Electronic Supplementary Information

Squaramide-based tripodal receptors for selective recognition of sulfate anion

Can Jin, Man Zhang, Lin Wu, Yangfan Guan, Yi Pan, Juli Jiang,* Chen Lin* and Leyong Wang

Center for Multimolecular Chemistry, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China. Fax: +86 025 83317761; E-mail: <u>jjl@nju.edu.cn</u>, <u>linchen@nju.edu.cn</u>

1	Materials and methods	S2
2	General procedure for the synthesis of squaramide derivatives 4-6	S2
3	General procedure for the synthesis of receptors 1-3	S2-S6
4	NMR binding studies	S7-S27
5	Competition experiments of 1 with anions	S27
6	NOESY and DOSY NMR spectra of 1 with SO_4^{2-} in DMSO- d_6	S28-S30
7	Proposed binding mode of receptor 1 and sulfate anion in solution	S 30
8	HR-ESI-MS spectra of 1-3 with SO_4^{2-}	S 31
9	X-ray crystallography data of 2TBA-[1·SO ₄]	S32-S33
	References and notes	S 33

1. Materials and methods

All reagents were commercially available and used as supplied without further purification. NMR spectra were recorded with a Bruker Advance DMX 300 spectrophotometer or a Bruker Advance DMX 400 spectrophotometer with use of the deuterated solvent as the lock and the residual solvent or TMS as the internal reference. Low-resolution electrospray ionization mass spectra (LR-ESI-MS) were obtained on Finnigan Mat TSQ 7000 instruments. High-resolution electrospray ionization mass spectra (HR-ESI-MS) were recorded on an Agilent 6210 TOF LCMS equipped with an electrospray ionization (ESI) probe.

2. General procedure for the synthesis of squaramide derivatives 4-6.

Scheme S1. Synthesis of squaramide derivatives 4-6.

To a stirred solution of 3,4-diethoxycyclobut-3-ene-1,2-dione (diethyl squarate, 0.94 g, 5.5 mmol) and zinc trifluoromethanesulfonate (0.36 g, 1.0 mmol) in EtOH solution (40 mL) was added phenylamine (5.0 mmol). The solution was stirred for 10 h at room temperature. Isolated by filtration, the filtrate solvent was removed under reduced pressure to give the resulting residue as solid. **4-6** were obtained by column chromatography using PE/EtOAc (6/1, v/v) as an eluent in good yield (80-94%). **4-6** were performed as previously reported.^{S1}

3. General procedure for the synthesis of receptors 1-3.

Scheme S2. Synthesis of receptors 1-3.

The relevant squaramide derivative, **4-6**, and $Zn(OTf)_2$ as a catalyst were dissolved in dry EtOH, tris(2-aminoethyl)amine was then added. The reaction mixture was then stirred over 24 h at room temperature. The resulting precipitate was then filtered and washed with EtOH and EtOAc for many times.

Compound 1: 1 was synthesized according to general procedure using squaramide derivative 4 (325 mg, 1.5 mmol), $Zn(OTf)_2$ (22 mg, 0.06 mmol) and tris(2-aminoethyl)amine (49 mg, 0.3 mmol) in 20 mL dry EtOH. The product was got as a yellow solid (159 mg, 80% yield). m.p. above 300 °C. ¹H NMR (300 MHz, DMSO-*d*₆) 9.73 (s, 3 H, N*H*), 7.62 (s, 3 H, N*H*), 7.40 (d, 6 H, Ar-*H*, *J* = 7.5 Hz), 7.24 (t, 6 H, Ar-*H*, *J* = 7.5 Hz), 6.95 (t, 3 H, Ar-*H*, *J* = 7.5 Hz), 3.67 (m, 6 H, C*H*₂), 2.78 (brs, 6 H, C*H*₂); ¹³C NMR (75 MHz, DMSO-*d*₆) 184.21, 180.08, 169.06, 163.81, 138.94, 129.24, 122.57, 118.07, 54.24, 41.75; LRESIMS (m/z): 660.17 [M + H]⁺, 682.25 [M + Na]⁺. HRESIMS (m/z): 658.2436 [M - H]⁻.

Compound **2**: **2** was synthesized according to general procedure using squaramide derivative **5** (428 mg, 1.5 mmol), $Zn(OTf)_2$ (22 mg, 0.06 mmol) and tris(2-aminoethyl)amine (49 mg, 0.3 mmol) in 20 mL dry EtOH. The product was got as a red solid (220 mg, 85% yield). m.p. above 300 °C. ¹H NMR (300 MHz, DMSO-*d*₆) 10.28 (s, 3 H, N*H*), 8.02 (d, 6 H, Ar-*H*, *J* = 9.0 Hz), 7.81 (s, 3 H, N*H*), 7.48 (d, 6 H, Ar-*H*, *J* = 9.0 Hz), 3.73 (brs, 6 H, C*H*₂), 2.82 (brs, 6 H, C*H*₂); ¹³C NMR (75 MHz, DMSO-*d*₆) 185.97, 180.21, 170.42, 162.68, 145.78, 141.55, 125.70, 118.06, 54.26, 42.26; LRESIMS (m/z): 793.33 [M - H]⁻. HRESIMS (m/z) 793.1979 [M - H]⁻.

Compound **3**: **3** was synthesized according to general procedure using squaramide derivative **6** (393 mg, 1.5 mmol), Zn(OTf)₂ (22 mg, 0.06 mmol) and tris(2-aminoethyl)amine (49 mg, 0.3 mmol) in 20 mL dry EtOH. The product was got as a white solid (198 mg, 83% yield). m.p. above 300 °C. ¹H NMR (300 MHz, DMSO-*d*₆) 9.97 (s, 3 H, N*H*), 7.66 (s, 3 H, N*H*), 7.49 (brs, 12 H, Ar-*H*), 3.73 (brs, 6 H, *CH*₂), 2.82 (brs, 6 H, *CH*₂); ¹³C NMR (75 MHz, DMSO-*d*₆) 184.94, 179.82, 169.51, 162.97, 142.46, 126.31, 122.36, 117.79, 53.53, 41.68. LRESIMS (m/z): 862.10 [M - H]⁻. HRESIMS (m/z): 862.2048 [M - H]⁻.

Figure S1. (a) ¹H-NMR spectra of 1 (300 MHz, DMSO- d_6). (b) ¹³C-NMR spectra of 1 (75

Figure S2. (a) ¹H-NMR spectra of **2** (300 MHz, DMSO- d_6). (b) ¹³C-NMR spectra of **2** (75 MHz, DMSO- d_6). (c) LRESIMS spectra of **2**.

Figure S3. (a) ¹H-NMR spectra of **3** (300 MHz, DMSO- d_6). (b) ¹³C-NMR spectra of **3** (75 MHz, DMSO- d_6). (c) LRESIMS spectra of **3**.

4. NMR binding studies.

Binding constants were obtained by ¹H NMR titrations of receptors with different anions in DMSO- d_6 . All measurements were carried out on a Bruker Advance DMX 300 spectrophotometer at 298 K. The anionic guests were used as TBA salts (10 mmol) in DMSO- d_6 to a solution of the receptor in DMSO- d_6 . The data analysis was conducted with WinEQNMR2^{S2} software (using a 1:1 model unless otherwise stated) using the most upfield squaramide NH.^{S3} Stock plots or fitplots can be found in Figures S5-S27.

Job plot experiments were performed in a separate experiment. 10 NMR tubes were filled with 0.4 mL of a DMSO- d_6 solution containing 2.0 mM of an anion-receptor mixture in different rations (receptor/anion): 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9. ¹H NMR spectra were recorded on Bruker Advance DMX 300 spectrophotometer at 298 K. Job plots were obtained by plotting the molar fraction of the receptor as a function of the relative change in chemical shift.

Figure S4. Structures of receptors 1-3 and signs of N-Ha, N-Hb.

2.0 e	q TBA ₂	SO4	al an faith an	, and a state of the	والمراجع والمراجع	digen teles jejentlej	والمراجع والمعادية والمعادية	ailynsylfanardig	deres anno de la	4-140-4 ⁰⁻⁴ 44-4-4	and the second second		والمور ومراجع	
1.0 e	eq TBA;	SO4		*******		n-tratic conjula	1 ₁ 12-1 ² -12-12-12-12		60.2 ⁰¹ 0107-90-0-10		different starters of			1-10.94 ¹⁴ 1
).5 e	q TBA ₂	SO4	و د وه وه و و و و و و و و و و و و و و و					and the second second second	nghilificentin	مېر ورونو ورون ورونو ورونو ورون	****			
0.2 e	q TBA ₂	SO4	and a state of the	te deservation de la construcción d		641-541-1940-1940			an an Angarana	ومرود ورود ورود ورود ورود ورود ورود ورود		at the second		
0.0 e	q TBA ₂	SO4		المرجوبية الم	-		law for the second	المرجلين المرجلين الم	***	anit any justice for	,	****		-

Figure S5. ¹H NMR titration of compound **1** (0.01 mM) with TBA_2SO_4 in DMSO- d_6 at 298 K. Stack plot.

3.0 eq TE	BA2SO4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										٨	h	****
2.0 eq TB	A2SO4	a gli plice a para di	Linu (Spingron)	mark	واجبة التهامية	hunderstation	whenever	^	*********	***	مىرىدىنى مەربىرىنى مۇرىيىلىرىنى مەربىرىنى	۸	h	مۇمۇمەرمەردە سۇرىيەر مەربەر بىر
1.0 eq TE	A2SO4								trese through			\sim	hn	
0.8 eq TB	A2SO4											~	h	
0.5 eq TE	3A2SO4											~	L	****
0.2 eq TE	A2SO4							~				_~~	L.	
0.0 eq TE	BA2SO4					*****		~				~~~	L	
13.5	13.0	12.5	12.0	11.5	11.0	10.5 Chemica	10.0 al shift (p	9.5 opm)	9.0	8.5	8.0	7.5	7.0	6.5

Figure S6. ¹H NMR titration of compound **1** (0.1 mM) with TBA₂SO₄ in DMSO- d_6 at 298 K. Stack plot.

Figure S7. ¹H NMR titration of compound **1** (0.5 mM) with TBA₂SO₄ in DMSO-*d*₆ at 298 K. (a) Stack plot. (b) Fitplot for NH proton at δ = 7.62 ppm. Log *K*_a = 4.73 ± 0.11.

Figure S8. ¹H NMR titration of compound **1** (1.0 mM) with TBA₂SO₄ in DMSO- d_6 at 298 K. (a) Stack plot. (b) Chemical shift of N-H resonances. (c) Fitplot for NH proton at $\delta = 7.62$ ppm. Log $K_{\rm a} = 4.75 \pm 0.11$. (d) Job plot analysis for NH proton at $\delta = 9.73$ ppm. (e) Job plot analysis for NH proton at δ = 7.62 ppm.

Figure S9. ¹H NMR titration of compound **1** (5.0 mM) with TBA₂SO₄ in DMSO-*d*₆ at 298 K. (a) Stack plot. (b) Fitplot for NH proton at δ = 7.62 ppm. Log *K*_a = 4.77 ± 0.08.

(b)

Figure S10. ¹H NMR titration of compound **1** (10.0 mM) with TBA₂SO₄ in DMSO-*d*₆ at 298 K. (a) Stack plot. (b) Fitplot for NH proton at δ = 7.62 ppm. Log *K*_a = 4.73 ± 0.16.

Figure S11. ¹H NMR titration of compound **1** (1.0 mM) with TBAH₂PO₄ in DMSO- d_6 at 298 K. (a) Stack plot. (b) Chemical shift of N-H resonances. (c) Fitplot for NH proton at $\delta = 7.62$ ppm. Log $K_a = 4.15 \pm 0.14$. (d) Job plot analysis for NH proton at $\delta = 9.73$ ppm.

Figure S12. ¹H NMR titration of compound **1** (1.0 mM) with TBAHSO₄ in DMSO-*d*₆ at 298 K. (a) Stack plot. (b) Chemical shift of N-H resonances. (c) Fitplot for NH proton at δ = 7.62 ppm. Log K_a = 3.65 ± 0.12.

Figure S13. ¹H NMR titration of compound **1** (1.0 mM) with TBAAcO in DMSO- d_6 at 298 K. (a) Stack plot. (b) Chemical shift of N-H resonances. (c) Fitplot for NH proton at $\delta = 7.62$ ppm. Log $K_a = 2.82 \pm 0.07$.

Figure S14. ¹H NMR titration of compound **1** (1.0 mM) with TBACl in DMSO- d_6 at 298 K. (a) Stack plot. (b) Chemical shift of N-H resonances. (c) Fitplot for NH proton at $\delta = 9.73$ ppm. Log $K_a = 2.58 \pm 0.08$.

Figure S15. ¹H NMR titration of compound **2** (2.0 mM) with TBA₂SO₄ in DMSO-*d*₆ at 298 K. (a) Stack plot. (b) Chemical shift of N-H resonances. (c) Fitplot for NH proton at $\delta = 10.28$ ppm. Log $K_a = 4.95 \pm 0.12$.

Figure S16. ¹H NMR titration of compound **2** (2.0 mM) with TBAH₂PO₄ in DMSO- d_6 at 298 K. Stack plot.

Figure S17. ¹H NMR titration of compound **2** (2.0 mM) with TBAHSO₄ in DMSO-*d*₆ at 298 K. (a) Stack plot. (b) Chemical shift of N-H resonances. (c) Fitplot for NH proton at $\delta = 10.28$ ppm. Log $K_a = 3.78 \pm 0.05$.

Figure S18. ¹H NMR titration of compound **2** (2.0 mM) with TBAAcO in DMSO- d_6 at 298 K.

3.0 eqv TBACI

(a)

2.0 eqv TBACI 1.5 eqv TBACI 1.0 eqv TBACI 0.6 eqv TBACI 0.2 eqv TBACI 0.0 eqv TBACI 11.6 9.8 9.4 9.0 Chemical shift (ppm) 11.0 10.4 8.6 8.2 7.4 7.0 7.8 (b) (c) Residuals 0.5 **Change in chemical shift (ppm)** 0.3 0.2 0.1 10.80 10.75 10.70-10.65-10.60 10.55 10.55 10.30 10.45 10.40 10.35 10.30 0.0 10.25 10.20 3.5 .0005.0010.0015.0020.0025.0030.0035.0040.0045.0050.0055.0060.0065 Concentration, M 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Equivalents of Chloride

Figure S19. ¹H NMR titration of compound **2** (2.0 mM) with TBACl in DMSO- d_6 at 298 K. (a) Stack plot. (b) Chemical shift of N-H resonances. (c) Fitplot for NH proton at $\delta = 10.28$ ppm. Log $K_a = 2.61 \pm 0.11$.

Figure S20. ¹H NMR titration of compound **3** (2.0 mM) with TBA₂SO₄ in DMSO-*d*₆ at 298 K. (a) Stack plot. (b) Chemical shift of N-H resonances. (c) Fitplot for NH proton at $\delta = 9.97$ ppm. Log $K_a = 4.87 \pm 0.07$.

Figure S21. ¹H NMR titration of compound **3** (2.0 mM) with TBAH₂PO₄ in DMSO- d_6 at 298 K. Stack plot.

Figure S22. ¹H NMR titration of compound **3** (2.0 mM) with TBAHSO₄ in DMSO-*d*₆ at 298 K. (a) Stack plot. (b) Chemical shift of N-H resonances. (c) Fitplot for NH proton at δ = 7.66 ppm. Log *K*_a = 3.65 ± 0.14.

Figure S23. ¹H NMR titration of compound **3** (2.0 mM) with TBAAcO in DMSO- d_6 at 298 K.

Figure S24. ¹H NMR titration of compound **3** (2.0 mM) with TBACl in DMSO-*d*₆ at 298 K. (a) Stack plot. (b) Chemical shift of N-H resonances. (c) Fitplot for NH proton at δ = 7.66 ppm. Log K_a = 2.65 ± 0.09.

3.0 eqv TBAOH							
2.0 eqv TBAOH	****						<u> </u>
1.0 eqv TBAOH		*****	1100-2011-100-100-100-100-100-100-100-10		~	\sim	
0.8 eqv TBAOH					_~	~	
0.5 eqv TBAOH					~		
0.2 eqv TBAOH	****				~	\sim	
0.0 eqv TBAOH			~		M	A	
12.2	11.4	10.6	9.8 9.2 Chemical shift(ppm)	8.6	8.0	7.4	6.8

Figure S25. ¹H NMR titration of compound **2** (2.0 mM) with TBAOH in DMSO- d_6 at 298 K.

3.0 eq	ТВАОН			••••••				******		~	\sim	
2.0 eq	ТВАОН										\sim	
1.0 eqv	ТВАОН										~	
0.8 eq	ТВАОН					************					~	
0.5 eq	тваон									~		
0.2 eq	ТВАОН									_~		
0.0 eq	ТВАОН				~					\bigwedge		
12.5	12.0	11.5	11.0	10.5	10.0 Che	9.5 mical shift(p	9.0 pm)	8.5	8.0	7.5	7.0	6.

Figure S26. ¹H NMR titration of compound **3** (2.0 mM) with TBAOH in DMSO-*d*₆ at 298 K.

5. Competition experiments of 1 with anions

Figure S27. ¹H NMR (DMSO- d_6 , 300 MHz) spectra of receptor **1** (1.0 mM) in the presence of one equivalent of various anions (added as TBA salts, competitive anions = Cl⁻, Br⁻, I⁻, HSO₄⁻, H₂PO₄⁻, AcO⁻, NO₃⁻ and ClO₄⁻).

6. NOESY and DOSY NMR spectra of 1 with SO_4^{2-} in DMSO- d_6

NOESY: The pure receptor **1** showed two strong NOESY contacts between $H_a \cdots H_b$ and $H_b \cdots H_c$, attributed to the fact that the phenyl group in receptor **1** was in a coplanar form with the squaramide moiety which was also confirmed by the single crystal structure of 2TBA-[**1**·SO₄]. After the addition of SO₄²⁻, the NOESY contact through $H_a \cdots H_b$ disappeared dramatically indicating the hydrogen bonding formation between N-H_{a, b} of squaramide moieties and SO₄²⁻, which was also supported by Das and Hossain who reported the similar formation of anion and tren-based (thio)urea receptors.^{S4}

Figure S28. (a) 2D NOESY NMR experiment (400 MHz, 298 K) of only **1** (10 mM) in absence and (b) presence of 2.5 equiv. SO_4^{2-} (25 mM) in DMSO- d_6 .

DOSY : The ledbpgp2s pulse sequence from Bruker Biospin was selected for the DOSY NMR by using gradients varied linearly from 5% up to 95% in 32 steps, with 16 scans per step. The diffusion time (Δ) was set at 20 ms, and the gradient length (δ) was set at 2 ms.^{S5}

The diffusion coefficient of the mixture of **1** and 2.5 equiv $SO_4^{2^-}$ in DMSO- d_6 was found to be slightly larger than heptakis (2, 6-tri-O-methyl)- β -cyclodextrin (M = 1429 g/mol) as the internal reference, suggesting the dimeric size (M_{1@TBA2SO4} = 1239 g/mol) did not exist under these conditions.^{S6}

Experiment	Ratio (Receptor 1/TBA ₂ SO ₄)	Concentration of receptor 1
NO. 1, Figure S29	1:1	10 mM
NO. 2, Figure S30	1:2.5	10 mM
NO. 3, <i>Figure S31</i>	1:5	10 mM
NO. 4, <i>Figure S32</i>	1:2.5	5 mM
NO. 5, Figure S33	1:2.5	15 mM

Figure S29. DOSY spectra (400 MHz, DMSO- d_6 , 298 K) of the mixture of **1** (10 mM) and TBA₂SO₄ (10 mM).

Figure S30. DOSY spectra (400 MHz, DMSO- d_6 , 298 K) of the mixture of **1** (10 mM) and TBA₂SO₄ (25 mM).

Figure S31. DOSY spectra (400 MHz, DMSO- d_6 , 298 K) of the mixture of **1** (10 mM) and TBA₂SO₄ (50 mM).

Figure S32. DOSY spectra (400 MHz, DMSO- d_6 , 298 K) of the mixture of **1** (5 mM) and TBA₂SO₄ (12.5 mM).

Figure S33. DOSY spectra (400 MHz, DMSO- d_6 , 298 K) of the mixture of **1** (15 mM) and TBA₂SO₄ (37.5 mM).

7. Proposed binding mode of receptor **1** and sulfate anion in solution

Figure S34. Proposed binding mode of receptor 1 and sulfate anion in solution

8. HR-ESI-MS spectra of 1-3 with SO_4^{2-}

Figure S35. HR-ESI-MS spectra of complex **1** and TBA₂SO₄: m/z calcd for $[1 + TBASO_4]^-$ C₅₂H₆₉N₈O₁₀S, 997.4857; found 997.4891.

Figure S36. HR-ESI-MS spectra of complex **2** and TBA₂SO₄: m/z calcd for $[2 + TBASO_4]^-$ C₅₂H₆₆N₁₁O₁₆S, 1132.4410; found 1132.4456.

Figure S37. HR-ESI-MS spectra of complex **3** and TBA₂SO₄: m/z calcd for $[3 + \text{TBASO}_4]^-$ C₅₅H₆₆F₉N₈O₁₀S, 1201.4479; found 1201.4533.

9. X-ray crystallography data of 2TBA-[1·SO₄]

Slow diffusion of a mixture of 1 with tetrabutylammonium sulfate (TBA₂SO₄) in DMSO/H₂O solution resulted in the single crystal formation of a sulfate-encapsulated complex 2TBA-[$1 \cdot SO_4$]. However, attempts to obtain single crystals of 2 and 3 with sulfate or other anions were unsuccessful.

Figure S38. Lattice structure of $2\text{TBA-}[1 \cdot \text{SO}_4]$ viewed along the c axis. The TBA cations are drawn in space-filling style and colored green for clarity. All of H-bond donors of the squaramide units were directed towards the sulfate anions, and each set of the sulfate anion formed six hydrogen bonds with the H-bond donors of the squaramide units.

a (II II)	u (D····A)	∠ D-H···A
1.999	2.821	159.85
2.193	2.971	150.46
1.890	2.714	160.03
2.169	3.006	164.12
1.989	2.769	150.32
2.526	3.301	150.44
1.831	2.652	158.94
1.937	2.781	166.72
1.956	2.809	171.16
2.077	2.838	147.21
1.942	2.795	171.33
2.272	3.023	145.93
2.569	3.364	154.19
	1.999 2.193 1.890 2.169 1.989 2.526 1.831 1.937 1.956 2.077 1.942 2.272 2.569	1.9992.8212.1932.9711.8902.7142.1693.0061.9892.7692.5263.3011.8312.6521.9372.7811.9562.8092.0772.8381.9422.7952.2723.0232.5693.364

Table S1: hydrogen bonding parameters (Å, °) for 2TBA-[1·SO₄] and SO₄²⁻

Table S2: Crystal data and structure refinement for $2\text{TBA-}[1 \cdot \text{SO}_4]$

CCDC number	889595
Empirical formula	$C_{68}H_{105}N_9O_{10}S$
Formula weight	1240.67

Temperature	296(2)					
Wavelength	0.71073 Å					
Crystal system	Triclinic					
Space group	$P\overline{1}$					
а	12.9919(11)					
b	14.4679(12)					
С	19.3290(13)					
α	94.8590(10)					
β	96.631(2)					
γ	94.2570(10)					
Volume	3582.9(5) Å ³					
Z	2					
Density (calculated)	1.150					
Absorption coefficient	0.105					
F(000)	1344					
Crystal size	$0.26\times0.22\times0.20\ mm^3$					
Theta range for data collection	2.21 to 27.99°					
Index ranges	-15<=h<=14, -17<=k<=17, -19<=l<=22					
Reflections collected	12092					
Independent reflections	7282 [R(int) = 0.0245]					
Completeness to theta = 24.71°	99.0 %					
Absorption correction	multi-scan					
Refinement method	Full-matrix least-squares on F ²					
Goodness-of-fit on F^2	0.986					
Final R indices $[I > 2 \text{sigma}(I)]$	R1 = 0.0456, wR2 = 0.1071					
R indices (all data)	R1 = 0.0741, wR2 = 0.1124					
Largest diff. peak and hole	0.344 and -0.319 e·Å ⁻³					

References and notes

- S1. A. Rostami, A. Colin, X. Y. Li, M. G. Chudzinski, A. J. Lough and M. S. Taylor, *J. Org. Chem.*, 2010, **75**, 3983-3992.
- S2. M. J. Hynes, J. Chem. Soc., Dalton Trans., 1993, 311-312.
- S3. N. Busschaert, M. Wenzel, M. E. Light, P. Iglesias-Hernández, R. Pérez-Tomás and P. A. Gale, J. Am. Chem. Soc., 2011, 133, 14136-14148.
- S4. a) S. K. Dey and G. Das, *Dalton Trans.*, 2012, **41**, 8960-8972; b) A. Pramanik, B. Thompson, T. Hayes, K. Tucker, D. R. Powell, P. V. Bonnesen, E. D. Ellis, K. S. Lee, H. Yu and M. A. Hossain, *Org. Biomol. Chem.*, 2011, **9**, 4444-4447.
- S5. F. Zapata, A. Caballero, N. G. White, T. Claridge, P. J. Costa, V. Félix and P. D. Beer, *J. Am. Chem. Soc.*, 2012, **134**, 11533-11541.
- S6. B. J. B. Folmer, R. P. Sijbesma and E. W. Meijer, J. Am. Chem. Soc., 2001, 123, 2093-2094.