Supporting Information

Spin-Active Metallofullerene Stabilized by the Core of NC Moiety

Yongqiang Feng,^a Taishan Wang,^{*,a} Jingyi Wu,^b Yihan Ma,^a Zhuxia Zhang,^a Li Jiang,^a Chunhua Ge,^{*,c} Chunying Shu,^a and Chunru Wang^{*,a}

a Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. Fax: 86-10-62652120; Tel: 86-10-62652120; E-mail: wangtais@iccas.ac.cn, crwang@iccas.ac.cn

b Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China

^c College of Chemistry, Liaoning University, Shenyang, 110036, China Tel: 86-24-62202550; E-mail: chhge@lnu.edu.cn

Contents

Figure S1. Chromatogram of the isolated $Sc_3NC@C_{80}$ (20×250 mm Buckyprep column; flow rate 12 mL/min; toluene as eluent).

Figure S2. Chromatogram of the isolated $Sc_3NC@C_{80}$ (20×250 mm Buckyprep-M column; flow rate 12 mL/min; toluene as eluent).

Figure S3. MALDI-TOF mass spectrum of Sc₃NC@C₈₀.

Figure S4. Cyclic voltammgram of $Sc_3NC@C_{80}$ (*o*-dichlorobenzene, 0.05 mol/L TBAPF₆, 50 mV · s⁻¹ scan rate).

Table S1. The hfcc and g-factor values of several paramagnetic metallofullerenes

Table S2. Calculated hfcc values of Sc, N, and C nuclei in different internal geometries of $Sc_3NC@C_{80}$ anion with ORCA package.

Experimental Section:

1. The synthesis and purification of Sc₃NC@C₈₀

The Sc₃NC@C₈₀- I_h was prepared as reported before.¹ Briefly, the mixture of graphite powder and Sc/Ni₂ alloy with a mass ratio of 1:2 was packed into core-drilled graphite rods. Subsequently the rods were burnt in a Krätschmer-Huffman generator under an atmosphere of 6 Torr N₂ and 194 Torr He. The as-prepared soot was Soxlet-extracted with toluene for 24 h. Sc₃NC@C₈₀ was isolated and purified by multi-step HPLC.¹ Figure S1 and S2 show HPLC data of purified Sc₃NC@C₈₀ sample. MALDI-TOF mass spectrum was also performed to confirm its high purity, see Figure S3.

Figure S1. Chromatogram of the isolated Sc₃NC@C $_{80}$ (20×250 mm Buckyprep column; flow rate 12 mL/min; toluene as eluent).

Figure S2. Chromatogram of the isolated Sc₃NC@C₈₀ (20×250 mm Buckyprep-M column; flow rate 12 mL/min; toluene as eluent).

Figure S3. MALDI-TOF mass spectrum of Sc₃NC@C₈₀.

2. Cyclic voltammgram of Sc₃NC@C₈₀

Electrochemistry experiments were carried out in *o*-DCB solvent containing 0.05 M $(n-Bu)_4NPF_6$ with glassy carbon as the working, Pt wire and Ag wire as the counter and reference electrodes, respectively, at a scan rate of 100 mV s⁻¹. The potentials were referred to the $E_{1/2}$ value of the Fc/Fc⁺ redox couple measured in the sample solution. Figure S4 shows the CV of Sc₃NC@C₈₀.

Figure S4. Cyclic voltammgram of Sc₃NC@C₈₀ (o-dichlorobenzene, 0.05 mol/L TBAPF₆, 50 mV • s⁻¹ scan rate).

3. ESR experiment of Sc₃NC@C₈₀ anion radical

 $Sc_3NC@C_{80}$ anion radical was obtained by contacting metal potassium with a solution of $Sc_3NC@C_{80}$ in THF for several times.² Subsequently the solution was sealed in a quarts tube after removing oxygen by bubbling nitrogen. ESR experiment was performed on a Bruker ESR spectrometer with continuous wave of X-band at room temperature.

Metallofullerenes	a (G)	g	
Sc ₃ N@C ₆₈ cation ^{a,b}	1.289	2.0010	
Sc ₃ N@C ₈₀ anion ^c	55.6	1.9984	
$Y_2 @C_{79} N^d$	81.23	1.9740	
$Sc_4O_2@C_{80}$ cation ^e	18, 150.4	1.9956	
$Sc_4O_2@C_{80}$ anion ^e	2.6, 27.4	1.9960	
$Sc_{3}C_{2}@C_{80}^{f}$	6.256	2.0006	
Sc ₃ NC@C ₈₀ anion	3.890, 1.964	2.0031	

Table S1. The hfcc and g-factor values of several paramagnetic metallofullerenes

a S. Yang, P. Rapta and L. Dunsch, Chem. Commun., 2007, 189-191.

b P. Rapta, A. A. Popov, S. Yang and L. Dunsch, J. Phys. Chem. A, 2008,112, 5858-5865.

c P. Jakes and K.-P. Dinse, J. Am. Chem. Soc., 2001, 123, 8854-8855.

d T. Zuo, L. Xu, C. M. Beavers, M. M. Olmstead, W. Fu, T. D. Crawford, A. L. Balch and H. C. Dorn, *J. Am. Chem. Soc.*, 2008, **130**, 12992–12997.

e A. A. Popov, N. Chen, J. R. Pinzón, S. Stevenson, L. A. Echegoyen and L. Dunsch, J. Am. Chem. Soc., 2012.134 ,19607–19618

f T. Wang, J. Wu, W. Xu, J. Xiang, X. Lu, B. Li, L. Jiang, C. Shu and C. Wang, Angew. Chem., Int. Ed., 2010, 49, 1786–1789.

Calculation Section:

All the density functional theory (DFT) computations were performed by using the Dmol3 code^{3,4} with the generalized gradient approximation (GGA) functional of Perdew, Burke, and Ernzerhof (PBE).⁵ For closed- and open-shell systems, the spin-restricted and spin-unrestricted algorithms were used, respectively. All-electron double-numerical basis set with polarization functions (DNP) was applied for all atoms. To take into account relativistic effects, the all-electron scalar relativistic method utilizing the Douglas-Kroll-Hess (DKH) Hamiltonian,^{6,7} which is the most accurate approach available in DMol³ package, was chosen.

Computations of hfc constants with the ORCA package^{8, 9} were performed with two combinations of basis sets. One employed the TZVP $\{5,3,1\}/(11s,6p,1d)$ basis set¹⁰ for carbon atoms, $\{5,3,2\}/(11s,6p,2d)$, and Sc, $\{6,5,4,2\}/(17s12p7d2f)$ (f and g polarization functions were removed from the original def2-TZVP basis for Sc, respectively).

Table S2. Calculated hfcc values of Sc, N, and C nuclei in different internal geometries of $Sc_3NC@C_{80}$ anion with ORCA package.

	Sc1	Sc2	Sc3	Ν	С
Sc ₃ NC@C ₈₀ (N-centered)	-2.60452	-2.32169	-4.45982	-1.117	3.712665
$Sc_3NC@C_{80}$ (C-centered)	-4.10091	-3.94842	-3.32803	1.349823	-5.96963

References

- T. S. Wang, L. Feng, J. Y. Wu, W. Xu, J. F. Xiang, K. Tan, Y. H. Ma, J. P. Zheng, L. Jiang and X. Lu, J. Am. Chem. Soc., 2010, 132, 16362-16364.
- 2. P. Jakes and K. P. Dinse, J. Am. Chem. Soc., 2001, 123, 8854-8855.
- 3. B. Delley, J. Chem. Phys., 1990, **92**, 508-517.
- 4. B. Delley, J. Chem. Phys., 2000, 113, 7756. DMol3 is available as part of Material Studio.
- 5. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- 6. M. Douglas and N. M. Kroll, Ann. Phys., 1974, 82, 89-155.
- 7. D. Koelling and B. Harmon, J. Phys. C, 1977, 10, 3107.
- 8. F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2, 73-78.
- F. Neese, ORCA, an ab Initio, Density Functional and Semiempirical Program Package, version 2.8; Institute for Physical and Theoretical Chemistry: Bonn, Germany, 2010.
- 10. A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571-2577.