Supporting Information for

A Catalytic Multicomponent Coupling Reaction for the Enantioselective Synthesis of Spiroacetals

Lara Cala, Abraham Mendoza, Francisco J. Fañanás and Félix Rodríguez

Contents:

1.	General	2
2.	Optimization of the Reaction Conditions	3
3.	Experimental procedures	4
4.	Physical and spectroscopical data for compounds 4	5
5.	¹ H- and ¹³ C-spectra, HPLC data and X-Ray	15

General. ¹H NMR spectra were recorded on a Bruker AMX-400 (400 MHz), Bruker AV-300 (300 MHz) or Bruker DPX-300 (300 MHz). Chemical shifts are reported in ppm from tetramethylsilane with the residual solvent resonance as the internal standard (CDCl₃: δ = 7.26 ppm; Acetone-d⁶: δ = 1.96 ppm). Data are reported as follows: chemical shift, multiplicity (s: singlet, d: doublet, dd: double doublet, ddd: double doublet of doublets, dtd: double triplet of doublets, td: triplet of doublets, t: triplet, q: quartet, m: multiplet), coupling constants (J in Hz), integration and assignment. ¹³C NMR spectra were recorded on a Bruker AMX-400 (100 MHz), Bruker AV-300 (75 MHz) or Bruker DPX-300 (75 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as internal standard (CDCl₃: δ = 7.26 ppm; Acetone-d₆: δ = 1.96 ppm; THF-d₈: δ = 1.73 ppm; CD₃CN: δ = 1.94 ppm). Bidimensional NMR experiments (COSY, HSQC and HMBC) were recorded on a Bruker AV-300 (300 MHz). High-resolution mass spectrometry was carried out on a Finnigan-Mat 95 spectrometer. All reactions were conducted in dried glassware under an inert atmosphere of argon when required. Solvents were dried with a PureSolv® column system before use. Technical grade starting materials were purified before use. Optical rotations were measured using a 2 mL cell with a 1 dm path length on an Autopol IV Rudolph Research Analytical polarimeter at 589 nm, and are reported as $\left[\alpha\right]^{T}_{D}$ (concentration in grams/mL solvent). Chiral HPLC analyses were performed using a Waters 2695 Alliance instrument.

Optimization of the Reaction Conditions. Effect of the aniline and catalyst.

Entry	2	Ar	[ML _n]X _m	4	Yield $[\%]^a$	$d.r.^{b}$	<i>e.r.</i> ^{<i>c</i>}
1	2a	Ph	\mathbf{A}^{d}	-	_e	-	-
2	2b	$4-MeC_6H_4$	\mathbf{A}^{d}	-	_e	-	-
3	2c	4-MeOC ₆ H ₄	\mathbf{A}^{d}	-	_e	-	-
4	2d	$3-NO_2C_6H_4$	\mathbf{A}^{d}	4 a	90	3:1	-
5	2d	$3-NO_2C_6H_4$	\mathbf{B}^d	4 a	88	1:1.5	50:50 ^f
6	2d	$3-NO_2C_6H_4$	\mathbf{C}^{g}	4 a	90	1:1	50:50 ^f
7	2d	$3-NO_2C_6H_4$	$\mathbf{D} / \mathbf{X}^{\mathbf{B}} \mathbf{H}^{g}$	4 a	94	1:1	52:48 ^h
8	2d	$3-NO_2C_6H_4$	$\mathbf{D} / \mathbf{X}^{\mathbf{C}} \mathbf{H}^{g}$	4a	85	1:1	57:43 ^{<i>h</i>}
9	2d	$3-NO_2C_6H_4$	$\mathbf{D} / \mathbf{X}^{\mathbf{D}} \mathbf{H}^{g}$	4 a	96	1:1	$60:40^{h}$
10	2d	$3-NO_2C_6H_4$	$\mathbf{D} / \mathbf{X}^{\mathbf{A}} \mathbf{H}^{g}$	4 a	92	3:1	$98:2^{i}$
11^{j}	2d	$3-NO_2C_6H_4$	$\mathbf{D} / \mathbf{X}^{\mathbf{A}} \mathbf{H}^{g}$	4 a	94	3:1	97:3 ^{<i>i</i>}
12^{k}	2d	$3-NO_2C_6H_4$	$\mathbf{A} / \mathbf{X}^{\mathbf{A}} \mathbf{H}^{g}$	4a	93	4:1	64:36 ^{<i>h</i>}
13	2d	$3-NO_2C_6H_4$	\mathbf{D}^{g}	4 a	92	3:1	-
14	2d	$3-NO_2C_6H_4$	$\mathbf{X}^{\mathbf{A}}\mathbf{H}^{g}$	-	_1	-	-

^{*a*} Yield based on the starting alkynol **1a**. ^{*b*} Determined by ¹H-NMR on the crude of the reaction. ^{*c*} Determined by HPLC on a chiral stationary phase. ^{*d*} Reaction performed in MeCN as solvent. ^{*e*} Formation of a complex mixture of unidentified products. ^{*f*} Both diastereoisomers were racemic. ^{*g*} Reaction performed in toluene. ^{*h*} Similar enantiomeric ratio was observed in both diastereoisomers. ^{*i*} The minor diastereoisomer also showed very high enantiomeric ratio (*e.r.=* 97:3). ^{*j*} Reaction performed with 5 mol% of **D** and 10 mol% of **X**^A**H**. When 5 mol% of **D** and 2 mol% of **X**^A**H** were used the enantiomeric ratio dropped (73:27). ^{*k*} Reaction performed with 5 mol% of **A** and 5 mol% of **X**^A**H**. No changes were observed when 5 mol% of **A** and 10 mol% of **X**^A**H** were used. ^{*l*} Reaction performed in the absence of any metal catalyst. Product **4a** was not formed and unreacted alkynol **1a** was recovered.

Experimental procedures

Starting materials

Starting materials 2,2-diphenylpent-4-yn-1-ol, [1-(prop-2-ynyl)cyclohexyl]methanol, 2-[1-(prop-2-ynyl)cyclopentyl] propan-2-ol, <math>[1-(prop-2-ynyl)cyclopentyl]methanol and 2-(1-ethynylcyclohexyl)ethanol were synthesized according to the literature.¹ Methyl[(1,1'-biphenyl-2-yl)di-*tert*-butyl phosphine]gold(I), <math>(S)-(-)-(1,1'-Binaphthalene-2,2'-diyl) bis(diphenylphosphine)tetrakis(acetonitrile)palladium(II) tetrafluoroborate and (R)-(-)-5,5'-Bis[di(3,5-di-tert-butyl-4-methoxyphenyl)phosphino]-4,4'-bi-1,3-benzodioxole bis[bis(trifluoromethylsulfonyl)imidate]gold(I) were prepared following known procedures.² All other

commercially available starting materials were purchased.

Typical procedure for the synthesis of spiroacetals (4).

In a carousel tube with a magnetic stirring bar, activated molecular sieves (250 mg), (*R*)-3,3'-Bis(9-anthracenyl)-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate (5 mol%, 0.0125 mmol, 8.7 mg), methyl[(1,1'-biphenyl-2-yl)di-tert-butyl phosphine]gold(I) (5 mol%, 0.0125 mmol, 6.1 mg) and dry toluene (2 mL) were placed under an atmosphere of argon and the mixture was stirred at room temperature for 30 minutes. Then, glyoxylic acid (3) (1.6 equiv., 0.4 mmol, 36.8 mg) and the corresponding aniline (2) (1.2 equiv., 0.3 mmol) were added. After 10 minutes at room temperature, the corresponding pent-4-yn-1-ol derivative (1) (0.25 mmol) was added. The reaction was allowed to react for 1.5–3h and then the mixture was filtered through a short pad of silica gel and celite with a 1:1 mixture of hexanes and ethyl acetate. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to afford the corresponding pure compound **4**.

References

- 1 (a) K. Komeyama, K. Takahashi, K. Takaki, Org. Lett. 2008, 10, 5119-5122. (b) T. Imahori, H. Ojima, Y. Yoshimura, H. Takahata, Chem. Eur. J. 2008, 14, 10762-10771. (c) N. J. Kerrigan, P. C. Hutchison, T. D. Heightman, D. J. Procter, Org. Biomol. Chem. 2004, 2, 2476-2482. (d) E. Fillion, A. Wilsily, J. Am. Chem. Soc. 2006, 128, 2774-2775. (e) X. Huang, C. Chan, Q. Wu, Tetrahedron Lett. 1982, 23, 75-76. (f) E. Fillion, A. K. Zorzitto, J. Am. Chem. Soc. 2009, 131, 14608–14609. (g) J. Li, Y. Sha, Molecules 2008, 13, 1111-1119.
- 2 (a) C. Wang, Z. Han, H. Luo, L. Gong, Org. Lett. 2010, 12, 2266–2269. (b) C. A. Mullen, M. R. Gagné, Org. Lett. 2006, 8, 665–668. (c) C. Fehr, M. Vuagnoux, A. Buzas, J. Arpagaus, H. Sommer, Chem. Eur. J. 2011, 17, 6214–6220.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Physical and spectroscopical data for compounds 4

(3S,5R)-3-(3-Nitrophenylamino)-8,8-diphenyl-1,6-dioxaspiro[4.4]nonan-2-one (4a)

Yellow foam. R_f = 0.38 (silica gel, hexanes:EtOAc:MeOH 3:1:0.4); $[\alpha]_D^{30.3}$ = -12° (c= 0.1, DCM); *er*= 98:2 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:ⁱPrOH 80:20, 0.6 ml/min, 202.4 nm, t_R (major)= 41.9 min, t_R (minor)= 57.5 min]; ¹H NMR (401 MHz, Acetone-d₆) δ (ppm)= 7.61 (t, *J*= 2.2 Hz, 1H; H₁₀), 7.52 (dd, *J*= 8.1, 2.2 Hz, 1H; H₁₁), 7.43–7.17 (m, 12H; H₁₂₋₁₆), 5.94 (d, *J*= 6.5 Hz, 1H; NH), 4.86 (d, *J*= 9.2 Hz, 1H; H_{8a}), 4.80 (ddd, *J*= 11.0, 8.0, 6.5 Hz, 1H; H₃), 4.58 (d, *J*= 9.2 Hz, 1H; H_{8b}), 3.27 (d, *J*= 14.4 Hz, 1H; H_{6a}), 3.23 (d, *J*= 14.4 Hz, 1H; H_{6b}), 2.78 (dd, *J*= 12.9, 8.0 Hz, 1H; H_{4a}), 2.50 (dd, *J*= 12.9, 11.0 Hz, 1H; H_{4b}); ¹³C NMR (75 MHz, Acetone-d₆) δ (ppm)= 174.0, 149.3, 148.7, 146.4, 144.9, 129.9, 128.4, 127.1, 126.7, 126.5, 126.4, 119.1, 113.1, 111.8, 106.9, 77.5, 55.4, 52.5, 52.5, 48.9, 40.7; HRMS (ESI): calcd for C₂₅H₂₂N₂O₅ [M⁺] 430.1523 found 430.1521.

Enantiomeric ratio of the minor diastereoisomer *diast-4a* (98:2) could be determined by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:ⁱPrOH 70:30, 0.7 ml/min, 202.4 nm, t_R (major)= 57.4 min, t_R (minor)= 71.3 min.

(3*S*,5*R*)-3-(Perfluorophenylamino)-8,8-diphenyl-1,6-dioxaspiro[4.4]nonan-2-one (4b) and (3*S*,5*S*)-3-(perfluorophenylamino)-8,8-diphenyl-1,6-dioxaspiro[4.4]nonan-2-one (*diast*-4b)

The 3:1 mixture of diastereoisomers **4b**/*diast*-**4b** could not be separated by column chromatography. However, the enantiomeric ratio for both diastereoisomers could be determined from the mixture by chiral HPLC analysis.

White solid. $R_f = 0.21$ (silica gel, hexanes: EtOAc 7:1); er (4b) = 96:4 [by HPLC in comparison with the racemate: Daicel CHIRALPAK AD-H, hexanes:ⁱPrOH 90:10, 0.5 ml/min, 201.3 nm, t_R (major)= 23.8 min, t_R (minor)= 43.9 min] and *er* (*diast*-4b)= 89:11 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes: PrOH 90:10, 0.5 ml/min, 200.1 nm, t_R (major)= 48.4 min, t_R (minor)= 69.3 min]; ¹H NMR (401 MHz, Acetone-d₆) δ (ppm)= 7.45–7.19 (m, 10H; H₁₀₋₁₂ 4b and *diast-4b*), 5.34 (d, J= 9.8 Hz, 1H; NH 4b), 5.31 (d, J= 8.8 Hz, 1H; NH *diast-4b*), 4.95 (dd, J= 9.1, 1.3 Hz, 1H; H_{8a} *diast-4b*), 4.84 (dd, J=9.2, 0.5 Hz, 1H; H_{8a} 4b), 4.79 (ddd, J=10.8, 9.8, 8.9 Hz, 1H; H_3 **4b**), 4.72 (dt, 9.7, 8.8 Hz, 1H; H₃ *diast*-**4b**), 4.53 (d, *J*= 9.2 Hz, 1H; H_{8b} **4b**), 4.47 (d, *J*= 9.1 Hz, 1H; H_{8b} 4b), 3.35 (dd, J= 14.0, 1.3 Hz, 1H; H_{6a} diast-4b), 3.25 (d, J= 14.3 Hz, 1H; H_{6a} 4b), 3.21 (dd, J=14.3, 0.5 Hz, 1H; H_{6b} 4b), 3.19 (d, J= 14.0 Hz, 1H; H_{6b} diast-4b), 2.74-2.61 (m, 3H; H₄ 4b and H_{4a} *diast*-4b), 2.44 (dd, *J*= 13.2, 9.7 Hz, 1H; H_{4b} *diast*-4b); ¹³C NMR (75 MHz, Acetone-d₆) 4b: δ(ppm)= 174.3, 146.3, 144.8, 139.8 (m), 136.6 (m), 128.4, 127.1, 126.7, 123.2 (m), 112.7, 77.4, 55.4, 54.5 (*J*_{CF}= 3.7 Hz), 48.9, 40.9; *diast-*4b: δ(ppm)= 172.6, 145.8, 144.7, 127.0, 126.8, 126.6, 113.6, 77.1, 56.0, 55.0 $(J_{CF}= 3.8 \text{ Hz}), 49.2, 40.7; {}^{19}\text{F} \text{ NMR} (282 \text{ MHz}, \text{ Acetone-d}_6) \delta(\text{ppm})= -158.5--158.8 \text{ (m; } diast-4b),$ -159.2--159.5 (m; 4b), -166.6--167.0 (m; 4b and *diast*-4b), -173.2 (tt, J= 21.6, 5.9 Hz; *diast*-4b), -173.6 (tt, J=21.6, 6.1 Hz; **4b**); HRMS (ESI): calcd for C₂₅H₁₈F₅NO₃ [M⁺] 475.1201 found 430.1205.

(3S,5R)-3-(4-Nitrophenylamino)-8,8-diphenyl-1,6-dioxaspiro[4.4]nonan-2-one (4c)

Yellow foam. $R_f = 0.35$ (silica gel, hexanes:EtOAc 3:1); $[\alpha]_D^{28.2} = -21^\circ$ (c= 0.02, DCM); *er*= 95:5 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:ⁱPrOH 80:20, 0.7 ml/min, 201.3 nm, t_R (major)= 35.3 min, t_R (minor)= 98.5 min]; ¹H NMR (401 MHz, Acetone-d₆) δ (ppm)= 8.21-7.93 (m, 2H; H₁₁), 7.44-7.11 (m, 10H; H₁₂, H₁₃ and H₁₄), 6.98-6.84 (m, 2H; H₁₀), 6.52 (d, *J*= 7.3 Hz, 1H; N*H*), 4.95-4.84 (m, 1H; H₃), 4.85 (d, *J*= 9.2 Hz, 1H; H_{8a}), 4.59 (d, *J*= 9.2 Hz, 1H; H_{8b}), 3.27 (d, *J*= 14.2 Hz, 1H; H_{6a}), 3.22 (d, *J*= 14.2 Hz, 1H; H_{6b}), 2.78 (dd, *J*= 12.9, 8.0 Hz, 1H; H_{4a}), 2.54 (dd, *J*= 12.9, 11.1 Hz, 1H; H_{4b}); ¹³C NMR (75 MHz, Acetone-d₆) δ (ppm)= 173.4, 153.2, 146.3, 144.8, 138.3, 128.4, 127.1, 126.7, 126.5, 126.4, 125.7, 113.2, 112.0, 77.6, 55.4, 52.2, 48.9, 40.5; HRMS (ESI): calcd for C₂₅H₂₂N₂O₅ [M⁺] 430.1523 found 430.1525.

Enantiomeric ratio of the minor diastereoisomer *diast-4*c (95:5) could be determined by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:ⁱPrOH 80:20, 0.7 ml/min, 201.3 nm, t_R (major)= 53.6 min, t_R (minor)= 76.8 min.

(3S,5R)-3-(3-Bromophenylamino)-8,8-diphenyl-1,6-dioxaspiro[4.4]nonan-2-one (4d)

White foam. $R_f = 0.50$ (silica gel, hexanes: $Et_2O 1:1$); $[\alpha]_D^{28.4} = -8^\circ$ (c= 0.7, DCM); *er*= 92:8 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:ⁱPrOH 80:20, 0.6 ml/min, 207.1 nm, t_R (major)= 29.8 min, t_R (minor)= 40.5 min]; ¹H NMR (300 MHz, Acetone-d₆) δ (ppm)= 7.46-7.16 (m, 10H; H_{14} , H_{15} , and H_{16}), 7.07 (t, *J*= 8.0 Hz, 1H; H_{12}), 6.97 (t, *J*= 2.0 Hz, 1H; H_{10}), 6.82 (ddd, *J*= 8.0, 2.0 Hz, 1H; H_{11}), 6.75 (ddd, *J*= 8.0, 2.0 Hz, 1H; H_{13}), 5.52 (d, *J*= 6.9 Hz, 1H; NH), 4.84 (d, *J*= 9.1 Hz, 1H; H_{8a}), 4.66 (ddd, *J*= 11.0, 7.9, 6.9 Hz, 1H; H_3), 4.57 (d, *J*= 9.1 Hz, 1H; H_{8b}), 3.26 (d, *J*= 14.2 Hz, 1H; H_{6a}), 3.20 (d, *J*= 14.2 Hz, 1H; H_{6b}), 2.75 (ddd, *J*= 12.9, 7.9, 1.4 Hz, 1H; H_{4a}), 2.43 (dd, *J*= 12.9, 11.1 Hz, 1H; H_{4b}); ¹³C NMR (75 MHz, Acetone-d₆) δ (ppm)= 174.1, 149.1, 146.4, 144.9, 130.6, 128.4, 127.2, 126.7, 126.5, 126.4, 122.6, 120.1, 115.7, 113.0, 112.0, 77.5, 55.4, 52.6, 52.5, 48.9, 41.0; HRMS (ESI): calcd for $C_{25}H_{22}BrNO_3$ [M⁺] 463.0778 found 463.0786.

Enantiomeric ratio of the minor diastereoisomer *diast*-4d (88:12) could be determined by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:ⁱPrOH 80:20, 0.6 ml/min, 206.0 nm, t_R (major)= 67.1 min, t_R (minor)= 81.9 min.

(3*S*,5*R*)-3-[3,5-Bis(trifluoromethyl)phenylamino]-8,8-diphenyl-1,6-dioxaspiro[4.4]nonan-2-one (4e)

Colourless oil. R_f = 0.46 (silica gel, hexanes:Et₂O:DCM 4:1:1); $[\alpha]_D^{30.4}$ = -14° (c= 0.1, DCM); *er*= 96:4 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:ⁱPrOH 90:10, 0.4 ml/min, 205.9 nm, t_R (major)= 22.9 min, t_R (minor)= 31.1 min]; ¹H NMR (401 MHz, Acetone-d₆) δ (ppm)= 7.43-7.19 (m, 13H; H₁₀₋₁₆), 6.17 (d, *J*= 7.5 Hz, 1H; N*H*), 4.93 (apparent dt, *J*= 11.1, 7.7 Hz; 1H, H₃), 4.85 (d, *J*= 9.2 Hz, 1H; H_{8a}), 4.58 (d, *J*= 9.2 Hz, 1H; H_{8b}), 3.27 (d, *J*= 14.4 Hz, 1H; H_{6a}), 3.23 (d, *J*= 14.4 Hz, 1H; H_{6b}), 2.79 (dd, *J*= 12.9, 8.0 Hz, 1H; H_{4a}), 2.51 (dd, *J*= 12.9, 11.1 Hz, 1H; H_{4b}); ¹³C NMR (75 MHz, Acetone-d₆) δ (ppm)= 173.9, 149.1, 146.3, 144.8, 131.84 (q, *J*_{CF}= 32.2 Hz), 128.4, 127.1, 126.7, 126.5, 126.4, 123.76 (q, *J*_{CF}= 272.2 Hz), 113.1, 112.7, 109.7, 77.5, 55.4, 52.3, 48.9, 40.6; ¹⁹F NMR (282 MHz, Acetone-d₆) δ (ppm)= -63; HRMS (ESI): calcd for C₂₇H₂₁F₆NO₃ [M⁺] 521.1420 found 521.1428.

Enantiomeric ratio of minor the diastereoisomer *diast-4e* (96:4) could be determined by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:ⁱPrOH 95:5, 0.4 ml/min, 201.2 nm, t_R (major)= 67.4 min, t_R (minor)= 148.1 min.

(3S,5R)-3-(3-Nitrophenylamino)-1,14-dioxadispiro[4.1.5.2]tetradecan-2-one (4f)

Yellow foam. $R_f= 0.45$ (silica gel, hexanes:Et₂O:DCM 3:2:1); $[\alpha]_D^{19.5} = -26^\circ$ (c= 0.15, DCM); *er*= 96:4 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:EtOH 80:20, 0.5 ml/min, 236.6 nm, t_R (major)= 40.9 min, t_R (minor)= 74.0 min]; ¹H NMR (401 MHz, Acetone-d₆) δ (ppm)= 7.61 (t, *J*= 2.3 Hz, 1H; H₁₄), 7.52 (dd, *J*= 8.1, 2.3 Hz, 1H; H₁₅), 7.41 (t, *J*= 8.1 Hz, 1H; H₁₆), 7.22 (dd, *J*= 8.1, 2.3 Hz, 1H; H₁₇), 5.94 (d, *J*= 7.1 Hz, 1H; N*H*), 4.75 (ddd, *J*= 11.0, 7.9, 7.1 Hz, 1H; H₃), 3.87 (d, *J*= 8.6 Hz, 1H; H_{13a}), 3.81 (d, *J*= 8.6 Hz, 1H; H_{13b}), 2.89 (dd, *J*= 12.9, 7.9 Hz, 1H; H_{4a}), 2.44 (dd, *J*= 12.9, 11.0 Hz, 1H; H_{4b}), 2.26 (d, *J*= 14.1 Hz, 1H; H_{6a}), 2.09 (d, *J*= 14.1 Hz, 1H; H_{6b}), 1.67–1.37 (m, 10H; H₈₋₁₂); ¹³C NMR (75 MHz, Acetone) δ (ppm)= 174.3, 162.5, 149.3, 148.7, 129.9, 119.2, 113.6, 111.7, 106.9, 79.3, 52.6, 48.2, 42.4, 39.9, 36.9, 35.4, 25.4, 23.5, 23.4; HRMS (ESI): calcd for C₁₈H₂₂N₂O₅ [M⁺] 346.1523 found 346.1523.

(3*S*,5*R*)-3-(Perfluorophenylamino)-1,14-dioxadispiro[4.1.5.2]tetradecan-2-one (4g) and (3*S*,5*S*)-3-(perfluorophenylamino)-1,14-dioxadispiro[4.1.5.2]tetradecan-2-one (*diast*-4g)

The 4:1 mixture of diastereoisomers **4**g/*diast*-**4**g could not be separated by column chromatography. However, the enantiomeric ratio for both diastereoisomers could be determined from the mixture by chiral HPLC analysis.

White solid. R_f = 0.38 (silica gel, hexanes:DCM:Et₂O 7:1:1); *er* (**4g**)= 95:5 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:¹PrOH 95:5, 0.5 ml/min, 226.0 nm, t_R (major)= 23.0 min, t_R (minor)= 34.7 min]; *ee* (*diast-4g*)= 95:5 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:¹PrOH 95:5, 0.5 ml/min, 223.6 nm, t_R (major)= 43.4 min, t_R (minor)= 61.3 min]; ¹H NMR (401 MHz, Acetone-d₆) δ (ppm)= 5.31 (d, *J*= 9.6 Hz, 1H; NH **4g**), 5.25 (d, *J*= 10.0 Hz, 1H; NH *diast-4g*), 4.75 (ddd, *J*= 11.4, 9.6, 8.2 Hz, 1H; H₃ **4g**), 4.65 (apparent q, *J*= 8.8 Hz, 1H; H₃ *diast-4g*), 3.87 (d, *J*= 8.5 Hz, 1H; H_{13a} *diast-4g*), 3.84 (d, *J*= 8.6 Hz, 1H; H_{13a} **4g**), 3.82 (d, *J*= 8.5 Hz, 1H; H_{13b} *diast-4g*), 3.77 (d, *J*= 8.6 Hz, 1H; H_{13b} **4g**), 2.91 (dd, *J*= 13.2, 8.5 Hz, 1H; H_{4a} *diast-4g*), 2.76 (dd, *J*= 12.8, 8.2 Hz, 1H; H_{4a} **4g**), 2.64 (dd, *J*= 12.6, 11.4 Hz, 1H; H_{4b} **4g**), 2.53 (dd, *J*= 13.2, 9.0 Hz, 1H; H_{4b} *diast-4g*), 2.07 (d, *J*= 14.1 Hz, 2H; H_{6b} *4g*), 1.69-1.32 (m, 10H; H₈₋₁₂, **4g** and *diast-4g*); ¹³C NMR (75 MHz, Acetone-d₆) **4g**: δ (ppm)= 174.6, 113.2, 79.2, 54.6, 48.1, 42.4, 40.0, 36.8, 35.3, 25.4, 23.5, 23.4; ¹⁹F NMR (282 MHz, Acetone-d₆) δ (ppm)= -158.1--158.8 (m; *diast-4g*), -173.48--174.11 (m; **4g**); HRMS (ESI): calcd for C₁₈H₁₉F₅NO₃ [M+1]⁺ 392.1280 found 392.1277.

(3S,5R)-3-(3-Bromophenylamino)-1,14-dioxadispiro[4.1.5.2]tetradecan-2-one (4h)

Light yellow solid; mp= 125-127 °C; $R_f = 0.37$ (silica gel, hexanes:EtOAc 7:1); $[\alpha]_D^{19.5} = -40^\circ$ (c= 0.25, DCM); *er*= 97:3 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:¹PrOH 90:10, 0.5 ml/min, 208.3 nm, t_R (major)= 33.5 min, t_R (minor)= 44.0 min]; ¹H NMR (300 MHz, Acetone-d₆) δ (ppm)= 7.08 (t, *J*= 8.0 Hz, 1H; H₁₈), 6.98 (t, *J*= 2.0 Hz, 1H; H₁₅), 6.83 (dd, *J*= 8.0, 2.0 Hz, 1H; H₁₇), 6.77 (dd, *J* = 8.0, 2.0 Hz, 1H; H₁₉), 5.51 (d, *J*= 6.9 Hz, 1H; NH), 4.61 (ddd, *J*= 11.0, 7.9, 6.9 Hz, 1H; H₃), 3.86 (d, *J*= 8.6 Hz, 1H; H_{13a}), 3.79 (d, *J*= 8.6 Hz, 1H; H_{13b}), 2.84 (dd, *J*= 12.9, 7.9 Hz, 1H; H_{4a}), 2.37 (dd, *J*= 12.9, 11.0 Hz, 1H; H_{4b}), 2.25 (d, *J*= 14.1 Hz, 1H; H_{6a}), 2.07 (d, *J*= 14.0 Hz, 1H; H_{6b}), 1.66-1.44 (m, 10H; H₈₋₁₂); ¹³C NMR (75 MHz, Acetone-d₆) δ (ppm)= 174.4, 149.2, 130.6, 122.6, 120.1, 115.6, 113.5, 112.1, 79.3, 52.6, 48.2, 42.4, 40.2, 36.9, 35.4, 25.4, 23.5, 23.4; HRMS (ESI): calcd for C₁₈H₂₂BrNO₃ [M⁺] 379.0778 found 379.0789.

(3S,5R)-3-(3-Nitrophenylamino)-1,13-dioxadispiro[4.1.4.2]tetradecan-2-one (4i)

Yellow solid; mp= 114-117 °C; $R_f = 0.46$ (silica gel, hexanes:Et₂O:DCM 2:1:1); $[\alpha]_D^{30.7} = -7^\circ$ (c= 0.1, DCM); *er*= 95:5 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:EtOH 80:20, 0.5 ml/min, 236.6 nm, t_R (major)= 50.1 min, t_R (minor)= 85.0 min]; ¹H NMR (300 MHz, Acetone-d₆) δ (ppm)= 7.62 (t, *J*= 2.3 Hz, 1H; H₁₃), 7.53 (dd, *J*= 8.1, 2.3 Hz, 1H; H₁₄), 7.41 (t, *J*= 8.1 Hz, 1H; H₁₅), 7.22 (dd, *J*= 8.1, 2.3 Hz, 1H; H₁₆), 5.95 (d, *J*= 6.8 Hz, 1H; NH), 4.77 (ddd, 11.1, 7.9, 6.8 Hz, 1H; H₃), 3.91 (d, *J*= 8.3 Hz, 1H; H_{12a}), 3.86 (d, *J*= 8.3 Hz, 1H; H_{12b}), 2.90 (dd, *J*= 12.8, 7.9 Hz, 1H; H_{4a}), 2.44 (dd, *J*= 12.8, 11.1 Hz, 1H; H_{4b}), 2.34 (d, *J*= 13.9 Hz, 1H; H_{6a}), 2.26 (d, *J*= 13.9 Hz, 1H; H_{6b}), 1.81-1.59 (m, 8H; H₈₋₁₁); ¹³C NMR (75 MHz, Acetone-d₆) δ (ppm)= 174.3, 149.4, 148.7, 129.9, 119.2, 113.6, 111.7, 106.9, 79.9, 52.6, 49.5, 48.6, 39.9, 37.7, 36.8, 24.2, 24.0; HRMS (ESI): calcd for C₁₇H₂₀N₂O₅ [M⁺] 332.1367 found 332.1378.

(3S,5R)-3-(3-Bromophenylamino)-12,12-dimethyl-1,13-dioxadispiro[4.1.4.2]tetradecan-2-one (4j)

White foam. $R_f = 0.43$ (silica gel, hexanes: AcOEt: MeOH 7:1:0.5); $[\alpha]_D^{29.1} = -3^\circ$ (c= 0.1, DCM); *er*= 93:7 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes: EtOH 90:10, 0.4 ml/min), 208.3 nm, t_R (major)= 50.1 min, t_R (minor)= 92.5 min]; ¹H NMR (401 MHz, THF-d₈) δ (ppm)= 7.01 (t, *J*= 8.0 Hz, 1H; H₁₈), 6.88 (t, *J*= 2.3 Hz, 1H; H₁₆), 6.78 (dd, *J*= 8.0, 2.3 Hz, 1H; H₁₇), 6.65 (dd, *J*= 8.0, 2.3 Hz, 1H; H₁₉), 5.44 (d, *J*= 6.1 Hz, 1H; NH), 4.50 (ddd, *J*= 11.0, 7.6, 6.1 Hz, 1H; H₃), 2.78 (dd, *J*= 12.4, 7.6 Hz, 1H; H_{4a}), 2.42 (d, *J*= 14.0 Hz, 1H; H_{6a}), 2.26 (d, *J*= 14.0 Hz, 1H; H_{6b}), 2.17 (dd, *J*= 12.4, 11.0 Hz, 1H; H_{4b}), 1.84-1.40 (m, 10H; H₈₋₁₁), 1.29 (s, 3H; H₁₄), 1.23 (s, 3H; H₁₅); ¹³C NMR (75 MHz, THF-d₈) δ (ppm)= 172.8, 148.3, 148.2, 129.1, 121.7, 118.8, 114.6, 110.6, 109.8, 86.4, 54.2, 51.5, 47.5, 42.0, 33.1, 31.8, 22.1, 21.9; HRMS (ESI): calcd for C₁₉H₂₄BrNO₃ [M⁺] 393.0934 found 393.0936.

(3*S*,5*R*)-12,12-Dimethyl-3-(perfluorophenylamino)-1,13-dioxadispiro[4.1.4.2] tetradecan-2-one (4k) and (3*S*,5*S*)-12,12-dimethyl-3-(perfluorophenylamino)-1,13-dioxadispiro[4.1.4.2] tetradecan-2-one (*diast*-4k)

The 3:1 mixture of diastereoisomers **4**k/*diast*-**4**k could not be separated by column chromatography. However, the enantiomeric ratio for both diastereoisomers could be determined from the mixture by chiral HPLC analysis.

White solid. R_f = 0.28 (silica gel, hexanes:Et₂O 4:1); *er* (**4**k)= 95:5 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:ⁱPrOH 90:10, 0.2 ml/min, 226.0 nm, t_R (major)= 48.4 min, t_R (minor)= 52.9 min]; *er* (*diast*-**4**k)= 95:5 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:ⁱPrOH 90:10, 0.2 ml/min, 223.6 nm, t_R (major)= 42.4 min, t_R (minor)= 117.5 min]; ¹H NMR (401 MHz, Acetone-d₆) δ (ppm)= 5.27 (d, *J*= 9.5 Hz, 1H; NH, **4k** and *diast*-**4k**), 4.73 (ddd, *J*= 11.4, 9.5, 8.1 Hz, 1H; H₃ **4k**), 4.61 (apparent dt, *J*= 9.6, 8.5 Hz, 1H; H₃ *diast*-**4k**), 2.86

(dd, J= 13.0, 8.4 Hz, 1H; H_{4a} *diast*-4k), 2.71 (dd, J= 12.5, 8.1 Hz, 1H; H_{4a} 4k), 2.61 (dd, J= 12.5, 11.4 Hz, 1H; H_{4b} 4k), 2.48 (dd, J= 13.0, 9.6 Hz, 1H; H_{4b} *diast*-4k), 2.42 (apparent s, 2H; H₆ *diast*-4k), 2.42 (d, J= 14.1 Hz, 1H; H_{6a} 4k), 2.34 (d, J= 14.1 Hz, 1H; H_{6b} 4k), 1.78–1.43 (m, 10H; H₈₋₁₁), 1.29 (s, 3H; H₁₃ *diast*-4k), 1.25 (s, 3H; H₁₃ 4k), 1.23 (s, 3H; H₁₄ *diast*-4k), 1.21 (s, 3H; H₁₄ 4k); ¹³C NMR (75 MHz, Acetone-d₆) 4k: δ (ppm)= 174.6, 110.9, 87.7, 55.1, 54.6 (J_{CF} = 3.6 Hz), 48.2, 42.2, 33.9, 32.7, 24.3, 22.8; *diast*-4k: δ (ppm)= 172.9, 112.0, 87.5, 55.7, 55.2 (J_{CF} = 3.8 Hz), 48.4, 41.8, 33.8, 32.8, 24.4, 23.0; ¹⁹F NMR (282 MHz, Acetone-d₆) δ (ppm)= –158.4–158.9 (m; *diast*-4k), –159.09–159.65 (m; 4k), –166.51–167.50 (m; 4k and *diast*-4k), –173.24 (tt, J= 21.5, 5.8 Hz; *diast*-4k), –173.80 (tt, J= 21.5, 6.1 Hz; 4k); HRMS (ESI): calcd for C₁₉H₂₀F₅NO₃ [M⁺] 405.1358 found 405.1362.

(3*S*,5*R*)-3-[3,5-bis(trifluoromethyl)phenylamino]-1,14-dioxadispiro[4.0.5.3]tetradecan-2-one (4l)

White solid; mp= 153-156 °C; R_f = 0.43 (silica gel, hexanes:AcOEt 5:1); $[\alpha]_D^{2^{8.5}}$ = -14° (c= 0.25, DCM); *er*= 98:2 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:ⁱPrOH 90:10, 0.3 ml/min, 203.6 nm, t_R (major)= 40.4 min, t_R (minor)= 46.3 min]; ¹H NMR (401 MHz, Acetone-d₆) δ (ppm)= 7.25 (s, 2H; H₁₄), 7.11 (s, 1H; H₁₅), 6.14 (d, *J*= 7.8 Hz, 1H; NH), 4.80 (dt, *J*= 11.1, 7.8 Hz, 1H; H₃), 3.98-3.90 (m, 2H; H₁₃), 2.56 (dd, *J*= 12.9, 7.8 Hz, 1H; H_{4a}), 2.26 (dd, *J*= 12.9, 11.1 Hz, 1H; H_{4b}), 2.21 (ddd, *J*= 11.5, 6.3, 4.4 Hz, 1H; H_{12a}), 1.74 (dtd, *J*= 11.5, 9.6, 1.9 Hz, 1H; H_{12b}), 1.64-1.14 (m, 10H; H₇₋₁₁); ¹³C NMR (75 MHz, Acetone-d₆) δ (ppm)= 173.9, 149.0, 131.9 (q, *J*_{CF}= 32.6 Hz), 123.8 (q, *J*_{CF}= 272.0 Hz), 116.5, 112.7, 109.5, 66.2, 52.3, 47.9, 34.0, 30.9, 30.6, 25.7, 23.1, 21.6; ¹⁹F NMR (282 MHz, Acetone-d₆) δ (ppm)= -63.69; HRMS (ESI): calcd for C₂₀H₂₁F₆NO₃ [M⁺] 437.1420 found 437.1404.

(3S,5R)-3-(3-Nitrophenylamino)-1,14-dioxadispiro[4.0.5.3] tetradecan-2-one (4m)

Yellow solid; mp= 150-152 °C; R_f = 0.42 (silica gel, hexanes:AcOEt 3:1); $[\alpha]_D^{30.7}$ = -3° (c= 0.1, DCM); *er*= 94:6 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:¹PrOH 80:20, 0.6 ml/min, 236.6 nm, t_R (major)= 55.9 min, t_R (minor)= 71.2 min]; ¹H NMR (401 MHz, Acetone-d₆) δ (ppm)= 7.60 (t, *J*= 2.3 Hz, 1H; H₁₅), 7.53 (ddd, *J*= 8.2, 2.3 Hz, 1H; H₁₆), 7.41 (t, *J*= 8.1 Hz, 1H; H₁₇), 7.22 (ddd, *J*= 8.2, 2.3 Hz, 1H; H₁₈), 5.98 (d, *J*= 7.8 Hz, 1H; NH), 4.78 (dt, *J*= 11.2, 7.8 Hz, 1H; H₃), 4.14-3.96 (m, 2H; H₁₃), 2.67 (dd, *J*= 12.8, 7.8 Hz, 1H; H_{4a}), 2.35 (dd, *J*= 12.8, 11.2 Hz, 2H; H_{4b}), 2.33 (ddd, *J*= 11.5, 5.9, 4.1 Hz, 1H; H_{12a}), 1.85 (dtd, *J*= 11.5, 9.6, 1.9 Hz, 1H; H_{12b}), 1.76– 1.14 (m, 10H; H₇₋₁₁); ¹³C NMR (75 MHz, Acetone-d₆) δ (ppm)= 174.0, 149.4, 148.7, 130.0, 119.2, 116.5, 111.7, 106.8, 66.2, 52.6, 47.9, 34.3, 30.9, 30.6, 25.7, 23.1, 21.6; HRMS (ESI): calcd for C₁₈H₂₂N₂O₅ [M⁺] 346.1523 found 346.1526.

(3S,5R)-3-(2-Bromo-5-nitrophenylamino)-8,8-diphenyl-1,6-dioxaspiro[4.4]nonan-2-one (4n)

Yellow solid (ⁱPrOH); mp= 160-162 °C; R_f= 0.43 (silica gel, hexanes:Et₂O 2:1); $[\alpha]_D^{30.8} = -6^\circ$ (c= 0.1, DCM); *er*= 85:15 (94:6 after crystallization) [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:ⁱPrOH 80:20, 0.5 ml/min, 202.4 nm, t_R (major)= 40.2 min, t_R (minor)= 56.6 min]; ¹H NMR (401 MHz, Acetone-d₆) δ (ppm)= 7.75 (d, *J*= 8.6 Hz, 1H; H₁₂), 7.72 (d, *J*= 2.6 Hz, 1H; H₁₀), 7.49 (dd, *J*= 8.6, 2.6 Hz, 1H; H₁₁), 7.44-7.18 (m, 10H; H₁₃₋₁₅), 5.68 (d, *J*= 7.6 Hz, 1H; NH), 5.00 (ddd, *J*= 11.1, 8.2, 7.6 Hz, 1H; H₃), 4.87 (d, *J*= 9.2 Hz, 1H; H_{8a}), 4.60 (d, *J*= 9.2 Hz, 1H; H_{8b}), 3.29 (d, *J*= 14.4 Hz, 1H; H_{6a}), 3.24 (d, *J*= 14.4 Hz, 1H; H_{6b}), 2.83 (dd, *J*= 12.7, 8.2 Hz, 3H; H_{4a}), 2.74 (dd, *J*= 12.7, 11.1 Hz, 1H; H_{4b}); ¹³C NMR (75 MHz, Acetone-d₆) δ (ppm)= 173.8, 148.6, 146.3, 145.1, 144.9, 133.3, 128.4, 127.1, 126.8, 126.5, 126.4, 115.7, 113.3, 112.7, 106.2, 77.6, 55.4, 52.5, 49.0, 40.3; HRMS (ESI): calcd for C₂₅H₂₁BrN₂O₅ [M⁺] 508.0628 found 508.0630.

(3S,5R)-3-(3-nitrophenylamino)-1,6-dioxaspiro[4.4]nonan-2-one (40)

Yellow foam; $R_f = 0.40$ (silica gel, hexanes:DCM:Et₂O 1:1:1); $[\alpha]_D^{18.3} = -15^\circ$ (c= 0.1, DCM); *er*= 90:10 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:EtOH 80:20, 0.4 ml/min, 236.6 nm, t_R (major)= 80.6 min, t_R (minor)= 94.0 min]; ¹H NMR (401 MHz, THF) δ (ppm)= 7.55 (t, *J* = 2.2 Hz, 1H, H₁₁), 7.50 (ddd, *J* = 8.2, 2.2 Hz, 1H, H₁₂), 7.33 (t, *J* = 8.2 Hz, 1H, H₁₃), 7.10 (dd, *J* = 8.2, 2.2 Hz, 1H, H₁₄), 6.04 (d, *J* = 6.4 Hz, 1H, N*H*), 4.69 (ddd, *J* = 11.0, 7.9, 6.4 Hz, 1H, H₃), 4.13 – 3.97 (m, 2H, H₈), 2.85 (dd, *J* = 12.8, 7.9 Hz, 1H, H_{4a}), 2.34 – 2.25 (m, 1H, H_{7a}), 2.33 (dd, *J* = 12.8, 11.0 Hz, 1H, H_{4b}), 2.20 – 1.99 (m, 3H, H₆ y H_{7b}).; ¹³C NMR (75 MHz, THF) δ (ppm)= 173.6, 149.4, 148.8, 129.5, 118.5, 112.7, 111.4, 106.9, 69.0, 52.7, 38.9, 35.7, 23.2.; HRMS (ESI): calcd for C₂₅H₂₁BrN₂O₅ [M⁺] 278.0879 found 278.0890.

(3S,5S)-10,10-dimethyl-3-(3-nitrophenylamino)-1,6-dioxaspiro [4.5]decan-2-one (4p)

Yellow foam; $R_f = 0.36$ (silica gel, hexanes:AcOEt:MeOH 5:1:0.5); $[\alpha]_D^{18.5} = -30^\circ$ (c= 0.15, DCM); *er*= 80:20 [by HPLC in comparison with the racemate; Daicel CHIRALPAK AD-H, hexanes:EtOH 80:20, 0.4 ml/min, 237.5 nm, t_R (major)= 38.6 min, t_R (minor)= 56.8 min]; ¹H NMR (600 MHz, Acetone) δ (ppm)= 7.58 (t, J = 2.2 Hz, 1H, H₁₃), 7.53 (dd, J = 8.1, 2.2 Hz, 1H, H₁₄), 7.42 (t, J = 8.1 Hz, 1H, H₁₅), 7.20 (dd, J = 8.2, 2.2 Hz, 1H, H₁₆), 6.03 (d, J = 7.4 Hz, 1H, NH), 4.75 (ddd, J = 10.8, 8.2, 7.4 Hz, 1H, H₃), 3.82 (td, J = 11.3, 2.5 Hz, 1H, H_{9a}), 3.79 (ddt, J = 11.3, 5.5, 1.5 Hz, 1H, H_{9b}), 2.59 (dd, J = 12.8, 8.2 Hz, 1H, H_{4a}), 2.33 (dd, J = 12.8, 10.8 Hz, 1H, H_{4b}), 2.02 – 1.93 (m, 1H, H_{8a}), 1.85 (td, J = 13.1, 3.9 Hz, 1H, H_{7a}), 1.54 – 1.44 (m, 2H, H_{7b} y H_{8b}), 1.12 (s, 3H, H₁₁), 1.01 (s, 3H, H₁₂).; ¹³C NMR (101 MHz,) δ (ppm)= 174.5, 149.4, 148.7, 129.9, 119.3, 111.7, 109.2, 106.7, 62.4, 52.2, 36.0, 34.8, 33.1, 24.7, 21.2, 21.1.; HRMS (ESI): calcd for C₂₅H₂₁BrN₂O₅ [M⁺] 320.1367 found 320.1370.

¹H, ¹³C and ¹⁹F spectra, HPLC data and X-ray:

(3S,5R)-3-(3-Nitrophenylamino)-8,8-diphenyl-1,6-dioxaspiro[4.4]nonan-2-one (4a)

1

2

71.270

 RT
 Area
 % Area
 Height

 57.359
 63269252
 97.68
 747074

1501658	2.32	11125	

0.000-200.00 220.00 240.00 260.00 280.00 300.00 320.00 340.00 360.00 380.00 nm

366.1380.6

(3S,5R)-3-(Perfluorophenylamino)-8,8-diphenyl-1,6-dioxaspiro[4.4]nonan-2-one(4b)and(3S,5S)-3-(perfluorophenylamino)-8,8-diphenyl-1,6-dioxaspiro[4.4]nonan-2-one(*diast*-4b)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Peak Results

	RT	Area	% Area	Height
1	49.063	12276899	49.85	170409
2	69.822	12350243	50.15	139663

(3S,5R)-3-(4-Nitrophenylamino)-8,8-diphenyl-1,6-dioxaspiro[4.4]nonan-2-one (4c)

(3S,5R)-3-(3-Bromophenylamino)-8,8-diphenyl-1,6-dioxaspiro[4.4]nonan-2-one (4d)

- Cult I Coulto					
	RT	Area	% Area	Height	
1	67.115	2594397	88.09	28244	
2	81.871	350804	11.91	2703	

(3S,5R)-3-[3,5-Bis(trifluoromethyl) phenylamino]-8,8-diphenyl-1,6-dioxaspiro[4.4] nonan-2-one and the statement of the stat

(4e)

 RT
 Area
 % Area
 Height

 1
 21.797
 39221650
 49.72
 1021600

 2
 29.513
 39660573
 50.28
 878071

36.00

38.00

40.00

(3S,5R)-3-(3-Nitrophenylamino)-1,14-dioxadispiro[4.1.5.2]tetradecan-2-one (4f)

(3*S*,5*R*)-3-(Perfluorophenylamino)-1,14-dioxadispiro[4.1.5.2]tetradecan-2-one (4g) and (3*S*,5*S*)-3-(perfluorophenylamino)-1,14-dioxadispiro[4.1.5.2]tetradecan-2-one (*diast*-4g)

rac-diast-4g

	RT	Area	% Area	Height
1	42.896	15362067	50.01	226563
2	60.059	15355853	49.99	216138

(3S,5R)-3-(3-Bromophenylamino)-1,14-dioxadispiro[4.1.5.2]tetradecan-2-one (4h)

Peak Results

	RT	Area	% Area	Height
1	33.471	45557434	50.53	1116413
2	44.019	44596469	49.47	847103

(3S,5R)-3-(3-Nitrophenylamino)-1,13-dioxadispiro[4.1.4.2]tetradecan-2-one (4i)

(3S,5R)-3-(3-Bromophenylamino)-12,12-dimethyl-1,13-dioxadispiro [4.1.4.2]tetradecan-2-one

(4j)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

- Call Results							
	RT	Area	% Area	Height			
1	50.067	114161792	92.25	1854920			
2	92.471	9591033	7.75	94061			

(3*S*,5*R*)-12,12-Dimethyl-3-(perfluorophenylamino)-1,13-dioxadispiro [4.1.4.2]tetradecan-2-one (4k) and (3*S*,5*S*)-12,12-dimethyl-3-(perfluorophenylamino)-1,13-dioxadispiro [4.1.4.2]tetradecan-2-one (*diast*-4k)

(3*S*,5*R*)-3-[3,5-Bis(trifluoromethyl)phenylamino]-1,14-dioxadispiro[4.0.5.3]tetradecan-2-one (4l)

(3S,5R)-3-(3-Nitrophenylamino)-1,14-dioxadispiro[4.0.5.3]tetradecan-2-one (4m)

nm

(3S,5R)-3-(2-Bromo-5-nitrophenylamino)-8,8-diphenyl-1,6-dioxaspiro [4.4]nonan-2-one (4n)

rac–4n

	RT	Area	% Area	Height
1	41.342	51267108	49.81	943190
2	58.206	51663865	50.19	688514

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

(3S,5R)-3-(3-nitrophenylamino)-1,6-dioxaspiro[4.4]nonan-2-one (40)

70.00

Ortep representation of (3S,5R)-3-(2-bromo-5-nitrophenylamino)-8,8-diphenyl-1,6-

dioxaspiro[4.4]nonan-2-one (4n)

