (m, 6H, THF), 3.58 (m, 6H, THF). ¹³C NMR (C₆D₆, 100.6 MHz): $\delta =$ -0.93 (Si*Me*₂), 4.23 (Si*Me*₃), 7.75 (Si*Me*₃), 25.64 (THF), 67.90 (THF). ²⁹Si NMR (CDCl₃, 79.5 MHz): $\delta =$ -6.90 (*Si*Me₃), -9.94 (*Si*Me₃), -24.93 (*Si*Me₂), -120.99 (*Si*(SiMe₃)₂), -178.30 (*Si*K).

Synthesis of 4

Freshly prepared KC₈ (648 mg, 4.8 mmol) and **2b** (1.306 g, 2 mmol) was added 15 mL dry THF at -35 °C and stirred for 8h.The colour of the solution turned red slowly. The volatiles were removed by evaporation under the reduced pressure at -10 °C and the residue was dissolved in hexane. Filtration of the resulting salt gave a light yellow solution. After concentrated and stored in the refrigerator at -35°C for weeks, colourless crystals were obtained, which were identified as compound **4** (158 mg, 16%). ¹H NMR (CDCl₃, 400MHz): $\delta = 0.43$ (s, 18H, Si*Me*₃), 0.46 (s, 18H, Si*Me*₃), 0.49 (s, 24H, Si*Me*₃ and Si*Me*₂, overlaped), 0.51 (s, 18H, Si*Me*₃), 0.58 (s, 6H, Si*Me*₂), 0.68 (s, 6H, Si*Me*₂), 0.80(s, 6H, Si*Me*₂). ¹³C NMR (CDCl₃, 100.6 MHz): $\delta = -2.15$ (Si*Me*₂), -2.09 (Si*Me*₂), -1.90 (Si*Me*₂), 2.27 (Si*Me*₃), 2.70 (Si*Me*₂), 3.08 (Si*Me*₃), 3.24 (Si*Me*₃) 3.60 (Si*Me*₃). ²⁹Si NMR (CDCl₃, 79.5 MHz): -6.46 (*Si*Me₃), -7.15 (*Si*Me₃), -9.03 (*Si*Me₃), -9.85 (*Si*Me₃), -25.20 (*Si*Me₂), -27.60 (*Si*Me₂), -127.94 (*Si*(SiR)₄), -135.75 (*Si*(SiR)₄), -137.93 (*Si*(SiR)₄). Anal. Calcd for C₃₂H₉₆Si₁₈ (986.65): C, 38.96; H, 9.81. Found: C, 38.35; H, 9.72 %.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

(2) ¹H, ¹³C and ²⁹Si NMR Spectra of Compounds 2-4.

Figure S1. ¹H NMR spectrum of compound 2a in CDCl₃.

Figure S2. ¹³C NMR spectrum of compound 2a in CDCl₃.

Figure S3. ²⁹Si NMR spectrum of compound 2a in CDCl₃.

Figure S4. ¹H NMR spectrum of compound 2b in CDCl₃.

Figure S5. ¹³C NMR spectrum of compound 2b in CDCl₃.

Figure S6. ²⁹Si NMR spectrum of compound **2b** in CDCl₃.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Figure S7. ¹H NMR spectrum of compound **3** in C_6D_6 .

Figure S8. ¹³C NMR spectrum of compound 3 in C_6D_6 .

Figure S10. ¹H NMR spectrum of compound 4 in CDCl₃.

Figure S12. ²⁹Si NMR spectrum of compound 4 in CDCl₃.

(3) X-ray crystallography

Diffraction data of 2a, 2b, 3 and 4 were collected on a Bruker Smart Apex II CCD diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structures were solved by direct method and subsequently refined on F^2 by using full-matrix least-squares techniques (SHELXTL).² Absorption corrections were applied empirically using the SADABS program.³ The non-hydrogen atoms were refined anisotropically, and hydrogen atoms were located at calculated positions. A summary of the crystallographic data and selected experimental information are given in Table S1. The perspective drawing of 2a, 2b, 3 and 4 is shown in figure S1-S4.

	2a	2b	3	4
Empirical formula	$C_{16}H_{48}Cl_2Si_9$	$C_{16}H_{48}Br_2Si_9$	$C_{31}H_{81}O_3Si_{10}K$	$C_{32}H_{96}Si_{18}$
Formula weight	564.25	653.17	821.96	986.71
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
space group	<i>C2/c</i>	<i>C2/c</i>	P2(1)/c	C2/c
<i>a</i> (Å)	16.581(4)	16.3991(19)	10.925(3)	27.289(2)
<i>b</i> (Å)	9.272(2)	9.4161(11)	25.574(7)	12.4843(10)
<i>c</i> (Å)	22.553(5)	22.631(3)	18.928(5)	20.2377(16)
α (deg)	90	90	90	90
β (deg)	95.961(4)	95.312(3)	96.712(5)	113.0010(10)
$\gamma(\text{deg})$	90	90	90	90
$V(\text{\AA}^3)$	3448.6(14)	3479.6(7)	5252 (2)	6346.6(9)
Ζ	4	4	4	2
$D_{\rm c}~({\rm g/cm^{-3}})$	1.087	1.247	1.040	1.033
μ (mm ⁻¹)	0.506	2.644	0.354	0.379
<i>F</i> (000)	1216	1360	1800	2160
θ range (°)	2.52 ~ 25.50	1.81 ~ 26.00	1.88 ~ 27.55	2.28 ~ 27.49
Ref. collected	13337	25067	34999	14986

Table S1. Summary of Crystallographic Data for 2a, 2b, 3 and 4.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

completeness to $\theta \ (^{o})$	99.5%	99.9%	99.5%	99.6%
Max./min. trans.	0.9418/ 0.9056	0.9418/ 0.9056	0.745 / 0.377	0.7456 / 0.6532
Data / restraints /	3210 / 0 / 131	3423 / 0 / 131	12071 / 0 / 455	5038 / 0 / 207
parameters				
Goodness of fit on F^2	1.043	1.016	1.017	0.996
Final R indices [<i>I</i> >	$R_1 = 0.0344$	$R_1 = 0.0380$	$R_1 = 0.0625$	$R_1 = 0.0532$
$2\sigma(I)]^a$	$wR_2 = 0.1178$	$wR_2 = 0.0925$	$wR_2 = 0.1574$	$wR_2 = 0.1216$
R indices (all data)	$R_1 = 0.0439$	$R_1 = 0.0502$	$R_1 = 0.1210$	$R_1 = 0.1076$
	$wR_2 = 0.1332$	$wR_2 = 0.1024$	$wR_2 = 0.1892$	$wR_2 = 0.1480$
$\Delta \rho_{max}, \Delta \rho_{min} (e/Å^3)$	0.360 and 0.251	1.022 and -0.674	0.546 and -0.357	0.690 and -0.206

 ${}^{a} R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; wR_{2} = \left[\sum w (F_{o}^{2} - F_{c}^{2})^{2} / \sum w F_{o}^{2}\right]^{1/2}.$

Figure S13. Molecular structure of compound **2a** (Hydrogen atoms are omitted for clarity, ellipsoids set at the 30% probability level). Selected bond lengths (Å) and angles (°): Si(1)- Cl(1) 2.0896(8), Si(1)-Cl(1A) 2.0896(8), Si(1)-Si(2A) 2.3474(7), Si(1)-Si(2) 2.3474(7), Si(2)-Si(5) 2.3527(10), Si(2)-Si(4) 2.3578(9), Si(2)-Si(3) 2.3651(9), Si(3)-Si(3A) 2.3519(13); Cl(1)-Si(1)-Cl(1A) 102.26(6), Cl(1)-Si(1)-Si(2A) 109.29(2), Cl(1A)-Si(1)-Si(2A) 111.12(2), Cl(1)-Si(1)-Si(2) 111.12(2), Cl(1A)-Si(1)-Si(2) 109.29(2), Si(2A)-Si(1)-Si(2) 113.22(4), Si(1)-Si(2)-Si(5) 107.94(3), Si(1)-Si(2)-Si(4) 110.40(3), Si(5)-Si(2)-Si(4) 111.31(4), Si(1)-Si(2)-Si(3) 102.54(3), Si(5)-Si(2)-Si(3) 111.13(3), Si(4)-Si(2)-Si(3) 113.07(3), Si(3A)-Si(3)-Si(2) 107.43(2).

Figure S14. Molecular structure of compound **2b** (Hydrogen atoms are omitted for clarity, ellipsoids set at the 30% probability level). Selected bond lengths (Å) and angles (°): Br(1)-Si(1) 2.2604(7), Si(1)-Br(1A) 2.2604(7), Si(1)-Si(2) 2.3526(9), Si(1)-Si(2A) 2.3526(9), Si(2)-Si(5) 2.3560(12), Si(2)-Si(4) 2.3581(12), Si(2)-Si(3) 2.3628(11), Si(3)-Si(3A) 2.3541(18); Br(1A)-Si(1)-Br(1) 102.06(5), Br(1A)-Si(1)-Si(2) 109.25(2), Br(1)-Si(1)-Si(2) 111.03(2), Br(1A)-Si(1)-Si(2A) 111.03(2), Br(1)-Si(1)-Si(2A) 109.25(2), Si(2)-Si(3) 113.62(5), Si(1)-Si(2)-Si(5) 111.11(4), Si(1)-Si(2)-Si(4) 108.83(4), Si(5)-Si(2)-Si(4) 110.76(5), Si(1)-Si(2)-Si(3) 112.80(5), Si(4)-Si(2)-Si(3) 111.09(5), Si(3A)-Si(3)-Si(2) 107.33(3).

Figure S15. Molecular structure of compound **3** (Hydrogen atoms are omitted for clarity, ellipsoids set at the 30% probability level). Selected bond lengths (Å) and angles (°): Si(1)-K(1) 3.4220(15), Si(1)-Si(10) 2.3356(14), Si(1)-Si(5) 2.3661(13), Si(1)-Si(2) 2.3818(14), Si(2)-Si(7) 2.3495(14), Si(2)-Si(6) 2.3512(14), Si(2)-Si(3) 2.3591(14), Si(3)-Si(4) 2.3460(15), Si(4)-Si(5) 2.3549(14), Si(5)-Si(8) 2.3502(15), Si(5)-Si(9) 2.3528(15), K(1)-O(2) 2.629(4), K(1)-O(3) 2.659(3), K(1)-O(1) 2.713(4); Si(10)-Si(1)-Si(5) 108.43(5), Si(10)-Si(1)-Si(2) 109.93(5), Si(5)-Si(1)-Si(2) 104.10(5), Si(10)-Si(1)-K(1) 108.05(4), Si(5)-Si(1)-K(1)114.45(4), Si(2)-Si(1)-K(1)111.78(4), Si(7)-Si(2)-Si(6) 105.82(5), Si(7)-Si(2)-Si(3) 107.13(6), Si(6)-Si(2)-Si(3) 107.99(5), Si(7)-Si(2)-Si(1) 127.18(5), Si(6)-Si(2)-Si(1) 101.49(5), Si(3)-Si(2)-Si(1) 106.03(5), Si(4)-Si(3)-Si(2) 104.55(5), Si(3)-Si(4)-Si(5) 104.69(5),

Si(8)-Si(5)-Si(9) 103.72(6), Si(8)-Si(5)-Si(4) 109.94(5), Si(9)-Si(5)-Si(4) 106.08(6), Si(8)-Si(5)-Si(1) 126.73(6), Si(9)-Si(5)-Si(1) 109.16(6), Si(4)-Si(5)-Si(1)99.81(5), O(2)-K(1)-O(3) 81.37(12), O(2)-K(1)-O(1) 88.83(13), O(3)-K(1)-O(1) 89.19(12), O(2)-K(1)-Si(1) 124.84(9), O(3)-K(1)-Si(1) 130.00(9), O(1)-K(1)-Si(1) 127.92(9).

Figure S16. Molecular structure of compound **4** (Hydrogen atoms are omitted for clarity, ellipsoids set at the 30% probability level). Selected bond lengths (Å) and angles (°): Si(1)-Si(5) 2.3755(7), Si(1)-Si(1A) 2.3865(9), Si(1)-Si(7) 2.3949(7), Si(1)-Si(2) 2.4063(6), Si(2)-Si(6) 2.3803(7), Si(2)-Si(3) 2.4370(6), Si(2)-Si(2A) 2.4902(8), Si(3)-Si(9) 2.3850(8), Si(3)-Si(8) 2.3925(7), Si(3)-Si(4) 2.3928(7), Si(4)-Si(5) 2.3526(8); Si(5)-Si(1)-Si(1A) 106.54(3), Si(5)-Si(1)-Si(7) 109.87(3), Si(1A)-Si(1)-Si(7) 118.83(2), Si(5)-Si(1)-Si(2) 101.58(2), Si(1A)-Si(1)-Si(2) 90.001(15), Si(7)-Si(1)-Si(2) 126.92(3), Si(6)-Si(2)-Si(1) 123.73(3), Si(6)-Si(2)-Si(3) 103.52(2), Si(1)-Si(2)-Si(3) 104.40(2), Si(6)-Si(2)-Si(2A) 112.43(3), Si(1)-Si(2)-Si(2A) 87.583(15), Si(3)-Si(2)-Si(2A) 126.34(3), Si(9)-Si(3)-Si(8) 103.28(3), Si(9)-Si(3)-Si(4) 113.50(3), Si(8)-Si(3)-Si(4) 101.02(3), Si(9)-Si(3)-Si(2) 119.53(3), Si(8)-Si(3)-Si(2) 112.31(3), Si(4)-Si(3)-Si(2) 105.78(2), Si(5)-Si(4)-Si(3) 105.82(3), Si(4)-Si(5)-Si(1) 108.53(3).

(4) Possible mechanism for the formation of compounds 3 and 4.

The reduction of **2** to **8** will be took place quickly. When X = Br, the elimination of KBr from **8** afford compound **5**, which isomerized to **6** and then dimerized to **4**. When X = Cl, the elimination of KCl from **8** to **5** may be slow because Cl is not a good leaving group for the α -elimination.⁴ Then, trimethylsilyl potassium may be eliminated. Once Me₃SiK is formed, it may react with the starting materials **2a** to give **7**, which will be reduced by C₈K to afford **3**. This mechanism was strengthened by the observation of **7** in the experiments.

Scheme S1. Possible mechanism for the formation of compounds 3 and 4.

(5) Theoretical study of model compounds

All DFT calculations were carried out using a Gaussian 03 program.⁴ Geometry optimization was carried out at the B3LYP/6-31G(d, p) level. Model compounds (SiMe₃ and SiMe₂ was changed to SiH₃ and SiH₂ respectively) and relative energy are shown in Scheme S2. Atomic coordinates of optimized structures of **4'-7'** are shown in Table S2-S5.

Scheme S2 Relative energy of model compound 4'-7'.

Table S2 Atomic	Coordinates	of 5 ′.	

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Ζ
1		0	2.504132	-2.205971	-0.294562
2	1	0	3.044148	-2.512297	-1.646004
3	1	0	3.572793	-2.443355	0.712647
4	1	0	1.385881	-3.148722	-0.016507
5	14	0	3.610164	1.378041	-0.848401
6	1	0	4.775856	1.181347	0.056361
7	1	0	4.019902	1.018750	-2.233028
8	1	0	3.243345	2.820150	-0.825190
9	14	0	-3.613165	-1.373967	-0.850766
10	1	0	-4.023873	-1.009895	-2.233865
11	1	0	-3.248562	-2.816704	-0.832298
12	1	0	-4.777546	-1.178153	0.055864
13	14	0	-0.000003	-0.000271	-1.762618
14	14	0	-2.500090	2.206943	-0.290678
15	1	0	-3.032659	2.519350	-1.643697
16	1	0	-3.573646	2.442236	0.711816
17	1	0	-1.381747	3.146757	-0.003277

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

18	14	0	1.777221	0.056761	-0.161124
19	14	0	1.096783	0.426068	2.078268
20	1	0	1.081146	1.886287	2.379137
21	1	0	1.991842	-0.235850	3.069392
22	14	0	-1.097657	-0.430670	2.077385
23	1	0	-1.082025	-1.891428	2.375696
24	1	0	-1.992955	0.229462	3.069487
25	14	0	-1.777521	-0.057500	-0.161543

(energy with zero point energy: -2615.067138 hartree)

Talbe S3 Atomic Coordinates of 6'.

Center	Center Atomic Atomic		Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	14	0	4.318352	0.281968	0.007930
2	1	0	4.402684	1.765493	0.014886
3	1	0	5.007736	-0.248682	1.214853
4	1	0	5.026764	-0.238053	-1.192456
5	14	0	-3.129577	0.660843	-1.668916
6	1	0	-3.483771	2.083458	-1.408716
7	1	0	-2.488003	0.571036	-3.007600
8	1	0	-4.387371	-0.135242	-1.689556
9	14	0	-2.680340	0.007260	2.123726
10	1	0	-2.891995	1.431386	2.500870
11	1	0	-4.002861	-0.677334	2.125885
12	1	0	-1.815729	-0.630495	3.152473
13	14	0	2.070384	-0.369713	-0.011620
14	14	0	1.309733	-2.584302	-0.012511
15	1	0	1.552122	-3.244048	1.302212
16	1	0	1.992703	-3.409642	-1.049174
17	14	0	-1.006828	-2.384531	-0.455608
18	1	0	-1.257143	-2.685228	-1.893802
19	1	0	-1.803635	-3.352955	0.350887
20	14	0	-1.665671	-0.148704	-0.003075
21	14	0	0.381883	1.002104	-0.028951
22	14	0	0.567898	3.336555	0.014165
23	1	0	2.003370	3.720748	0.016304
24	1	0	-0.091080	3.934915	-1.177941
25	1	0	-0.085480	3.893929	1.228935

(energy with zero point energy: -2615.085294 hartree)

Talbe S4 Atomic Coordinates of 7'.

Center	Atomic	Atomic	Coord	ordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	14	0	-2.523476	2.724458	2.333976	
2	1	0	-1.164746	3.016778	2.857648	
3	1	0	-3.343141	3.965113	2.420398	
4	1	0	-3.149163	1.688792	3.200306	
5	14	0	-1.944915	3.657198	-1.431638	
6	1	0	-3.018061	4.686845	-1.356341	
7	1	0	-0.646911	4.317650	-1.140606	
8	1	0	-1.908379	3.109874	-2.813070	
9	14	0	-1.942815	-3.656100	1.433151	
10	1	0	-0.644005	-4.315308	1.142880	
11	1	0	-1.907055	-3.107408	2.814060	
12	1	0	-3.014750	-4.687067	1.358722	
13	14	0	-1.094631	-0.000107	-0.000965	
14	14	0	-2.523345	-2.726936	-2.333358	
15	1	0	-1.164676	-3.018303	-2.857715	
16	1	0	-3.341861	-3.968442	-2.418368	
17	1	0	-3.150601	-1.692476	-3.199995	
18	14	0	-2.449218	1.939199	0.105620	
19	14	0	-4.614076	1.109705	-0.391605	
20	1	0	-4.839289	1.122225	-1.865075	
21	1	0	-5.672681	1.947315	0.240537	
22	14	0	-4.613764	-1.110985	0.391501	
23	1	0	-4.839054	-1.123561	1.864957	
24	1	0	-5.672107	-1.948897	-0.240684	
25	14	0	-2.448645	-1.939944	-0.105635	
26	1	0	3.017373	-4.686072	-1.357881	
27	14	0	1.944043	-3.656539	-1.432113	
28	1	0	0.646289	-4.317304	-1.140656	
29	1	0	1.906674	-3.108580	-2.813268	
30	14	0	2.449085	-1.939157	0.105577	
31	14	0	2.525536	-2.725220	2.333590	
32	14	0	4.613707	-1.109594	-0.392685	
33	14	0	1.094403	0.000187	0.000902	
34	1	0	1.167396	-3.017021	2.859085	
35	1	0	3.344705	-3.966302	2.418516	
36	1	0	3.152938	-1.690129	3.199373	
37	14	0	4.613770	1.110917	0.390894	
38	1	0	4.838146	-1.121751	-1.866275	
39	1	0	5.672597	-1.947430	0.238682	
40	14	0	2.448521	1.939845	-0.105619	
41	1	0	4.839306	1.123211	1.864314	
42	1	0	5 671934	1,949027	-0 241319	

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

43	14	0	2.521957	2.725718	-2.333789
44	14	0	1.943713	3.657336	1.432048
45	1	0	1.162967	3.017314	-2.857188
46	1	0	3.340800	3.966936	-2.419954
47	1	0	3.148195	1.690718	-3.200512
48	1	0	3.016300	4.687567	1.356799
49	1	0	0.645325	4.317169	1.141303
50	1	0	1.907639	3.109757	2.813392

(energy with zero point energy: -5230.225798 hartree)

Talbe S5 Atomic Coordinates of 4'.

Center	Atomic	Atomic	Coo	rdinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
			1.015050	1.007662	0.627706
1	14	0	-1.015058	1.89/663	-0.627796
2	14	0	-0.978529	-0.504347	-0./03366
3	14	0	-3.026961	-1.220599	0.287469
4	14	0	-3.578440	0.524172	1.791411
5	14	0	-2.915091	2.492425	0.664616
6	14	0	-0.753168	-1.453667	-2.853305
7	14	0	-0.989281	3.077963	-2.668930
8	14	0	-4.704679	-1.256798	-1.380242
9	14	0	-2.963869	-3.357924	1.285701
10	14	0	1.015058	1.897663	0.627796
11	14	0	0.978529	-0.504347	0.703366
12	14	0	3.026961	-1.220599	-0.287469
13	14	0	3.578440	0.524172	-1.791411
14	14	0	2.915091	2.492426	-0.664616
15	14	0	0.753168	-1.453667	2.853305
16	14	0	0.989281	3.077963	2.668930
17	14	0	4.704679	-1.256798	1.380242
18	14	0	2.963869	-3.357924	-1.285701
19	1	0	-0.849596	4.538920	-2.420956
20	1	0	0.144906	2.636383	-3.524777
21	1	0	-2.257114	2.846502	-3.412876
22	1	0	2.631215	3.619531	-1.597136
23	1	0	0.849596	4.538920	2.420956
24	1	0	4.011864	2.929685	0.246753
25	1	0	2.257114	2.846502	3.412876
26	1	0	5.029880	0.527693	-2.130109
27	1	0	2.811313	0.381639	-3.060604
28	1	0	6.034513	-1.496060	0.755583
29	1	0	4.759233	0.037936	2.111675

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

30	1	0	4.450212	-2.341211	2.366604
31	1	0	2.551751	-4.383011	-0.288476
32	1	0	4.315076	-3.718400	-1.795575
33	1	0	2.006999	-3.396117	-2.421409
34	1	0	0.775117	-2.939474	2.789778
35	1	0	-0.511507	-1.023903	3.505539
36	1	0	1.890277	-1.004552	3.702134
37	1	0	-2.006998	-3.396117	2.421409
38	1	0	-4.315076	-3.718400	1.795575
39	1	0	-2.551752	-4.383011	0.288476
40	1	0	-6.034513	-1.496060	-0.755583
41	1	0	-4.450212	-2.341211	-2.366604
42	1	0	-4.759233	0.037937	-2.111675
43	1	0	-5.029880	0.527693	2.130109
44	1	0	-2.811313	0.381639	3.060604
45	1	0	-4.011864	2.929685	-0.246753
46	1	0	-2.631215	3.619531	1.597136
47	1	0	-0.144906	2.636383	3.524777
48	1	0	-1.890277	-1.004552	-3.702134
49	1	0	-0.775117	-2.939474	-2.789778
50	1	0	0.511507	-1.023902	-3.505539

(energy with zero point energy: -5230.269180 hartree)

(6) References

- 1 R. Fischer, D. Frank, W. Gaderbauer, C. Kayser, C. Mechtler, J. Baumgartner and C. Marschner, *Organometallics*, 2003, **22**, 3723-3731.
- 2 Bruker, SHELXTL. Version 6.22. Bruker AXS Inc., Madison, WI, USA, 2003.
- 3 G. M. Sheldrick, SADABS Program for Empirical X-ray Absorption Correction, University of Goettingen, Germany, 1996.
- 4 M. E. Lee, H. M. Cho, Y. M. Lim, J. K. Choi, C. H. Park, S. E. Jeong, and U. Lee, *Chem. Eur. J.*, 2004, **10**, 377-381.
- *Gaussian 03*, Revision B.03, M. J. Frisch, G.W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.Komaromi, R. L.Martin, D. J. Fox, T. Keith, M. A. AlLaham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.