Supplementary Data for:

Activation of CO₂ by Phosphinoamide Hafnium Complexes

Michael J. Sgro and Douglas W. Stephan

General Considerations All preparations were performed under an atmosphere of dry, O₂-free N_2 employing both Schlenk line techniques and inert atmosphere glove boxes. Solvents (THF, CH₂Cl₂, Et₂O, hexane and pentane) were purified employing a Grubbs' type column system manufactured by Innovative Technology. C₆H₅Br was dried over CaH₂ and distilled. Solvents were stored in the glove box over 4 Å molecular sieves. ${}^{1}H$, ${}^{11}B{}^{1}H{}^{13}C{}^{1}H{}^{19}F{}^{1}H{}^{11}$ and ³¹P{¹H} NMR spectra were acquired on a Bruker Avance 400 MHz spectrometer. ¹H and ¹³C NMR were internally referenced to deuterated CD_2Cl_2 ($\delta = 5.32$ ppm (¹H), 53.84 ppm ${}^{(13)}$ and C₆D₅Br ($\delta = 6.94$ ppm (¹H), 122.167 ppm (¹³C)) relative to Me₄Si. NMR samples were prepared in the glove box, capped and sealed with parafilm. ¹¹B, ¹⁹F and ³¹P resonances were referenced externally to (BF₃ Et₂O), CFCl₃ and 85% H₃PO₄, respectively. ¹H-¹³C HSQC experiments were carried out using conventional pulse sequences to aid in the assignment of peaks in the ${}^{13}C{}^{1}H$ NMR spectroscopy. Coupling constants (J) are reported as absolute values. All glassware was dried overnight at 120°C and evacuated for 1 hour prior to use. Combustion analyses were performed in-house employing a Perkin Elmer 2400 Series II CHNS Analyzer. CD₂Cl₂ d₈-THF and C₆D₅Br were purchased from the Cambridge Isotope Laboratories and were dried over CaH₂, distilled, degassed and stored under N₂ in a glove box. Hf(CH₂Ph)₄ was obtained from Strem Chemicals Inc. 2,2'-Thiobisethylamine was obtained from TCI America. ClPPh₂, n-BuLi, ¹³CO₂, and CO₂ were obtained from Aldrich Chemical Co.

Synthesis of S(CH₂CH₂NHPPh₂)₂ (1)

Neat 2,2'thiobisethylamine (2 mL, 0.017 mol) was combined with 300 mL of THF and cooled to 0°C. A hexane solution of n-BuLi (21.6 mL, 0.035 mol) was added dropwise over 20 minutes giving a slightly cloudy pale yellow solution. The mixture was maintained at 0°C and neat chlorodiphenylphosphine (6.34 mL, 0.035 mol) was added dropwise over 5 minutes giving a clear pale yellow solution. The mixture was stirred for 12 h at which point the solvents were removed *in vacuo*. The remaining oily solid was extracted with CH₂Cl₂ and filtered through celite to a clear pale yellow solution. The volatiles were removed and the product was obtained as a pale yellow oil in 89 % yield (7.5 g, 0.015 mol). ¹H NMR (CD₂Cl₂, δ ppm) 7.41 (m, 8H, ³J_{HH} 7.4 Hz, *Ar*-H PPh₂), 7.22 (m, 12H, ³J_{HH} 7.4 Hz, *Ar*-H PPh₂), 3.06 (m, 4H, ³J_{HH} 6.7 Hz, ³J_{HP} 9.4 Hz, CH₂), 2.47 (t, 4, ³J_{HP} 6.7 Hz, CH₂), 2.39 (m, 2H, ³J_{HH} 6.3 Hz, ²J_{HP} 5.9 Hz, CH₂). ¹³C {¹H} NMR (CD₂Cl₂, δ ppm) 142.12 (d, ¹J_{CP} 12 Hz, *Cipso* PPh₂), 131.57 (d, J_{CP} 20 Hz, *m*-C PPh₂), 128.70 (d, J_{CP} 25 Hz, *o*-C PPh₂), 128.63 (s, *p*-C PPh₂), 46.03 (d, ²J_{CP} 16 Hz, CH₂), 35.13 (d, ³J_{CP} 7 Hz, CH₂). ³¹P {¹H} NMR (CD₂Cl₂, δ ppm) 40.83 (s).

Synthesis of κ^5 -*P*,*N*,*S*,*N*,*P*-S(CH₂CH₂NPPh₂)₂Hf(CH₂Ph)₂ (3)

A solution of **1** in THF (90 mg, 0.184 mmol; 2 mL) was added to a stirring yellow suspension of Hf(CH₂C₆H₅)₄ and THF (100 mg, 0.184 mmol; 2 mL) in a scintillation vial immediately giving a clear yellow solution. The reaction mixture was stirred for 12 hours at which point it was dried to an orange solid. Pentane (2 mL) was added to the crude product and it was placed in the freezer over night. The pale yellow clear supernatant was decanted off of the orange solid, and the solid was dried. The solution was placed back in the freezer and a second crop of crystals was obtained. The yellow product was obtained in 78 % yield (134 mg, 0.142 mmol). ¹H (C₆D₅Br, δ ppm) 7.35 (m, 8H, *o*-H PPh₂), 7.22 (m, 12H, ³J_{HH} 7.1 Hz, *p*-/*m*-H PPh₂), 7.05 (m, 8H, ³J_{HH} 7.1 Hz, *o*-/*m*-H C₆H₅), 6.76 (m, 2H, ³J_{HH} 7.1 Hz, *p*-/*m*-H PPh₂), 7.05 (m, 8H, ³J_{HH} 6.4 Hz, CH₂), 2.62 (t, 4H, ³J_{HP} 5.3 Hz, CH₂Ph), 1.85 (t, 4H, ³J_{HH} 6 Hz, CH₂). ¹³C{¹H} (C₆D₅Br, δ ppm) 147.56 (t, ²J_{CP} 3 Hz, Ar-C₁ C₆H₅),136.86 (d, ¹J_{CP} 9 Hz, C*ipso* PPh₂) 132.75 (d, ²J_{CP} 18 Hz, *o*-C PPh₂), 128.91 (s, *p*-C PPh₂), 128.17(m, *m*-C PPh₂) 127.74 (s, Ar-C₃ C₆H₅), 27.67 (s, Ar-C₂ C₆H₅), 120.76 (s, Ar-C₄ C₆H₅), 73.22 (t, ²J_{CP} 7 Hz, CH₂-Ph), 50.78 (s, CH₂), 37.63 (d, CH₂). ³¹P{¹H} (C₆D₅Br, δ ppm) 4.00 (s). Elemental Analysis for C₄₂H₄₂N₂P₂HfS: Calculated C, 59.52; H, 5.00; N, 3.31; Actual C, 59.01; H, 5.16; N, 3.33.

Synthesis of κ^5 -*P*,*N*,*S*,*N*,*P*-S(CH₂CH₂NP*i*Pr₂)₂Hf(CH₂Ph)₂(4)

A solution of **2** in THF (65 mg, 0.184 mmol; 2 mL) was added to a stirring yellow suspension of Hf(CH₂C₆H₅)₄ and THF (100 mg, 0.184 mmol; 2 mL) in a scintillation vial immediately giving a clear yellow solution. The reaction mixture was stirred for 12 hours at which point it was dried to an orange solid. Pentane (2 mL) was added to the crude product and it was placed in the freezer over night. The pale yellow clear supernatant was decanted off of the orange solid, and the solid was dried. The solution was placed back in the freezer and a second crop of crystals was obtained. The orange product was obtained in 72 % yield (94 mg, 0.132 mmol). ¹H NMR (C₆D₅Br, δ ppm) 7.19 (d, 8H, ³J_{HH} 7.3 Hz, *o*-/*m*-Ar-H), 6.75 (bt, 2H, ³J_{HH} 7.3 Hz, *p*-Ar-H), 3.25 (d of t, 4H, ³J_{HH} 6.3 Hz, ³J_{HP} 6.3 Hz, CH₂), 2.42 (t, 4H, ³J_{HP} 5.4 Hz, CH₂Ph), 2.21 (t, 4H, ³J_{HH} 6.3 Hz, CH₂), 1.91 (sept of d, 4H, ³J_{HH} 7.3 Hz, *CH*(CH₃)₂), 0.97 (d of d, 12H, ³J_{HH} 7.3 Hz, ³J_{HP} 16.1 Hz, CH(CH₃)₂), 0.87 (d of d, 12H, ³J_{HH} 7.3 Hz, ³J_{HP} 13.4 Hz, CH(CH₃)₂). ¹³C{¹H} NMR (C₆D₅Br, δ ppm) 151.30 (t, ²J_{CP} 3 Hz, Ar-C₁ C₆H₅), 127.27 (s, Ar-C₃ C₆H₅), 127.19 (s, Ar-C₂ C₆H₅), 119.76 (s, Ar-C₄ C₆H₅), 73.81 (t, ²J_{CP} 7 Hz, CH₂-Ph), 50.12 (d, J_{CP} 4 Hz, CH₂), 36.82 (d, J_{CP} 4 Hz, CH₂), 2.436 (d, ¹J_{CP} 12 Hz, CH(CH₃)₂), 19.60 (d, ²J_{CP} 7 Hz, CH(CH₃)₂), 19.31 (d, ²J_{CP} 15 Hz, CH(CH₃)₂). ³¹P{¹H} NMR (C₆D₅Br, δ ppm) 11.77 (s). Elemental Analysis for C₃₀H₅₀N₂P₂HfS: Calculated C, 50.65; H, 7.09; N, 3.94; Actual C, 50.39; H, 7.25; N, 3.92.

Synthesis of $[\kappa^3-N,S,N-S(CH_2CH_2NPPh_2)_2Hf(CO_2)(CH_2Ph)][B(C_6F_5)_4)]$ (5)

A solution of **3** in C_6H_5Br (15 mg, 0.018 mmol; 0.5 mL) was added to a yellow solution of $[Ph_3C][B(C_6F_5)_4]$ in C_6H_5Br (16mg, 0.018 mmol; 0.5 mL) giving a pale yellow solution. The mixture was transferred to a J-Young NMR tube a degassed using three freeze-pump-thaw cycles. The mixture was then charged with CO_2 and allowed to stand. It is important to note that the CO_2 must be allowed to slowly diffuse into solution and not be shaken in. After 12 h white plates are formed in the tube. After transferring the mixture to a 2 dram vial, the solvent was decanted and the product was washed three times with C_6H_5Br . The product was washed

once more with pentane and the crystals dried in vacuo. The product was obtained as white plates in 62 % yield (15 mg, 0.006 mmol). ¹H NMR (d₈-THF, δ ppm) 7.85 (t, 1H, ³J_{HH} 7.5 Hz, Ar-H PPh₂), 7.76 (m, 2H, ³J_{HH} 7.5 Hz, Ar-H PPh₂), 7.67 (m, 4H, Ar-H PPh₂), 7.59 (bm, 2H, Ar-H PPh₂), 7.49 (m, 6H, Ar-H PPh₂), 7.17 (t, 1H, ³J_{HH} 7.5 Hz, Ar-H PPh₂), 7.04 (t, 2H, ³J_{HH} 8.0 Hz, m-H C₆H₅), 6.95 (t, 2H, ³J_{HH} 7.5 Hz, Ar-H PPh₂), 6.86 (d, 2H, ³J_{HH} 8.0 Hz, o-H C₆H₅), 6.79 (t, 1H, ³J_{HH} 8.0 Hz, *p*-H C₆H₅), 6.56 (t, 2H, ³J_{HH} 7.5 Hz, Ar-*H* PPh₂), 4.06 (m, 3H, J_{HP} 15.0 Hz, CH₂), 3.59 (m, 2H, CH₂), 3.17 (bd, 1H, J_{HP} 15.0 Hz, CH₂), 2.79 (m, 1H, CH₂), 2.64 (m, 1H, CH₂), 2.27 (bs, 2H, CH₂Ph). ¹¹B NMR (d₈-THF, δ ppm) -16.56 (s). ¹³C{¹H} NMR (d₈-THF, δ ppm) 168.06 (d, ¹J_{CP} 139 Hz, P-CO₂), 149.19 (dm, ¹J_{CF} 243 Hz, o-C₆F₅), 148.56 (s, C₁ Ar-C $C_{6}H_{5}$), 139.13 (dm, ¹J_{CF} 243 Hz, *p*-C₆F₅), 137.11 (dm, ¹J_{CF} 246 Hz, *m*-C₆F₅), 135.86 (b, Ar-C PPh₂), 134.42 (d, J_{CP} 11 Hz, Ar-C PPh₂), 133.81 (d, J_{CP} 11 Hz, Ar-C PPh₂), 133.04 (d, J_{CP} 19 Hz, Ar-C PPh₂), 132.80 (d, J_{CP} 16 Hz, Ar-C PPh₂), 130.87 (d, J_{CP} 12 Hz, Ar-C PPh₂), 129.96 (d, J_{CP} 9 Hz, Ar-C PPh₂), 129.38 (d, J_{CP} 7 Hz, Ar-C PPh₂), 129.01 (s, Ar-C₃ C₆H₅), 127.57 (s, Ar- $C_2 C_6H_5$), 122.79 (s, Ar-C₄ C_6H_5), 74.17 (d, J_{CP} 15 Hz, CH_2 -Ph), 52.18 (d, J_{CP} 5 Hz, CH_2), 48.72 (d, J_{CP} 3 Hz, CH₂), 40.17 (d, J_{CP} 5 Hz, CH₂), 38.73 (d, J_{CP} 12 Hz, CH₂). ¹⁹F NMR (d₈-THF, δ ppm) -132.70 (bd, o-F), -164.96 (t, ${}^{3}J_{FF}$ 21 Hz, p-F), -168.45 (bt, ${}^{3}J_{FF}$ 16 Hz, m-F). $^{31}P{^{1}H}$ NMR (d₈-THF, δ ppm) 36.31 (s, Ph₂P-CO₂), 2.53 (s, PPh₂). Elemental Analysis for C₉₆H₈₆N₄P₄Hf₂S₂O₄B₂F₄₀⁻³C₆H₅Br: Calculated C, 48.01; H, 2.53; N, 1.56; Actual C, 47.52; H. 2.48; N. 1.86.

Synthesis of $[\kappa^3-N,S,N-S(CH_2CH_2NPPh_2)_2Hf(CO_2)_2(CH_2Ph)][B(C_6F_5)_4)]$ (6)

A sample of **5** was dissolved in d₈-THF and transferred to a J-Young NMR tube. The solution was degassed using three freeze-pump-thaw cycles and charged with 1 atm. of CO₂. Quantitative conversion to **6** is observed by ${}^{31}P{}^{1}H{}$ NMR spectroscopy. ¹H NMR (d₈-THF, δ ppm) 7.77 (m, 4H, ${}^{3}J_{HH}$ 7.4 Hz, Ar-*H* PPh₂), 7.62 (m, 12H, ${}^{3}J_{HH}$ 7.4 Hz, Ar-*H* PPh₂), 7.40 (m, 4H, ${}^{3}J_{HH}$ 7.4 Hz, Ar-*H* PPh₂), 7.14 (m, 4H, ${}^{3}J_{HH}$ 6.7 Hz, *o*-*/m*-H-C₆*H*₅), 6.89 (m, 1H, ${}^{3}J_{HH}$ 6.7 Hz, *p*-H-C₆*H*₅), 3.88 (m, 4H, CH₂), 2.95 (m, 4H, CH₂), 2.62 (s, 2H, CH₂Ph). ¹¹B NMR (d₈-THF, δ ppm) -16.56 (s). ¹³C{¹H} NMR (d₈-THF, δ ppm) 166.48 (d, ¹J_{CP} 133 Hz, P-CO₂), 149.15 (s, Ar-C₁ C₆H₅), 148.98 (dm, ¹J_{CF} 244 Hz, *o*-C₆F₅), 138.95 (dm, ¹J_{CF} 247 Hz, *p*-C₆F₅), 136.95 (dm, ¹J_{CF} 254 Hz, *m*-C₆F₅), 135.24 (d of d, J_{CP} 14 Hz, 3 Hz Ar-C PPh₂), 133.82 (d, J_{CP} 11 Hz, Ar-C PPh₂), 128.80 (s, Ar-C₃ C₆H₅), 127.97 (s, Ar-C₂ C₆H₅), 123.88 (s, Ar-C₄ C₆H₅), 78.03 (s, CH₂-Ph), 48.10 (s, CH₂), 36.98 (d, J_{CP} 10 Hz, CH₂). ¹⁹F NMR (d₈-THF, δ ppm) -132.71 (bd, *o*-F), -164.92 (t, ³J_{FF} 21 Hz, *p*-F), -168.43 (bt, ³J_{FF} 18 Hz, *m*-F). ³¹P{¹H} NMR (d₈-THF, δ ppm) 31.90 (s, Ph₂*P*-CO₂).

Synthesis of $[\kappa^3 - N, S, N-S(CH_2CH_2NPiPr_2)_2Hf(CO_2)_2(CH_2Ph)][B(C_6F_5)_4)]$ (7)

A deep yellow solution of $[Ph_3C][B(C_6F_5)_4]$ in C_6H_5Br (97 mg, 0.106 mmol; 2 mL) was added to a stirring yellow solution of 4 in C_6H_5Br (75 mg, 0.106 mmol; 2 mL) immediately giving a clear pale-yellow solution. The mixture was transferred to a bomb, degassed using three freezepump-thaw cycles and charged with 1 atm. of CO₂. The reaction mixture was stirred for 12 hours at which point it was layered with pentane. The colorless supernatant was decanted off of the colourless solid, and the solid was dried. The off-white product was obtained in 77 % yield (112 mg, 0.081 mmol). ¹H NMR (C₆D₅Br, δ ppm) 7.13 (t, 2H, ³J_{HH} 7.5 Hz, *m*-Ar-H), 6.95 (d, 2H, ${}^{3}J_{HH}$ 7.5 Hz, *o*-Ar-H), 6.82 (t, 1H, ${}^{3}J_{HH}$ 7.5 Hz, *p*-Ar-H), 3.35 (m, 2H, ${}^{3}J_{HH}$ 6.3 Hz, J_{HP} 3.0 Hz, 13.7 Hz, CH₂), 3.16 (m, 2H, ${}^{3}J_{HH}$ 6.3 Hz, J_{HP} 3.9 Hz, 14.4 Hz, CH₂), 2.76 (m, 2 H, ${}^{3}J_{HP}$ 6.3 Hz, J_{HP} 14.2 Hz, CH₂), 2.59 (m, 2H, ${}^{3}J_{HH}$ 6.0 Hz, J_{HP} 11.3 Hz, CH₂), 2.32 (s, 2H, CH₂Ph), 2.08 (d of sept, 4H, ${}^{3}J_{HH}$ 7.1 Hz, J_{HP} 10.3 Hz, $CH(CH_{3})_{2}$), 0.93 (m, 9H, ${}^{3}J_{HH}$ 7.1 Hz, $CH(CH_{3})_{2}$), 0.87 (m, 6H, ${}^{3}J_{HH}$ 7.1 Hz, $CH(CH_{3})_{2}$), 0.83 (m, 6H, ${}^{3}J_{HH}$ 7.1 Hz, $CH(CH_{3})_{2}$), 0.78 (m, 3H, ${}^{3}J_{HH}$ 7.1 Hz, $CH(CH_{3})_{2}$), 0.83 (m, 6H, ${}^{3}J_{HH}$ 7.1 Hz, $CH(CH_{3})_{2}$), 0.78 (m, 3H, ${}^{3}J_{HH}$ 7.1 Hz, $CH(CH_{3})_{2}$). 1¹B NMR (C₆D₅Br, δ ppm) -16.18 (s). 1³C {¹H} NMR (C₆D₅Br, δ ppm) 166.43 (d, ${}^{1}J_{CP}$ 123 Hz, P-CO₂), 148.39 (dm, ${}^{1}J_{CF}$ 241 Hz, *o*-C₆F₅), 142.41 (s, Ar-C₁ C₆H₅), 138.24 (dm, ${}^{1}J_{CF}$ 246 Hz, *p*-C₆F₅), 136.39 (dm, ${}^{1}J_{CF}$ 250 Hz, *m*-C₆F₅), 128.29 (s, Ar-C₃ C₆H₅), 127.62 (s, Ar-C₂ C₆H₅), 123.18 (s, Ar-C₄ C₆H₅), 79.42 (s, CH₂-Ph), 47.55 (d, J_{CP} 3 Hz, CH₂), 38.16 (d, J_{CP} 8 Hz, CH₂), 23.95 (d, ${}^{1}J_{CP}$ 41 Hz, CH(CH₃)₂), 22.98 (d, ${}^{1}J_{CP}$ 40 Hz, CH(CH₃)₂), 15.06 (d, ${}^{2}J_{CP}$ 3 Hz, CH(CH₃)₂), 15.01 (d, ${}^{2}J_{CP}$ 2 Hz, CH(CH₃)₂), 14.82 (d, ${}^{2}J_{CP}$ 1 Hz, CH(CH₃)₂), 14.70 (d, ${}^{2}J_{CP}$ 4 Hz, CH(CH₃)₂). 19 F NMR (C₆D₅Br, δ ppm) -131.74 (bd, *o*-F), -161.52 (t, ${}^{3}J_{FF}$ 21 Hz, *p*-F), -165.59 (bt, ${}^{3}J_{FF}$ 18 Hz, *m*-F). ${}^{31}P$ {¹H</sup> NMR (C₆D₅Br, δ ppm) 67.40 (s). IR: 1644 cm⁻¹. Elemental Analysis for C₄₉H₄₃N₂P₂HfSO₄F₂₀B: Calculated C, 42.40; H, 3.13; N, 2.02; Actual C, 41.91; H, 3.25; N, 1.94.

Figure 1: ${}^{31}P{}^{1}H$ NMR spectra (d₈-THF) of 5 with (a) ${}^{12}CO_2$ and (b) ${}^{13}CO_2$

Figure 2: ${}^{31}P{}^{1}H$ NMR spectra (d₈-THF) of 6 with (a) ${}^{12}CO_2$ and (b) ${}^{13}CO_2$

Figure 3: ${}^{31}P{}^{1}H$ NMR spectra (C₆D₅Br) of 7 with (a) ${}^{12}CO_2$ and (b) ${}^{13}CO_2$