Coordinative trapping of the boron β -diketiminato system [B(NMesCMe)₂CH] via metal-templated synthesis

Erkan Firinci, Joshua I. Bates, Ian M. Riddlestone, Nicholas Phillips, and Simon Aldridge

Supporting Information (14 pages)

1. General methods and instrumentation	s2
2. Syntheses of new compounds	s3
3. Crystallographic details	s4
4. Details of DFT calculations	s5
5. References for supporting information	s14

1. General methods and instrumentation

All manipulations were carried out using standard Schlenk line or dry-box techniques under an atmosphere of argon or dinitrogen. Solvents were degassed by sparging with dinitrogen and dried by passing through a column of the appropriate drying agent. Fluorobenzene was dried by refluxing over calcium hydride, distilled, sparged and stored over activated molecular sieve. NMR spectra were recorded in C_6D_6 or CD_2Cl_2 which was dried over potassium (C_6D_6) or molecular sieve (CD₂Cl₂), distilled under reduced pressure and stored under dinitrogen in Teflon valve ampoules. NMR samples were prepared under dinitrogen in 5 mm Wilmad 507-PP tubes fitted with J. Young Teflon valves. ¹H, ¹³C, ¹¹B and ¹⁹F NMR spectra were recorded on a Varian Mercury-VX-300 spectrometer and referenced internally to residual protio-solvent (¹H) or solvent (¹³C) resonances and are reported relative to tetramethylsilane ($\delta = 0$ ppm). ¹¹B and ¹⁹F NMR spectra were referenced to $Et_2O \cdot BF_3$ and $CFCI_3$, respectively. Chemical shifts are quoted in δ (ppm) and coupling constants in Hz. Infrared spectra were measured on a Nicolet 500 FT-IR spectrometer. Mass spectra of compound 4 were recorded on a Bruker Microtof mass spectrometer; all other mass spectra were measured by the EPSRC National Mass Spectrometry Service Centre, Swansea University. Elemental analyses were carried out by Stephen Boyer at London Metropolitan University.

Starting materials $\mathbf{1}$,^{s1} MesN(H)C(Me)CHC(Me)NMes,^{s2} Li[(NMesCMe)₂CH],^{s3} Li[(N^{*i*}Pr)₂CPh],^{s4} and Na[BAr^f₄] (Ar^{*f*} = C₆H₃(CF₃)₂-3,5)^{s5} were prepared by literature procedures.

Cp*Fe(CO)₂B(Cl){(N'Pr)₂CPh}, **2**: A solution **1** prepared in situ from Na[Cp*Fe(CO)₂] (0.27 g, 1.00 mmol) and BCl₃ (1.0 mL of a 1.0 M solution in heptane, 1.00 mmol) in toluene (10 mL) was transferred onto a suspension of Li[(NⁱPr)₂CPh] (1.0 equiv.) also in toluene (10 mL) at -78 °C. After warming to -30 °C and removal of the solvent in vacuo, the resulting brown residue was extracted into hexanes (30 ml). The dark red solution was concentrated to a volume of about 10 mL and stored at -30 °C, affording pale yellow crystals of **2** (isolated yield 0.13 g, 26%). ¹H NMR (300 MHz, C₆D₆, 298 K): δ_{H} 1.17 (d, ³J_{HH} = 6 Hz, 6H, ⁱPr CH₃), 1.58 (d, ³J_{HH} = 6 Hz, 6H, ⁱPr CH₃), 1.83 (s, 15H, Cp* CH₃), 3.89 (sept, ³J_{HH} = 6 Hz, 2H, ⁱPr CH), 6.95-7.36 (m, Ph H, 5H). ¹³C NMR (75 MHz, C₆D₆, 298 K): δ_{C} 10.4 (Cp* CH₃), 22.5 (ⁱPr CH₃), 24.0 (ⁱPr CH₃), 46.3 (ⁱPr CH), 95.2 (Cp*), 127.8, 128.2, 128.9, 130.2 (Ph C), 163.0 (NCN), 221.8 (CO). ¹¹B NMR (96 MHz, C₆D₆, 298 K): δ_{B} 21. IR (CH₂Cl₂, v_{CO}/cm^{-1}): 1962, 1900. HR-MS (EI): m/z: 466.1843, calcd. for (C₂₄H₃₄BClFeN₂O)⁺ = 466.1846 [(M-CO)⁺]

Cp*Fe(CO)₂B(Cl)[κ^{1} -{(NMesCMe)₂CH}], **3**: A solution of **1** prepared in situ from Na[Cp*Fe(CO)₂] (0.27 g, 1.00 mmol) and BCl₃ (1.0 mL of a 1.0 M solution in heptane, 1.00 mmol) in toluene (10 mL) was transferred onto a solution of Li[(NMesCMe)₂CH] (1.0 equiv.) also in toluene (10 mL) at -78 °C, and the reaction mixture warmed to room temperature. The resulting mixture was slowly warmed to room temperature and stirred for 12 h. Removal of volatiles in vacuo gave a brown residue, which was extracted with pentane (50 ml), concentrated (to ca. 20 ml) and cooled to -30 °C, affording colourless crystals of **3** (isolated yield 0.15 g, 24%). ¹H NMR (300 MHz, C₆D₆, 298 K): δ_H 1.67 (s, 15H, Cp* CH₃), 1.69 (s, 3H, Mes *p*-CH₃), 2.09 (s, 6H, Mes *o*-CH₃), 2.12 (s, 3H, CCH₃), 2.24 (s, 3H, CCH₃), 2.34 (s, 3H, Mes *p*-CH₃), 2.44 (s, 6H, Mes *o*-CH₃), 6.19 (s, 1H, CCHC), 6.82 (s, 2H, Ar-H), 6.87 (s, 2H, Ar-H). ¹³C NMR (75 MHz, C₆D₆, 298 K): δ_c 10.2 (Cp* CH₃), 18.5 (CH₃), 19.6 (CH₃), 19.8 (CH₃), 20.8 (CH₃), 21.0 (CH₃), 21.6 (CH₃), 96.6 (Cp*), 125.3 (CCHC), 129.1, 129.9, 130.1, 131.5, 135.8, 136.1, 143.1, 147.8 ,(ArC), 151.4 (CCN), 164.4 (CC=N), 216.9 (CO). ¹¹B NMR (96 MHz, C₆D₆, 298 K): δ_B 73 (br). IR (CH₂Cl₂, v_{CO}/cm⁻¹): 1986, 1930. HR-MS (EI): *m/z*: 596.2626, calcd. for (C₃₄H₄₄BCIFeN₂O)⁺= 596.2627 [(M-CO)⁺]

3. Crystallographic details

2: $C_{25}H_{34}N_2BCIFeO_2$, $M_r = 496.67$, monoclinic, $P2_1/n$, a = 12.3060(1), b = 15.6594(2), c = 13.3532(2) Å, $\beta = 92.941(1)^\circ$, V = 2569.8(1) Å³, Z = 4, $\rho_c = 1.284$ Mg m⁻³, T = 150(2) K, $\lambda = 0.71073$ Å. 5857 independent reflections [R(int) = 0.027], used in all calculations. $R_1 = 0.0358$, $wR_2 = 0.0810$ for $F^2 > 2\sigma(F^2)$, and $R_1 = 0.0577$, $wR_2 = 0.1039$ for all unique reflections. Max./min. residual electron densities 0.56 and -0.48 e Å⁻³. CSD ref.: 908735.

3: $C_{35}H_{44}N_2BCIFeO_2$, $M_r = 626.86$, monoclinic, $P2_1/n$, a = 13.9947(2), b = 16.4994(2), c = 14.7643(2) Å, $\beta = 95.885(1)^\circ$, V = 3391.2(1) Å³, Z = 4, $\rho_c = 1.228$ Mg m⁻³, T = 150(2) K, $\lambda = 0.71073$ Å. 7705 independent reflections [R(int) = 0.044], used in all calculations. $R_1 = 0.0470$, $wR_2 = 0.0955$ for $F^2 > 2\sigma(F^2)$, and $R_1 = 0.0860$, $wR_2 = 0.1316$ for all unique reflections. Max./min. residual electron densities 0.63 and -0.66 e Å⁻³. CSD ref.: 908736.

4. Details of DFT calculations

The DFT calculations were performed using the Amsterdam Density Functional (ADF) Package Software 2012.^{s6} Calculations were performed using the Vosko-Wilk-Nusair local density approximation with exchange from Becke^{s7} and correlation corrections from Perdew^{s8} (BP). Slater-type orbitals (STOs)^{s9} were used for the triple zeta basis set with an additional set of polarization functions (TZP). The large frozen core basis set approximation was applied with no molecular symmetry. The general numerical integration was 6. Frequency calculations were performed for the cationic metal complexes and no significant imaginary frequencies were observed. Estimates of binding energies were obtained following the strategy outlined by Baerends^{s10} using the counterpoise method.^{s11} Calculations of ¹¹B NMR chemical shifts were performed using the NMR program contained in the ADF Package.^{s12} Chemical shifts are referenced to Et₂O.BF₃ ($\delta = 0$ ppm) as the experimental standard. For optimized coordinate of the calculated complexes, see the frequency calculation run files (below).

	From Closed Shell Fragments (kcal mol ⁻¹)	From Open Shell Fragments (kcal mol ⁻¹)
[Cp*Fe(CO) ₂ {B(N ⁱ Pr) ₂ CPh}] ⁺	-103.65	-84.57
$[Cp*Fe(CO)_2{B(NMesCMe)_2CH}]^+ (4)$	-82.76	-44.22
[CpFe(CO)₂{IMes}] ⁺	-81.05	-73.89

Table s1: Binding Energy Summary $\{\Delta E_{(Binding)} = \Delta E_{(Complex)} - \Delta E_{(Free Fragments)}\}^a$

^a For a given complex, a more negative binding energy reflects less stable fragments

Table s2: Calculated spectroscopic properties

	Calculated ¹¹ B NMR Shift (ppm)	Calculated CO Stretching Frequencies (cm ⁻¹)
[Cp*Fe(CO) ₂ {B(N ⁱ Pr) ₂ CPh}] ⁺	91.3	1981, 1940
$[Cp*Fe(CO)_2{B(NMesCMe)_2CH}]^+ (4)$	66.3	1959, 1912

Run Files

#! /bin/sh

#	 	:	 ==	==	==	==:	===	 ===	-

"\$ADFBIN/adf" <<eor

ATOMS

1 E	?e	8.715414024000	12.588571700000	10.319559110000
2 C	2	8.743630977000	12.420702400000	12.487160040000
3 C	2	9.674556728000	11.488414210000	11.902581880000
4 C	2	10.686119020000	12.250890820000	11.189839190000
5 C	2	10.358563630000	13.633403680000	11.303686530000
6 C	2	9.148856393000	13.744079130000	12.101858960000
7 0	7	8.561137189000	15.030828120000	12,601393370000
8 0	7	11.178908330000	14.782594780000	10.795493260000
9 0	7	11 917910880000	11 683384200000	10 547991530000
10	Ċ	9 715604379000	10 009491680000	12 152458610000
11	C	7 677184072000	12 084104440000	13 489308840000
12	c	9 265540430000	13 962492970000	0 200914121000
12	0	7 994909913000	14 974597690000	9.200014121000
11	C	0.007000456000	11 459247220000	0.010045200000
14	0	9.02/2284380000	11.438247220000	8.988010384000
15	0	9.2/825333/000	10.728174990000	8.11/6/9131000
16	В	6.838182834000	12.099018770000	10.284985710000
17	Н	3.645205846000	10.985492580000	7.814038366000
18	Ν	5.509178157000	12.720785230000	10.760439790000
19	С	5.103865604000	14.139289220000	10.936743630000
20	С	4.411292571000	14.727781970000	9.702668935000
21	С	4.291819402000	14.365332260000	12.216827240000
22	С	4.883929811000	11.687811360000	10.113320060000
23	Ν	5.970902279000	10.995956460000	9.672500353000
24	С	6.197613398000	9.560822987000	9.373519596000
25	С	5.427197812000	8.628748005000	10.313893710000
26	С	5.962077655000	9.226533841000	7.896202978000
27	С	3.458243425000	11.418264820000	9.929732207000
28	С	2.569470906000	11.531037250000	11.017904680000
29	С	1.214626651000	11.256856890000	10.840828290000
30	C	0.729333544500	10.899371070000	9.578083957000
31	C	1 604236100000	10 799888310000	8 490697230000
32	C	2 965505034000	11 042478150000	8 663498199000
33	ц ц	8 613302319000	15 829833140000	11 851016270000
31	ц	9 120081100000	15 378230890000	13 485454310000
35	ц	7 51/593961000	14 911812870000	12 906551520000
26	11	10 560551940000	15 657002670000	10 557970620000
20	п	11 007610440000	15.002121420000	11 501400000
37	п	11.742042550000	14 510250120000	11.501400880000
20	п	12.074000040000	14.312332130000	9.894374088000
39	н	12.2/4900040000	12.311884200000	9.723220808000
40	н	12.728865370000	11.619306280000	11.291097270000
41	н	11.751724530000	10.672292220000	10.1564/6250000
42	Н	10.158866520000	9.462341761000	11.311217810000
43	Н	10.330159390000	9.794588657000	13.041869250000
44	Н	8.715806901000	9.598061356000	12.338353520000
45	Н	6.837233251000	12.787121990000	13.447533000000
46	Н	8.097987723000	12.129710700000	14.506631640000
47	Н	7.280128561000	11.071620110000	13.344121820000
48	Н	6.070495886000	14.648789510000	11.060155300000
49	Н	4.249388301000	15.804577630000	9.851822970000
50	Н	5.024321162000	14.602464520000	8.799740934000
51	Н	3.429033259000	14.263749030000	9.532796825000
52	Н	4.222574891000	15.442331660000	12.423013940000
53	Н	4.760108633000	13.879816040000	13.083723330000
54	Н	3.267105912000	13.984262270000	12.113454460000
55	Н	7.272153209000	9.437722981000	9.571519919000
56	Н	5.730662490000	7.589639474000	10.125148050000
57	Н	5.635671178000	8.856844809000	11.368836570000
58	Н	4.342175126000	8.693187804000	10.149882020000

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

59 H 60 H 61 H 62 H 63 H 64 H 65 H END	6.355227527000 6.474280488000 4.890742575000 2.952219004000 0.534013465700 -0.333627632600 1.223529160000	8.223363295000 9.940645313000 9.220472596000 11.790086100000 11.322019740000 10.697373020000 10.532788430000	7.681178292000 7.239083673000 7.653925166000 12.004463350000 11.689750570000 9.441095440000 7.504837704000
GUIBONDS 1 1 14 1.0 2 1 12 1.0 3 1 3 1.0 4 1 4 1.0 5 1 16 3 6 1 5 1.0 7 1 6 1.0 8 1 2 1.0 9 2 6 1.0 10 2 3 1.0 11 2 11 1.1 12 3 4 1.0 13 3 10 1.1 14 4 5 1.0 15 4 9 1.0 16 5 6 1.0 17 5 8 1.0 17 5 8 1.0 18 6 7 1.0 19 7 34 1.1 20 7 33 1.2 21 7 35 1.2 22 8 38 1.1 23 8 36 1.1 24 8 37 1.1 25 9 41 1.1 26 9 40 1.2 27 9 39 1.2 28 10 42 1 29 10 44 1 30 10 43 1 31 11 47 1 32 11 45 1 31 11 47 1 33 14 61 1 34 12 13 2 35 14 15 2 36 16 23 1 37 16 18 1 38 32 17 1 39 18 22 1 40 18 19 1 41 19 48 1 42 19 21 1 43 20 51 1 47 21 53 1 48 21 54 1 49 21 52 1 50 22 23 1	D D D D D D D D D D D D D D D D D D D		<pre>51 22 27 1.0 52 23 24 1.0 53 24 55 1.0 54 24 25 1.0 55 24 26 1.0 55 24 26 1.0 55 25 56 1.0 57 25 57 1.0 58 25 58 1.0 59 26 60 1.0 60 26 59 1.0 61 26 61 1.0 62 27 32 1.5 63 27 28 1.5 64 28 62 1.0 65 28 29 1.5 66 29 63 1.0 67 29 30 1.5 68 30 64 1.0 69 30 31 1.5 END CHARGE 1.0 BASIS type TZP core Large createoutput None END XC GGA Becke Perdew END SCANFREQ -1000 0 AnalyticalFreq END SAVE TAPE21 TAPE13 FULLSCF INTEGRATION 6.0 NOPRINT LOGFILE eor</pre>

#! /bin/sh

s7

63 H

64 H

65 H

66 H

7.205467951000

5.586022564000

6.819397697000

7.381428870000

"\$ž	ADFBIN/	adf" < <eor< td=""><td></td><td></td></eor<>		
AT(OMS			
1 (C	0.443550187000	14.369555770000	6.112361319000
2 (C	1.569472245000	15.244266150000	6.267851250000
3 (C	1.386793482000	16.366935080000	5.391716902000
4 (0.117298393500	16.204416950000	4.716123925000
5 (2	-0.469251540900	14.986409070000	5.170086857000
6 (-1.86/91/58/000	14.523919510000	4.882713934000
/ (-0.543632642200	17.218961860000	3.828/05/30000
8 (2.204650604000	17.620344910000	3.370695781000
9 (2.577319132000	13.103432220000	7.374253201000
1 U	C	0.106238726800	15.188127020000	0.972043016000
12	0	1.708854791000	15.332833230000	2.5/80//5/9000
12	C	0 400303770000	13 349696770000	3 2003701/0000
11	0	0.409303770900	12 78122040000	2 604274572000
14	0	-0.418280952100	14 912667040000	2.0942/45/3000
16	п	-2.200900310000	14.012007040000	5.676565465000
17	п	-2.337784783000	12 426514120000	1 074207406000
10	п	1 222065862000	16 749907650000	4.9/439/498000
10	п	1 120102005000	17 010142460000	4.426545005000
20	п	-1.139103093000	17 9124000000	2 266087002000
20	п	0.187393094200	19 122120050000	4 206017207000
21	п u	1 91294050000	19 329726390000	4.39001/39/000
22	п	2 257228655000	17 420262120000	5.1203544880000 5.600255700000
23	п u	3.237228833000	15 712049260000	7 132003255000
24	п u	2 140800805000	15 621751310000	9 291997245000
25	п u	2.149890803000	14 130212750000	7 631679586000
20	п u	_0 369209975900	12 390792450000	6 400083833000
28	п ц	-0.598748874100	13 492370630000	7 763587637000
20	п u	0.003201360600	12 776970110000	7.765357037000
30	п Го	1 408284060000	14 549141230000	1 1 2 3 6 4 2 5 4 2 0 0 0
30	re C	4 938012435000	15 / 93238950000	4.123042342000
32	C	5 463563916000	15 5895/1880000	5 353863774000
32	C	5 656704318000	14 371293400000	6 225528109000
34	C	5 922953116000	16 833658590000	5 799330804000
35	C	5 908130964000	17 970609210000	4 978721760000
36	C	5 438751937000	17 819846830000	3 672588943000
37	c	4 971591758000	16 593647280000	3 169707643000
38	C	4 653665106000	16 512508820000	1 694961003000
39	c	6 397881310000	19 304425780000	5 486898708000
40	C	6.959554370000	14.171954400000	2.739720079000
41	C	4 510397867000	9 881614435000	2 991789399000
42	н	0.617618692700	10.961174240000	0.936860319800
43	н	2.094460144000	11.878713680000	1,281404472000
44	н	2.186489302000	10.154228870000	0.875192188900
45	Н	-0.144630028500	9.160509518000	2.44441736000
46	Н	1.016056194000	9.381085024000	6.577508098000
47	н	2.720708385000	10.792130860000	7.302773712000
48	Н	3.028758829000	12.272614590000	6.356015576000
49	Н	4.061224753000	10.852040700000	6.145744277000
50	Н	-1.250608613000	8.342280522000	5.828698990000
51	Н	-1.463246757000	7.979215081000	4.100015596000
52	Н	-0.236525346400	7.120387145000	5.049265383000
53	Н	6.429682152000	11.602171260000	2.353927026000
54	Н	5.882569889000	14.664042560000	7.257636878000
55	Н	6.503730598000	13.762830750000	5.868109027000
56	Н	4.776223402000	13.718163490000	6.235252347000
57	Н	6.335118892000	16.907128160000	6.808943222000
58	Н	5.466392762000	18.676854810000	2.994297808000
59	Н	3.865511797000	17.223033130000	1.418103560000
60	Н	5.544923669000	16.783367000000	1.108804033000
61	Н	4.325086496000	15.518259680000	1.379146127000
62	Н	6.768779898000	19.933287620000	4.667796456000

19.181759790000

19.857571740000

14.976952370000

14.639246770000

6.220143413000

5.984068564000

2.005361847000

3.640567689000

7.682195605000

5.529628428000

4.210851048000

3.826181829000

3.237660658000

3.326979982000

2.226519653000

1.445906750000

1.600024947000

0.483978901500

0.301465597800

1.123043414000

2.096711039000

3.022171771000

-0.720604825500

4.444412123000

5.566787954000

5.659588333000

4.594348927000

67 H

68 H

69 H

70 H

71 B

72 N

73 C

74 C

75 C

76 C

77 C

78 C

79 C

80 C

81 C

82 C

83 C

84 C

85 N

32 31 37 1.5

33 31 32 1.5 34 32 34 1.5

35 32 33 1.0

36 33 54 1.0

37 33 56 1.0

38 33 55 1.0

39 34 57 1.0

40 34 35 1.5

41 35 36 1.5 42 35 39 1.0

43 36 58 1.0

44 36 37 1.5

45 37 38 1.0

46 38 60 1.0

END

9.394653960000	3.930485274000
9.508585861000	2.217938470000
13.507291910000	3.804073472000
12.014086060000	3.576511359000
11.097177640000	3.904729042000
10.537612180000	2.877656841000
10.910423220000	1.421180597000
9.580424517000	3.233586412000
9.152921664000	4.551068879000
9.712054398000	5.541208977000
10.669693390000	5.242420224000
11.173794930000	6.320134880000
8.097544128000	4.898386867000
11.377639930000	3.112582486000
12.117583380000	2.767352773000
13.476136350000	3.030369214000
14.142162970000	3.573152900000
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

78 9 26 1.0

79 9 24 1.0 80 10 28 1.0

81 10 29 1.0

82 10 27 1.0

83 11 12 2.0

84 13 14 2.0

85 30 11 1.0

86 30 13 1.0

87 30 71 3 88 30 4 1.0

89 30 1 1.0

90 30 5 1.0

91 30 3 1.0

92 30 2 1.0

END

13.454063340000

9.574919342000

2.337821822000

2.733517223000

CHARGE 1.0

BASIS type TZP core Large createoutput None END

XC GGA Becke Perdew END SCANFREQ -1000 0

AnalyticalFreq END

SAVE TAPE21 TAPE13

FULLSCF INTEGRATION 6.0

NOPRINT LOGFILE

eor

#! /bin/sh

 $\# [CpFe(CO)_2 \{IMes\}]^+$

"\$ADFBIN/adf" <<eor

1 C	0.499168718900	14.154882160000	5.993025605000
2 C	1.743267875000	14.829888240000	6.160393845000
3 C	1.646215034000	16.122872840000	5.568272824000
4 C	0.315496976200	16.257195240000	5.040187444000
5 C	-0.388335033300	15.049606460000	5.299880337000
6 Н	-1.418691472000	14.840256910000	5.025135484000
7 Н	-0.083961876780	17.130674200000	4.531701510000
8 Н	2.426036151000	16.877385520000	5.529022463000
9 H	2.625415329000	14.424383630000	6.645179197000
10 H	0.251032030900	13.154591900000	6.335518228000
11 C	1.515169342000	15.687986640000	2,610540972000
12 0	1,498861513000	16.407691190000	1.703924756000
13 C	0.274647150300	13.510401060000	3.087733306000
14 0	-0.499766795600	12,909911570000	2,471603925000
15 C	3.018289420000	13.606201860000	3.786780869000
16 N	3.222517548000	12.247069480000	3.861570161000
17 н	3.811720288000	11.388075090000	6.376110023000
18 N	4.274841488000	14.117112880000	3,547607168000
19 C	4 565888205000	11 931762160000	3 672327134000
20 Fe	1 302375012000	14 627763020000	4 034808405000
20 IC	5 223503649000	13 100883590000	3 475767047000
21 C 22 H	6 279458603000	15 595229780000	6 078051245000
22 H	4 917214084000	10 907157630000	3 693062831000
23 II 24 H	6 269941574000	13 311667650000	3 291376126000
25 C	4 658164498000	15 501226550000	3 328013078000
25 C	4.000104490000	15.07997500000	2 001435636000
20 C	5 129037882000	17 296302850000	2.001433030000
27 C 28 C	5 521624817000	18 126718020000	2 859523340000
20 C	5 505572280000	17 594790020000	4 152480043000
29 C	5 096263373000	16 278507010000	4.132400043000
30 С 31 ц	5 258663194000	14 499069900000	0 520564032300
30 U	5 161797169000	17 691601290000	0.777691910700
32 H 33 H	6 762997463000	19 575206190000	1 942370944000
3Л Ц 3Л Ц	5 945073904000	19 212339350000	1 007013001000
34 п 25 о	2.244052626000	11 100200100000	4.90/913001000
35 0	2.244055050000	10 501177560000	4.030122439000
30 C	1.000015145000	10.5911//500000	2.921929043000
37 0	0.//8990080800	9.526784122000	3.12/48/244000
38 0	0.48/15240/900	9.034350857000	4.402/18565000
39 0	1.129004579000	9.626069379000	5.5012153/9000
40 C	2.019518409000	10.7694760390000	5.357078195000
41 H	1.2009/0505000	LU./6356/480000	0.824/8//91800
42 H	0.313828898600	9.061381646000	2.255584996000
43 H	-0.024/68045820	/.098552984000	5.220/60326000
44 H	0.951010319900	9.227033545000	6.5029/1314000
45 C	∠./40381/84000	11.238884620000	0.568331506000

46 H 47 H 48 C 49 H 50 H 51 C 52 H 53 H 54 C 55 H 56 H 56 H 56 H 57 C 58 H 59 H 60 C 61 H 62 H END	2.333082239000 2.643107357000 2.014669778000 2.213153650000 2.917415110000 -0.471945612400 -1.386924623000 -0.765963547400 5.219197762000 4.805917791000 4.724901559000 4.383630207000 3.561441153000 4.109398760000 5.967324051000 5.135218776000 6.345761496000	$12.206183050000\\10.545080180000\\11.015017550000\\12.090607860000\\10.490590670000\\7.886175423000\\8.221512685000\\7.440343346000\\15.735867630000\\16.436890270000\\16.436890270000\\14.766726330000\\15.102759880000\\14.405305630000\\15.714013720000\\19.544673390000\\20.154304880000\\20.021921940000\\$	6.892138455000 7.411396555000 1.515031251000 1.434322857000 1.164327127000 4.598391570000 5.109118794000 3.640915177000 5.819132254000 6.556585367000 5.939833220000 0.815213739200 1.016634072000 -0.052339063500 2.600046379000 2.217975658000 3.511721658000
$\begin{array}{c} \text{GUIBONDS} \\ 1 \ 15 \ 16 \ 2 \\ 15 \ 18 \ 2 \\ 15 \ 18 \ 2 \\ 16 \ 19 \ 2 \\ 17 \ 45 \ 5 \\ 20 \ 1 \ 1 \\ 6 \ 20 \ 15 \ 2 \\ 7 \ 20 \ 11 \ 2 \\ 8 \ 20 \ 13 \ 2 \\ 9 \ 6 \ 5 \ 1 \ 1 \\ 10 \ 19 \ 21 \\ 11 \ 23 \ 19 \\ 12 \ 24 \ 21 \\ 13 \ 1 \ 2 \ 1 \\ 14 \ 1 \ 5 \ 1 \\ 2 \ 24 \ 21 \\ 13 \ 1 \ 2 \ 1 \\ 14 \ 1 \ 5 \ 1 \\ 2 \ 24 \ 21 \\ 13 \ 1 \ 2 \ 1 \\ 14 \ 1 \ 5 \ 1 \\ 2 \ 24 \ 21 \\ 13 \ 1 \ 2 \ 1 \\ 14 \ 1 \ 5 \ 9 \ 2 \ 1 \\ 16 \ 10 \ 1 \ 2 \\ 17 \ 20 \ 4 \ 2 \\ 17 \ 20 \ 4 \ 2 \\ 17 \ 20 \ 4 \ 2 \\ 17 \ 20 \ 4 \ 2 \\ 17 \ 20 \ 2 \ 3 \ 1 \\ 17 \ 20 \ 4 \ 2 \\ 18 \ 20 \ 5 \ 2 \\ 19 \ 11 \ 12 \\ 20 \ 2 \ 3 \ 1 \\ 12 \ 20 \ 2 \ 3 \ 1 \\ 22 \ 2 \ 3 \ 4 \ 1 \\ 20 \ 2 \ 3 \ 1 \\ 12 \ 20 \ 2 \ 3 \ 1 \\ 12 \ 20 \ 2 \ 3 \ 1 \\ 12 \ 20 \ 2 \ 3 \ 1 \\ 12 \ 20 \ 2 \ 3 \ 1 \\ 12 \ 20 \ 2 \ 3 \ 1 \\ 12 \ 20 \ 2 \ 3 \ 1 \\ 12 \ 20 \ 2 \ 3 \ 1 \\ 12 \ 20 \ 2 \ 3 \ 1 \\ 20 \ 2 \ 3 \ 1 \\ 20 \ 2 \ 3 \ 1 \\ 20 \ 2 \ 3 \ 1 \\ 20 \ 2 \ 3 \ 1 \\ 20 \ 2 \ 3 \ 1 \\ 20 \ 2 \ 3 \ 1 \\ 20 \ 2 \ 3 \ 1 \\ 20 \ 2 \ 3 \ 1 \\ 20 \ 2 \ 3 \ 1 \ 2 \ 2 \ 2 \ 3 \ 3 \ 1 \\ 20 \ 2 \ 1 \ 1 \ 1 \ 2 \ 2 \ 2 \ 2 \ 3 \ 3 \ 1 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2$	$ \begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0\\ 3\\ 1.0\\ 1.0\\ 0\\ 2.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1$		49 43 51 1.0 50 44 39 1.0 51 35 16 1.0 52 46 45 1.0 53 47 45 1.0 54 45 40 1.0 55 49 48 1.0 57 48 36 1.0 58 52 51 1.0 59 53 51 1.0 60 51 38 1.0 61 55 54 1.0 62 56 54 1.0 63 54 30 1.0 64 58 57 1.0 65 59 57 1.0 66 57 26 1.0 67 61 60 1.0 68 62 60 1.0 69 60 28 1.0 END CHARGE 1.0 BASIS type TZP core Large createoutput None END XC GGA Becke Perdew END XC GGA Becke Perdew END SCANFREQ -1000 0 AnalyticalFreq END SAVE TAPE21 TAPE13 FULLSCF INTEGRATION 6.0 NOPRINT LOGFILE

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

eor

5. References for supporting information

- s1. H. Braunschweig, K. Radacki, F. Seeler and G.R. Whittell, Organometallics, 2004, 23, 4178
- s2. M.P. Weberski Jr. and C.C. McLauchlan, J. Coord. Chem., 2008, 61, 2371.
- s3. P.H.M. Budzelaar, A.B. van Oort and A.G. Orpen, Eur. J. Inorg. Chem., 1998, 1485.
- s4. I.M. Riddlestone, S. Edmonds, P.A. Kaufman, J. Urbano, J.I. Bates, M.J. Kelly, A.L. Thompson, R. Taylor and S. Aldridge, *J. Am. Chem. Soc.*, 2012, **134**, 2551.
- s5. D.L Reger, T.D. Wright, C.A. Little, J.J.S. Lamba and M.D. Smith , *Inorg. Chem.*, 2001, **40**, 3810.
- G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. Fonseca Guerra, E. J. Baerends, J. s6. G. Snijders and T. Ziegler, J. Comput. Chem., 2001, 22, 931-967. (b) C. Fonseca Guerra, J. G. Snijders, G. te Velde and E. J. Baerends, Theor. Chem. Acc., 1998, 99, 391-403. (c) E.J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo, D.P. Chong, L. Deng, R.M. Dickson, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, C. Fonseca Guerra, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, S. Gusarov, F.E. Harris, P. van den Hoek, C.R. Jacob, H. Jacobsen, L. Jensen, J.W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M.V. Krykunov, E. van Lenthe, D.A. McCormack, A. Michalak, M. Mitoraj, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, P.H.T. Philipsen, D. Post, C.C. Pye, W. Ravenek, J.I. Rodríguez, P. Ros, P.R.T. Schipper, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo and A.L. Yakovlev, ADF2012, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam. The Netherlands. http://www.scm.com.
- s7. A.D. Becke, Phys. Rev. A, 1988, **38**, 3098.
- s8. J.P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822.
- s9. J.G. Snijders, P. Vernooijs and E.J. Baerends, At. Data Nucl. Data Tables, 1982, 26, 483.

- s11. S.F. Boys and F. Bernardi, *Mol. Phys.*, 1970, **19**, 553.
- s12. (a) G. Schreckenbach and T. Ziegler, *J. Phys. Chem.*, 1995, **99**, 606; (b) G. Schreckenbach and T. Ziegler, *Int. J. Quantum Chem.*, 1996, **60**, 753; (c) G. Schreckenbach and T. Ziegler, *Int. J. Quantum Chem.*, 1997, **61**, 899; (d) S.K. Wolff and T. Ziegler, *J. Chem. Phys.*, 1998, 109, 895; (e) S.K. Wolff, T. Ziegler, E. van Lenthe, and E.J. Baerends, *J. Chem. Phys.*, 1999, 110, 7689.