# Electronic Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2013 ####################################################################### # # Cambridge Crystallographic Data Centre # CCDC # ####################################################################### # # This CIF contains data from an original supplementary publication # deposited with the CCDC, and may include chemical, crystal, # experimental, refinement, atomic coordinates, # anisotropic displacement parameters and molecular geometry data, # as required by the journal to which it was submitted. # # This CIF is provided on the understanding that it is used for bona # fide research purposes only. It may contain copyright material # of the CCDC or of third parties, and may not be copied or further # disseminated in any form, whether machine-readable or not, # except for the purpose of generating routine backup copies # on your local computer system. # # For further information on the CCDC, data deposition and # data retrieval see: # www.ccdc.cam.ac.uk # # Bona fide researchers may freely download Mercury and enCIFer # from this site to visualise CIF-encoded structures and # to carry out CIF format checking respectively. # ####################################################################### data_1 _database_code_depnum_ccdc_archive 'CCDC 913523' #TrackingRef '16718_web_deposit_cif_file_0_Yong-LiangHuang_1357702162.1.cif' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ; Mg16(C20H6O8)8(H2O)8(H2O)16(C4H8O2)8 (H2O)13 (C3H7NO)26 ; _chemical_formula_sum 'C270 H368 Mg16 N26 O143' _chemical_formula_weight 6654.86 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0181 0.0091 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0311 0.0180 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0492 0.0322 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Mg Mg 0.1719 0.1771 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting cubic _symmetry_space_group_name_H-M 'I m -3 m' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' '-x, y, -z' 'x, -y, -z' 'z, x, y' 'z, -x, -y' '-z, -x, y' '-z, x, -y' 'y, z, x' '-y, z, -x' 'y, -z, -x' '-y, -z, x' 'y, x, -z' '-y, -x, -z' 'y, -x, z' '-y, x, z' 'x, z, -y' '-x, z, y' '-x, -z, -y' 'x, -z, y' 'z, y, -x' 'z, -y, x' '-z, y, x' '-z, -y, -x' 'x+1/2, y+1/2, z+1/2' '-x+1/2, -y+1/2, z+1/2' '-x+1/2, y+1/2, -z+1/2' 'x+1/2, -y+1/2, -z+1/2' 'z+1/2, x+1/2, y+1/2' 'z+1/2, -x+1/2, -y+1/2' '-z+1/2, -x+1/2, y+1/2' '-z+1/2, x+1/2, -y+1/2' 'y+1/2, z+1/2, x+1/2' '-y+1/2, z+1/2, -x+1/2' 'y+1/2, -z+1/2, -x+1/2' '-y+1/2, -z+1/2, x+1/2' 'y+1/2, x+1/2, -z+1/2' '-y+1/2, -x+1/2, -z+1/2' 'y+1/2, -x+1/2, z+1/2' '-y+1/2, x+1/2, z+1/2' 'x+1/2, z+1/2, -y+1/2' '-x+1/2, z+1/2, y+1/2' '-x+1/2, -z+1/2, -y+1/2' 'x+1/2, -z+1/2, y+1/2' 'z+1/2, y+1/2, -x+1/2' 'z+1/2, -y+1/2, x+1/2' '-z+1/2, y+1/2, x+1/2' '-z+1/2, -y+1/2, -x+1/2' '-x, -y, -z' 'x, y, -z' 'x, -y, z' '-x, y, z' '-z, -x, -y' '-z, x, y' 'z, x, -y' 'z, -x, y' '-y, -z, -x' 'y, -z, x' '-y, z, x' 'y, z, -x' '-y, -x, z' 'y, x, z' '-y, x, -z' 'y, -x, -z' '-x, -z, y' 'x, -z, -y' 'x, z, y' '-x, z, -y' '-z, -y, x' '-z, y, -x' 'z, -y, -x' 'z, y, x' '-x+1/2, -y+1/2, -z+1/2' 'x+1/2, y+1/2, -z+1/2' 'x+1/2, -y+1/2, z+1/2' '-x+1/2, y+1/2, z+1/2' '-z+1/2, -x+1/2, -y+1/2' '-z+1/2, x+1/2, y+1/2' 'z+1/2, x+1/2, -y+1/2' 'z+1/2, -x+1/2, y+1/2' '-y+1/2, -z+1/2, -x+1/2' 'y+1/2, -z+1/2, x+1/2' '-y+1/2, z+1/2, x+1/2' 'y+1/2, z+1/2, -x+1/2' '-y+1/2, -x+1/2, z+1/2' 'y+1/2, x+1/2, z+1/2' '-y+1/2, x+1/2, -z+1/2' 'y+1/2, -x+1/2, -z+1/2' '-x+1/2, -z+1/2, y+1/2' 'x+1/2, -z+1/2, -y+1/2' 'x+1/2, z+1/2, y+1/2' '-x+1/2, z+1/2, -y+1/2' '-z+1/2, -y+1/2, x+1/2' '-z+1/2, y+1/2, -x+1/2' 'z+1/2, -y+1/2, -x+1/2' 'z+1/2, y+1/2, x+1/2' _cell_length_a 35.19380(10) _cell_length_b 35.19380(10) _cell_length_c 35.19380(10) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 43591.2(2) _cell_formula_units_Z 6 _cell_measurement_temperature 150(2) _cell_measurement_reflns_used 36463 _cell_measurement_theta_min 3.0732 _cell_measurement_theta_max 65.1188 _exptl_crystal_description block _exptl_crystal_colour yellow _exptl_crystal_size_max 0.36 _exptl_crystal_size_mid 0.32 _exptl_crystal_size_min 0.26 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.521 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 21036 _exptl_absorpt_coefficient_mu 1.352 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.6417 _exptl_absorpt_correction_T_max 0.7200 _exptl_absorpt_process_details ; CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. ; _exptl_special_details ; ? ; _diffrn_ambient_temperature 150(2) _diffrn_radiation_wavelength 1.54178 _diffrn_radiation_type CuK\a _diffrn_measurement_method 'omega scans' _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_radiation_source 'Enhance Ultra (Cu) X-ray Source' _diffrn_radiation_monochromator mirror _diffrn_measurement_device_type 'Xcalibur, Atlas, Gemini ultra' _diffrn_detector_area_resol_mean 10.5058 _diffrn_reflns_number 85861 _diffrn_reflns_av_R_equivalents 0.0727 _diffrn_reflns_av_sigmaI/netI 0.1188 _diffrn_reflns_limit_h_min -37 _diffrn_reflns_limit_h_max 24 _diffrn_reflns_limit_k_min -20 _diffrn_reflns_limit_k_max 41 _diffrn_reflns_limit_l_min -34 _diffrn_reflns_limit_l_max 25 _diffrn_reflns_theta_min 7.34 _diffrn_reflns_theta_max 65.22 _reflns_number_total 3203 _reflns_number_gt 2348 _reflns_threshold_expression >2sigma(I) _computing_data_collection ; CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) ; _computing_cell_refinement ; CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) ; _computing_data_reduction ; CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) ; _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; The disordered magnesian ions, coordinated water, bridging water and dioxane molecules were treated with a two-site model [Mg(1), Mg(2), O(1W), O(2W), O(3W), O(8), C(13)] and [Mg(1'), Mg(2'), O(1'), O(2'), O(3'), O(8A), C(13A), C(13B)] with refined equivalent site occupancy factors. The distances and Uij of the above disordered atoms were restrainted using DFIX, SADI and EADP commands. Attempts to model discrete solvent molecules were not successful, so SQUEEZE subroutine of the PLATON software suite was applyied to remove the scattering from the highly disordered solvent molecules. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0001P)^2^+459.4681P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.000110(14) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 3203 _refine_ls_number_parameters 224 _refine_ls_number_restraints 13 _refine_ls_R_factor_all 0.1712 _refine_ls_R_factor_gt 0.1487 _refine_ls_wR_factor_ref 0.2602 _refine_ls_wR_factor_gt 0.2497 _refine_ls_goodness_of_fit_ref 1.008 _refine_ls_restrained_S_all 1.010 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Mg1 Mg 0.3847(4) 0.3847(4) 0.1693(4) 0.053(3) Uani 0.50 2 d SPD . 1 O1W O 0.4207(9) 0.4207(9) 0.196(3) 0.094(6) Uani 0.50 2 d SPD . 1 Mg2 Mg 0.33675(12) 0.33675(12) 0.09375(17) 0.0694(16) Uani 0.50 2 d SPD . 1 O2W O 0.3445(3) 0.3445(3) 0.1517(4) 0.058(4) Uani 0.50 2 d SPD . 1 O3W O 0.3382(6) 0.2776(4) 0.1017(5) 0.071(5) Uani 0.25 1 d P . 1 O8 O 0.32852(18) 0.32852(18) 0.0392(2) 0.109(3) Uani 1 2 d SD . 1 C13 C 0.3484(3) 0.2983(3) 0.0179(2) 0.120(3) Uani 1 1 d D . 1 H13A H 0.3753 0.2986 0.0262 0.143 Uiso 1 1 calc R . 1 H13B H 0.3376 0.2737 0.0262 0.143 Uiso 1 1 calc R . 1 Mg1' Mg 0.3906(4) 0.3906(4) 0.1734(4) 0.053(3) Uani 0.50 2 d SPD . 2 O1' O 0.4278(9) 0.4278(9) 0.196(3) 0.094(6) Uani 0.50 2 d SPD . 2 Mg2' Mg 0.31925(12) 0.31925(12) 0.17283(18) 0.0716(16) Uani 0.50 2 d SPD . 2 O2' O 0.3546(3) 0.3546(3) 0.1398(5) 0.063(4) Uani 0.50 2 d SPD . 2 O8A O 0.29042(19) 0.29042(19) 0.2122(4) 0.115(5) Uani 1 2 d SD . 2 C13B C 0.2961(4) 0.2961(4) 0.2532(4) 0.159(7) Uani 1 2 d SD . 2 H13C H 0.3223 0.2907 0.2589 0.239 Uiso 0.50 1 d PR . 2 H13D H 0.2908 0.3222 0.2589 0.239 Uiso 0.50 1 d PR . 2 C13A C 0.2500 0.2861(3) 0.2139(3) 0.170(8) Uani 1 2 d SD . 2 H13E H 0.2390 0.3110 0.2056 0.254 Uiso 0.50 1 d PR . 2 H13F H 0.2428 0.2737 0.1815 0.254 Uiso 0.50 1 d PR . 2 C1 C 0.3545(2) 0.4272(2) 0.10271(19) 0.082(2) Uani 1 1 d . . . C2 C 0.3532(2) 0.4649(2) 0.08084(16) 0.086(2) Uani 1 1 d . . . C3 C 0.3511(3) 0.46432(16) 0.04052(16) 0.100(3) Uani 1 1 d . . . C4 C 0.3517(3) 0.42985(17) 0.01881(18) 0.119(4) Uani 1 1 d . . . H4 H 0.3521 0.4062 0.0319 0.143 Uiso 1 1 calc R . . C5 C 0.3544(3) 0.5000 0.0999(2) 0.084(3) Uani 1 2 d S . . H5 H 0.3561 0.5000 0.1268 0.100 Uiso 1 2 calc SR . . C6 C 0.3514(3) 0.5000 0.01985(18) 0.078(3) Uani 1 2 d S . . C7 C 0.39721(18) 0.3109(2) 0.21304(18) 0.0694(17) Uani 1 1 d . . . C8 C 0.41964(18) 0.28733(18) 0.23831(15) 0.0647(16) Uani 1 1 d . . . C9 C 0.45869(17) 0.28711(17) 0.23689(16) 0.0618(15) Uani 1 1 d . . . C10 C 0.48119(16) 0.31149(18) 0.21240(15) 0.0647(16) Uani 1 1 d . . . H10 H 0.4683 0.3282 0.1956 0.078 Uiso 1 1 calc R . . C11 C 0.47911(19) 0.26345(19) 0.26345(19) 0.059(2) Uani 1 2 d S . . C12 C 0.4003(2) 0.26130(17) 0.26130(17) 0.062(2) Uani 1 2 d S . . H12 H 0.3734 0.2592 0.2592 0.074 Uiso 1 2 calc SR . . O1 O 0.37265(14) 0.42978(13) 0.13414(13) 0.0829(14) Uani 1 1 d D . . O2 O 0.33450(14) 0.40018(16) 0.09148(16) 0.0934(16) Uani 1 1 d . . . O3 O 0.40428(11) 0.34532(12) 0.20797(11) 0.0645(11) Uani 1 1 d D . . O4 O 0.36756(16) 0.29331(15) 0.19552(16) 0.0996(18) Uani 1 1 d . . . O3' O 0.2724(5) 0.3353(6) 0.1364(6) 0.096(7) Uani 0.25 1 d P . 2 loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Mg1 0.057(3) 0.057(3) 0.047(3) -0.004(3) -0.004(3) -0.008(4) O1W 0.095(10) 0.095(10) 0.093(6) -0.008(14) -0.008(14) -0.061(12) Mg2 0.069(2) 0.069(2) 0.071(4) 0.003(2) 0.003(2) -0.010(3) O2W 0.056(5) 0.056(5) 0.063(10) -0.005(5) -0.005(5) -0.007(7) O3W 0.119(15) 0.036(8) 0.057(10) 0.010(7) -0.011(9) -0.014(8) O8 0.120(4) 0.120(4) 0.089(5) -0.006(4) -0.006(4) 0.025(5) C13 0.118(7) 0.150(8) 0.091(6) 0.007(5) -0.013(5) -0.005(6) Mg1' 0.057(3) 0.057(3) 0.047(3) -0.004(3) -0.004(3) -0.008(4) O1' 0.095(10) 0.095(10) 0.093(6) -0.008(14) -0.008(14) -0.061(12) Mg2' 0.070(2) 0.070(2) 0.074(4) -0.003(2) -0.003(2) -0.006(3) O2' 0.059(6) 0.059(6) 0.072(10) 0.009(5) 0.009(5) -0.009(7) O8A 0.116(6) 0.122(6) 0.113(13) 0.019(7) 0.013(7) 0.024(8) C13B 0.163(11) 0.153(11) 0.143(14) 0.023(10) 0.033(10) 0.029(13) C13A 0.170(13) 0.165(12) 0.160(12) 0.031(14) 0.028(10) 0.028(10) C1 0.104(6) 0.085(5) 0.058(4) 0.020(4) -0.009(4) 0.008(4) C2 0.136(7) 0.084(5) 0.038(3) 0.025(3) 0.016(4) 0.018(4) C3 0.231(10) 0.034(3) 0.035(3) 0.008(2) 0.004(4) 0.003(4) C4 0.270(12) 0.035(3) 0.052(3) -0.002(3) -0.002(5) -0.007(5) C5 0.130(9) 0.080(7) 0.040(4) 0.000 -0.015(5) 0.000 C6 0.189(11) 0.026(3) 0.020(3) 0.000 -0.010(5) 0.000 C7 0.067(4) 0.081(5) 0.061(4) 0.004(3) -0.008(3) -0.006(3) C8 0.068(4) 0.081(4) 0.045(3) 0.017(3) 0.001(3) 0.000(3) C9 0.066(4) 0.063(4) 0.056(3) 0.011(3) 0.007(3) -0.004(3) C10 0.067(3) 0.078(4) 0.049(3) 0.028(3) -0.001(3) -0.015(3) C11 0.036(4) 0.071(3) 0.071(3) 0.034(4) -0.007(3) -0.007(3) C12 0.053(4) 0.066(3) 0.066(3) 0.017(4) -0.007(3) -0.007(3) O1 0.099(3) 0.083(3) 0.067(3) 0.009(2) -0.003(3) 0.012(3) O2 0.087(3) 0.091(4) 0.102(4) 0.028(3) -0.018(3) -0.015(3) O3 0.061(2) 0.061(2) 0.071(3) 0.000(2) -0.002(2) 0.006(2) O4 0.103(4) 0.094(4) 0.102(4) 0.031(3) -0.032(3) -0.030(3) O3' 0.059(10) 0.119(16) 0.111(16) 0.071(13) 0.022(10) 0.017(10) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Mg1 O1W 2.019(14) . ? Mg1 O1 2.056(9) 62 ? Mg1 O1 2.056(9) . ? Mg1 O3 2.060(8) . ? Mg1 O3 2.060(8) 62 ? Mg1 O2W 2.095(17) . ? Mg2 O8 1.962(10) . ? Mg2 O2W 2.077(15) . ? Mg2 O3W 2.101(15) . ? Mg2 O3W 2.101(15) 62 ? Mg2 O2 2.235(7) 62 ? Mg2 O2 2.235(7) . ? O8 C13 1.478(7) 62 ? O8 C13 1.478(7) . ? C13 C13 1.260(15) 50 ? C13 H13A 0.9900 . ? C13 H13B 0.9900 . ? Mg1' O1' 2.019(13) . ? Mg1' O1 2.052(9) 62 ? Mg1' O1 2.052(9) . ? Mg1' O3 2.061(8) . ? Mg1' O3 2.061(8) 62 ? Mg1' O2' 2.150(16) . ? Mg2' O8A 1.995(12) . ? Mg2' O4 2.089(6) 62 ? Mg2' O4 2.089(6) . ? Mg2' O2' 2.107(12) . ? Mg2' O3' 2.164(19) . ? Mg2' O3' 2.164(19) 62 ? O8A C13A 1.432(7) . ? O8A C13A 1.432(7) 77 ? O8A C13B 1.470(9) . ? C13B H13C 0.9602 . ? C13B H13D 0.9585 . ? C13A O8A 1.432(7) 81 ? C13A C13A 1.797(15) 81 ? C13A C13A 1.797(15) 77 ? C13A H13E 1.0028 . ? C13A H13F 1.2454 . ? C1 O2 1.246(9) . ? C1 O1 1.281(8) . ? C1 C2 1.535(9) . ? C2 C5 1.406(8) . ? C2 C3 1.421(8) . ? C3 C4 1.434(8) . ? C3 C6 1.451(6) . ? C4 C4 1.324(13) 50 ? C4 H4 0.9500 . ? C5 C2 1.406(8) 51_565 ? C5 H5 0.9500 . ? C6 C6 1.397(12) 50 ? C6 C3 1.451(6) 51_565 ? C7 O3 1.250(7) . ? C7 O4 1.361(8) . ? C7 C8 1.450(8) . ? C8 C9 1.375(8) . ? C8 C12 1.400(7) . ? C9 C11 1.443(7) . ? C9 C10 1.451(7) . ? C10 C10 1.324(11) 52_655 ? C10 H10 0.9500 . ? C11 C9 1.443(7) 67 ? C11 C11 1.470(14) 52_655 ? C12 C8 1.400(7) 67 ? C12 H12 0.9500 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag O1W Mg1 O1 86(2) . 62 ? O1W Mg1 O1 86(2) . . ? O1 Mg1 O1 87.5(5) 62 . ? O1W Mg1 O3 85(2) . . ? O1 Mg1 O3 90.05(19) 62 . ? O1 Mg1 O3 170.2(11) . . ? O1W Mg1 O3 85(2) . 62 ? O1 Mg1 O3 170.2(11) 62 62 ? O1 Mg1 O3 90.05(19) . 62 ? O3 Mg1 O3 90.8(5) . 62 ? O1W Mg1 O2W 169(3) . . ? O1 Mg1 O2W 101.7(6) 62 . ? O1 Mg1 O2W 101.7(6) . . ? O3 Mg1 O2W 88.1(7) . . ? O3 Mg1 O2W 88.1(7) 62 . ? O8 Mg2 O2W 178.7(6) . . ? O8 Mg2 O3W 89.3(5) . . ? O2W Mg2 O3W 89.8(5) . . ? O8 Mg2 O3W 89.3(5) . 62 ? O2W Mg2 O3W 89.8(5) . 62 ? O3W Mg2 O3W 91.8(11) . 62 ? O8 Mg2 O2 96.2(3) . 62 ? O2W Mg2 O2 84.7(3) . 62 ? O3W Mg2 O2 86.8(6) . 62 ? O3W Mg2 O2 174.3(6) 62 62 ? O8 Mg2 O2 96.2(3) . . ? O2W Mg2 O2 84.7(3) . . ? O3W Mg2 O2 174.3(6) . . ? O3W Mg2 O2 86.8(6) 62 . ? O2 Mg2 O2 94.0(3) 62 . ? Mg2 O2W Mg1 117.9(7) . . ? C13 O8 C13 115.1(9) 62 . ? C13 O8 Mg2 122.2(4) 62 . ? C13 O8 Mg2 122.2(4) . . ? C13 C13 O8 120.5(4) 50 . ? C13 C13 H13A 107.2 50 . ? O8 C13 H13A 107.2 . . ? C13 C13 H13B 107.2 50 . ? O8 C13 H13B 107.2 . . ? H13A C13 H13B 106.8 . . ? O1' Mg1' O1 92(2) . 62 ? O1' Mg1' O1 92(2) . . ? O1 Mg1' O1 87.7(5) 62 . ? O1' Mg1' O3 96(2) . . ? O1 Mg1' O3 90.14(19) 62 . ? O1 Mg1' O3 171.3(11) . . ? O1' Mg1' O3 96(2) . 62 ? O1 Mg1' O3 171.3(11) 62 62 ? O1 Mg1' O3 90.14(19) . 62 ? O3 Mg1' O3 90.7(5) . 62 ? O1' Mg1' O2' 170(3) . . ? O1 Mg1' O2' 81.0(6) 62 . ? O1 Mg1' O2' 81.0(6) . . ? O3 Mg1' O2' 90.3(7) . . ? O3 Mg1' O2' 90.3(7) 62 . ? O8A Mg2' O4 85.8(3) . 62 ? O8A Mg2' O4 85.8(3) . . ? O4 Mg2' O4 124.4(4) 62 . ? O8A Mg2' O2' 169.5(7) . . ? O4 Mg2' O2' 89.3(3) 62 . ? O4 Mg2' O2' 89.3(3) . . ? O8A Mg2' O3' 99.0(5) . . ? O4 Mg2' O3' 71.3(7) 62 . ? O4 Mg2' O3' 164.0(7) . . ? O2' Mg2' O3' 88.2(6) . . ? O8A Mg2' O3' 99.0(5) . 62 ? O4 Mg2' O3' 164.0(7) 62 62 ? O4 Mg2' O3' 71.3(7) . 62 ? O2' Mg2' O3' 88.2(6) . 62 ? O3' Mg2' O3' 92.8(14) . 62 ? Mg2' O2' Mg1' 113.1(9) . . ? C13A O8A C13A 77.7(10) . 77 ? C13A O8A C13B 96.3(10) . . ? C13A O8A C13B 96.3(10) 77 . ? C13A O8A Mg2' 126.0(8) . . ? C13A O8A Mg2' 126.0(8) 77 . ? C13B O8A Mg2' 122.9(9) . . ? O8A C13B H13C 108.0 . . ? O8A C13B H13D 108.0 . . ? H13C C13B H13D 109.6 . . ? O8A C13A O8A 168.0(14) 81 . ? O8A C13A C13A 51.2(5) 81 81 ? O8A C13A C13A 137.1(6) . 81 ? O8A C13A C13A 137.1(6) 81 77 ? O8A C13A C13A 51.2(5) . 77 ? C13A C13A C13A 120.0 81 77 ? O8A C13A H13E 63.2 81 . ? O8A C13A H13E 106.2 . . ? C13A C13A H13E 86.2 81 . ? C13A C13A H13E 153.1 77 . ? O8A C13A H13F 73.4 81 . ? O8A C13A H13F 101.6 . . ? C13A C13A H13F 120.2 81 . ? C13A C13A H13F 84.1 77 . ? H13E C13A H13F 87.7 . . ? O2 C1 O1 127.6(7) . . ? O2 C1 C2 118.9(6) . . ? O1 C1 C2 112.7(7) . . ? C5 C2 C3 119.3(6) . . ? C5 C2 C1 121.3(6) . . ? C3 C2 C1 119.4(6) . . ? C2 C3 C4 122.9(6) . . ? C2 C3 C6 119.2(6) . . ? C4 C3 C6 117.7(5) . . ? C4 C4 C3 122.2(3) 50 . ? C4 C4 H4 118.9 50 . ? C3 C4 H4 118.9 . . ? C2 C5 C2 123.0(8) 51_565 . ? C2 C5 H5 118.5 51_565 . ? C2 C5 H5 118.5 . . ? C6 C6 C3 120.1(3) 50 51_565 ? C6 C6 C3 120.1(3) 50 . ? C3 C6 C3 119.8(6) 51_565 . ? O3 C7 O4 121.9(6) . . ? O3 C7 C8 122.3(6) . . ? O4 C7 C8 115.8(6) . . ? C9 C8 C12 120.3(6) . . ? C9 C8 C7 121.7(5) . . ? C12 C8 C7 117.6(6) . . ? C8 C9 C11 118.5(5) . . ? C8 C9 C10 124.3(5) . . ? C11 C9 C10 117.0(5) . . ? C10 C10 C9 123.1(3) 52_655 . ? C10 C10 H10 118.5 52_655 . ? C9 C10 H10 118.5 . . ? C9 C11 C9 120.0(7) . 67 ? C9 C11 C11 119.9(3) . 52_655 ? C9 C11 C11 119.9(3) 67 52_655 ? C8 C12 C8 121.3(8) . 67 ? C8 C12 H12 119.4 . . ? C8 C12 H12 119.4 67 . ? C1 O1 Mg1' 133.4(7) . . ? C1 O1 Mg1 124.6(7) . . ? Mg1' O1 Mg1 9.1(11) . . ? C1 O2 Mg2 136.9(5) . . ? C7 O3 Mg1 132.9(7) . . ? C7 O3 Mg1' 142.0(7) . . ? Mg1 O3 Mg1' 9.1(11) . . ? C7 O4 Mg2' 126.8(5) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag O8 Mg2 O2W Mg1 180(4) . . . . ? O3W Mg2 O2W Mg1 134.1(6) . . . . ? O3W Mg2 O2W Mg1 -134.1(6) 62 . . . ? O2 Mg2 O2W Mg1 47.26(17) 62 . . . ? O2 Mg2 O2W Mg1 -47.26(17) . . . . ? O1W Mg1 O2W Mg2 180.00(7) . . . . ? O1 Mg1 O2W Mg2 -44.9(3) 62 . . . ? O1 Mg1 O2W Mg2 44.9(3) . . . . ? O3 Mg1 O2W Mg2 -134.6(2) . . . . ? O3 Mg1 O2W Mg2 134.6(2) 62 . . . ? O2W Mg2 O8 C13 85.7(8) . . . 62 ? O3W Mg2 O8 C13 131.6(9) . . . 62 ? O3W Mg2 O8 C13 39.8(10) 62 . . 62 ? O2 Mg2 O8 C13 -141.7(8) 62 . . 62 ? O2 Mg2 O8 C13 -47.0(8) . . . 62 ? O2W Mg2 O8 C13 -85.7(8) . . . . ? O3W Mg2 O8 C13 -39.8(10) . . . . ? O3W Mg2 O8 C13 -131.6(9) 62 . . . ? O2 Mg2 O8 C13 47.0(8) 62 . . . ? O2 Mg2 O8 C13 141.7(8) . . . . ? C13 O8 C13 C13 22.0(12) 62 . . 50 ? Mg2 O8 C13 C13 -166.0(4) . . . 50 ? O8A Mg2' O2' Mg1' 0.000(4) . . . . ? O4 Mg2' O2' Mg1' 62.2(2) 62 . . . ? O4 Mg2' O2' Mg1' -62.2(2) . . . . ? O3' Mg2' O2' Mg1' 133.6(7) . . . . ? O3' Mg2' O2' Mg1' -133.6(7) 62 . . . ? O1' Mg1' O2' Mg2' 180.00(11) . . . . ? O1 Mg1' O2' Mg2' 135.5(2) 62 . . . ? O1 Mg1' O2' Mg2' -135.5(2) . . . . ? O3 Mg1' O2' Mg2' 45.4(2) . . . . ? O3 Mg1' O2' Mg2' -45.4(2) 62 . . . ? O4 Mg2' O8A C13A 66.6(7) 62 . . . ? O4 Mg2' O8A C13A -168.4(8) . . . . ? O2' Mg2' O8A C13A 129.1(7) . . . . ? O3' Mg2' O8A C13A -3.7(10) . . . . ? O3' Mg2' O8A C13A -98.0(10) 62 . . . ? O4 Mg2' O8A C13A 168.4(8) 62 . . 77 ? O4 Mg2' O8A C13A -66.6(7) . . . 77 ? O2' Mg2' O8A C13A -129.1(7) . . . 77 ? O3' Mg2' O8A C13A 98.0(10) . . . 77 ? O3' Mg2' O8A C13A 3.7(10) 62 . . 77 ? O4 Mg2' O8A C13B -62.5(2) 62 . . . ? O4 Mg2' O8A C13B 62.5(2) . . . . ? O2' Mg2' O8A C13B 0.000(4) . . . . ? O3' Mg2' O8A C13B -132.8(7) . . . . ? O3' Mg2' O8A C13B 132.8(7) 62 . . . ? Mg2' O8A C13A O8A -11.0(6) . . . 81 ? C13A O8A C13A C13A 94.4(5) 77 . . 81 ? C13B O8A C13A C13A -0.7(9) . . . 81 ? Mg2' O8A C13A C13A -139.7(7) . . . 81 ? C13B O8A C13A C13A -95.1(8) . . . 77 ? Mg2' O8A C13A C13A 125.9(11) . . . 77 ? O2 C1 C2 C5 141.6(9) . . . . ? O1 C1 C2 C5 -28.9(12) . . . . ? O2 C1 C2 C3 -38.9(12) . . . . ? O1 C1 C2 C3 150.6(8) . . . . ? C5 C2 C3 C4 176.8(10) . . . . ? C1 C2 C3 C4 -2.6(14) . . . . ? C5 C2 C3 C6 1.9(15) . . . . ? C1 C2 C3 C6 -177.6(9) . . . . ? C2 C3 C4 C4 -176.4(6) . . . 50 ? C6 C3 C4 C4 -1.4(12) . . . 50 ? C3 C2 C5 C2 0.7(18) . . . 51_565 ? C1 C2 C5 C2 -179.9(7) . . . 51_565 ? C2 C3 C6 C6 176.6(6) . . . 50 ? C4 C3 C6 C6 1.4(12) . . . 50 ? C2 C3 C6 C3 -4.4(18) . . . 51_565 ? C4 C3 C6 C3 -179.6(8) . . . 51_565 ? O3 C7 C8 C9 -48.3(10) . . . . ? O4 C7 C8 C9 132.6(7) . . . . ? O3 C7 C8 C12 139.1(7) . . . . ? O4 C7 C8 C12 -40.0(9) . . . . ? C12 C8 C9 C11 -8.8(10) . . . . ? C7 C8 C9 C11 178.8(7) . . . . ? C12 C8 C9 C10 176.4(6) . . . . ? C7 C8 C9 C10 4.0(10) . . . . ? C8 C9 C10 C10 177.9(5) . . . 52_655 ? C11 C9 C10 C10 3.1(7) . . . 52_655 ? C8 C9 C11 C9 8.4(12) . . . 67 ? C10 C9 C11 C9 -176.4(5) . . . 67 ? C8 C9 C11 C11 -178.1(4) . . . 52_655 ? C10 C9 C11 C11 -3.0(7) . . . 52_655 ? C9 C8 C12 C8 9.3(13) . . . 67 ? C7 C8 C12 C8 -178.0(5) . . . 67 ? O2 C1 O1 Mg1' 19.1(13) . . . . ? C2 C1 O1 Mg1' -171.4(6) . . . . ? O2 C1 O1 Mg1 16.1(12) . . . . ? C2 C1 O1 Mg1 -174.4(5) . . . . ? O1' Mg1' O1 C1 162(2) . . . . ? O1 Mg1' O1 C1 70.6(10) 62 . . . ? O3 Mg1' O1 C1 -5(4) . . . . ? O3 Mg1' O1 C1 -101.0(8) 62 . . . ? O2' Mg1' O1 C1 -10.7(8) . . . . ? O1' Mg1' O1 Mg1 178(3) . . . . ? O1 Mg1' O1 Mg1 86(3) 62 . . . ? O3 Mg1' O1 Mg1 10.6(19) . . . . ? O3 Mg1' O1 Mg1 -85(3) 62 . . . ? O2' Mg1' O1 Mg1 5(2) . . . . ? O1W Mg1 O1 C1 167(2) . . . . ? O1 Mg1 O1 C1 81.2(9) 62 . . . ? O3 Mg1 O1 C1 157(3) . . . . ? O3 Mg1 O1 C1 -108.2(7) 62 . . . ? O2W Mg1 O1 C1 -20.2(8) . . . . ? O1W Mg1 O1 Mg1' 1(3) . . . . ? O1 Mg1 O1 Mg1' -85(3) 62 . . . ? O3 Mg1 O1 Mg1' -9.4(16) . . . . ? O3 Mg1 O1 Mg1' 86(3) 62 . . . ? O2W Mg1 O1 Mg1' 174(3) . . . . ? O1 C1 O2 Mg2 -38.8(13) . . . . ? C2 C1 O2 Mg2 152.3(6) . . . . ? O8 Mg2 O2 C1 -129.0(8) . . . . ? O2W Mg2 O2 C1 52.0(8) . . . . ? O3W Mg2 O2 C1 66(6) . . . . ? O3W Mg2 O2 C1 142.1(9) 62 . . . ? O2 Mg2 O2 C1 -32.3(9) 62 . . . ? O4 C7 O3 Mg1 -11.9(10) . . . . ? C8 C7 O3 Mg1 169.1(5) . . . . ? O4 C7 O3 Mg1' -12.4(12) . . . . ? C8 C7 O3 Mg1' 168.5(5) . . . . ? O1W Mg1 O3 C7 -179(2) . . . . ? O1 Mg1 O3 C7 -93.0(8) 62 . . . ? O1 Mg1 O3 C7 -168(3) . . . . ? O3 Mg1 O3 C7 96.7(8) 62 . . . ? O2W Mg1 O3 C7 8.7(7) . . . . ? O1W Mg1 O3 Mg1' -1(3) . . . . ? O1 Mg1 O3 Mg1' 85(3) 62 . . . ? O1 Mg1 O3 Mg1' 9.4(16) . . . . ? O3 Mg1 O3 Mg1' -86(3) 62 . . . ? O2W Mg1 O3 Mg1' -174(3) . . . . ? O1' Mg1' O3 C7 -175(2) . . . . ? O1 Mg1' O3 C7 -83.4(9) 62 . . . ? O1 Mg1' O3 C7 -8(4) . . . . ? O3 Mg1' O3 C7 87.9(9) 62 . . . ? O2' Mg1' O3 C7 -2.4(9) . . . . ? O1' Mg1' O3 Mg1 -178(4) . . . . ? O1 Mg1' O3 Mg1 -86(3) 62 . . . ? O1 Mg1' O3 Mg1 -10.6(19) . . . . ? O3 Mg1' O3 Mg1 85(3) 62 . . . ? O2' Mg1' O3 Mg1 -5(2) . . . . ? O3 C7 O4 Mg2' -21.4(10) . . . . ? C8 C7 O4 Mg2' 157.7(5) . . . . ? O8A Mg2' O4 C7 -116.0(7) . . . . ? O4 Mg2' O4 C7 -34.1(9) 62 . . . ? O2' Mg2' O4 C7 54.6(7) . . . . ? O3' Mg2' O4 C7 136(2) . . . . ? O3' Mg2' O4 C7 143.0(7) 62 . . . ? _diffrn_measured_fraction_theta_max 0.906 _diffrn_reflns_theta_full 65.22 _diffrn_measured_fraction_theta_full 0.905 _refine_diff_density_max 0.396 _refine_diff_density_min -0.401 _refine_diff_density_rms 0.077 loop_ _platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume _platon_squeeze_void_count_electrons _platon_squeeze_void_content 1 -0.001 -0.002 -0.001 7023 1989 ' ' 2 0.500 0.000 0.250 295 147 ' ' 3 0.250 0.000 0.500 295 147 ' ' 4 0.750 0.000 0.500 295 147 ' ' 5 0.499 -0.070 0.498 7023 1989 ' ' 6 0.500 0.000 0.750 295 147 ' ' 7 0.500 0.250 0.000 295 147 ' ' 8 0.000 0.250 0.500 294 147 ' ' 9 0.250 0.500 0.000 295 147 ' ' 10 0.750 0.500 0.000 295 147 ' ' 11 0.000 0.500 0.250 295 147 ' ' 12 0.000 0.500 0.750 295 147 ' ' 13 0.500 0.750 0.000 294 147 ' ' 14 0.000 0.750 0.500 295 147 ' ' _platon_squeeze_details ; Approximately 40.2% of the unit cell volume comprises a large region of disordered solvent which could not be modelled as discrete atomic sites. We employed PLATON SQUEEZE to calculate the contribution to the diffraction from the solvent region and thereby produced a set of solvent-free diffraction intensities. SQUEEZE estimated a total count of 5742 electrons per asymmetric unit, which were assigned to be 13 water and 26 DMF molecules per unit cell. The final formula was calculated from the TGA combined with elemental analysis data. ; # start Validation Reply Form _vrf_CHEMW03_1 ; PROBLEM: ALERT: The ratio of given/expected molecular weight as RESPONSE: The highly disordered solvent molecules (13 water and 26 DMF molecules), deduced by means of EA and TGA measurements, can not be identified, but it needs to be considered for calculation of molecular mass. ; _vrf_PLAT051_1 ; PROBLEM: Mu(calc) and Mu(CIF) Ratio Differs from 1.0 by . 23.91 Perc. RESPONSE: The highly disordered solvent molecules could not be satisfactorily modelled. As a result, the SQUEEZE routine within PLATON was employed to remove the contribution of the solvents to the diffraction pattern. The absence of disordered components from the model results in a discrepancy between calculated Mu based on assigned atoms and the actual composition including the solvent molecules. ; _vrf_PLAT360_1 ; PROBLEM: Short C(sp3)-C(sp3) Bond C13 - C13_y ... 1.27 Ang. RESPONSE: The coordinated dioxane molecules are disordered. ; _vrf_PLAT410_1 ; PROBLEM: Short Short Intra H...H Contact H13A .. H13A .. 1.86 Ang. RESPONSE: The coordinated dioxane molecules are disordered. ; _vrf_PLAT420_1 ; PROBLEM: Short D-H Without Acceptor RESPONSE: The coordinated water molecules are disordered. ; # end Validation Reply Form