Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position

Feng Zhou, Xing-Ping Zeng, Chao Wang, Xiao-Li Zhao, and Jian Zhou*^[a]

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China.

Content	Page
1. General information	2
2. Condition optimization for the amination of 3-thiooxyindoles	3
3. General procedure for the amination of 3-thiooxyindoles using DBAD	4-11
4. Condition optimization for the amination of 3-alkoxyoxindoles	12
5. General procedure for the amination of 3-alkoxyoxyindoles using DBAD	13-19
6. Transformation of Adduct 5a	20
7. Single-Crystal X-ray Crystallography of product 3a	21-30
¹ H, ¹³ C NMR Spectra	31-102
HPLC Spectra	103-138

1. General: Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refered to pure isolated substances. ¹H and ¹³C NMR spectra were obtained using a Bruker DPX-400 spectrometer. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet, br = broad.

Anhydrous ether, THF and toluene were prepared by distillation over sodium-benzophenone ketyl prior to use. Anhydrous acetone was distilled over anhydrous CaSO₄ and stored over MS 4Å. Anhydrous halogenated solvents and CH₃CN were prepared by first distillation over P₂O₅ and then from CaH₂. β -ICD were purchased from TCI and (DHQ)₂PHAL from Aldrich. Catalysts C4-C5¹ and C7² were prepared using literature methods. Di-*tert*-butyl azodicarboxylate (DBAD) was recrystallized from petroleum ether and stored under nitrogen.

¹ X. Liu, H. Li, L. Deng, Org. Lett. 2005, 7, 167.

² B.Vakulya, S. Varga, A. Csámpai, T. Soós, Org. Lett. 2005, 7, 1967.

	Ia	3 E →=0 + N	^{Boc} N	Chiral catalyst (10 mol%) Solvent (0.05 M) -40 °C, 9 h		HN ^{Boc} S N Boc * O N H 3a	
		Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph		OBn V X X X X X X X X X X X X X X X X X X		C6 OMe 3,5-(CF ₃) ₂ C ₆ H ₃	C7
	Entry ^[a]	Cat.	Solvent	T (°C)	Yield ^[b] (%)	Ee ^[c] (%)	•
-	1	C1	CH_2Cl_2	-40	97	92	-
	2	C2	CH_2Cl_2	-40	57	40	
	3	C3	CH_2Cl_2	-40	61	30	
	4	C4	CH_2Cl_2	-40	46	78	
	5	C5	CH_2Cl_2	-40	85	33	
	6	C6	CH_2Cl_2	-40	52	46	
	7	C7	CH_2Cl_2	-40	33	15	
	8	C1	THF	-40	97	86	
	9	C1	Toluene	-40	87	82	
	10	C1	Acetone	-40	97	76	
	11	C1	CH ₃ CN	-40	96	76	
	12	C1	EtOAc	-40	94	80	
	13	C1	EtOH	-40	89	24	
	14 ^[d]	C1	CH_2Cl_2	-80	95	92	
-	^[a] 0.1 mmol sca	ıle. ^[b] Isolat	ed yield. ^[c] Dete	rmined by chi	ral HPLC analys	sis. ^[d] 12 h.	-

/

2. Condition optimization for the amination of 3-thiooxyindoles.

The reaction of 3-(naphthalen-2-ylthio)indolin-2-one 1a and di-tert-butyl azodicarboxylate (DBAD) 2 was chosen for optimization, using CH₂Cl₂ as the solvent at -10 °C in the presence of 10 mol% catalyst. The reaction could finish within 9 hours when using cinchona alkaloid derivatives as the catalyst (entries 1-7). The Hatakeyama's catalyst β-ICD C1 could afford the desired product 3a in 97% yield with 92% ee (entry 1). The solvent effects were then studied. Of several typical solvents we tried, CH₂Cl₂ turned out to be the best one (entry 1 vs entries 8-13). Lowering the temperature to -80 °C had no beneficial effect on the ee (entry 14 vs 1).

3. General procedure for the amination of 3-thiooxyindoles using DBAD.

To a 10 mL vial were added catalyst C1 (7.8 mg, 0.025 mmol) and 3-thiooxindoles 1 (0.25 mmol), followed by the addition of 5.0 mL of anhydrous CH_2Cl_2 . The reaction mixture was stirred vigorously at room temperature until full dissolution of 3-thiooxindoles 1, and then cooled to -40 °C and kept stirring for about 30 min before DBAD 2 (69.0 mg, 0.30 mmol) was added. After the full conversion of 3-thiooxindoles 1 by TLC analysis, the mixture was directly subjected to column chromatography using $CH_2Cl_2/EtOAc$ (from 15:1 to 10:1) as the eluent, affording the desired product **3**.

It should be noted that due to the distinct presence of rotameric isomers, the ¹H NMR and ¹³C NMR contained extra peaks, as reported in the related work.³

92% ee. $[\alpha]_D^{20} = +54.8$ (c = 0.89, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.76$ (d, J = 8.0 Hz, 1H), 7.68-7.66 (m, 2H), 7.54 (d, J = 4.0 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.42-7.34 (m, 3H), 7.15 (d, J = 8.0 Hz, 1H), 7.06-6.97 (m, 2H), 6.92 (s, 1H), 6.36 (d, J = 4.0 Hz, 1H), 1.54 (s, 9H), 1.15 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 176.04, 155.39, 152.37, 139.33, 137.95, 133.39, 133.07, 132.94, 129.05, 128.04, 127.57, 127.38, 127.20, 126.12, 125.78, 122.82, 109.67, 83.17, 81.43, 76.19, 28.30, 27.66. MS (EI): 521 (M⁺, 1), 57 (100), 160 (82), 206 (73), 162 (46), 115 (39), 161 (30), 159 (18). HRMS (EI): Exact mass calcd for C₂₈H₃₁N₃O₅S [M]⁺: 521.1984, Found: 521.1987.

³ a) R. Matsubara, S. Kobayashi, *Angew. Chem.* **2006**, *118*, 8161; *Angew. Chem. Int. Ed.* **2006**, *45*, 7993; b) T. B. Poulsen, C. Alemparte, K. A. Jørgensen, *J. Am. Chem. Soc.* **2005**, *127*, 11614; c) S. Saaby, M. Bella, K. A. Jørgensen, *J. Am. Chem. Soc.* **2004**, *126*, 8120.

2-Naphthyl HN Boc Compound **3b** was obtained in 96% yield as white solid, Mp: 90-92 °C. IR (neat): 1729, 1692, 1612, 1472, 1246, 1148 cm⁻¹. HPLC analysis (Chiralcel OD-H, 5% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 5.67 min, t_r (minor) = 12.75 min) gave the isomeric composition of the product: 82% ee. $[\alpha]_D^{20} = +20.4$ (c = 1.14, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.93$ (d, J =8.0 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.60-7.54 (m, 3H), 7.48-7.42 (m, 2H), 7.14-7.09 (m, 3H), 6.96 (s, 1H), 6.23-6.21 (m, 1H), 2.66 (s, 3H), 1.60 (s, 9H), 1.15 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 173.40, 155.35, 152.06, 141.69, 137.70, 133.23, 133.01, 132.75, 128.92, 127.86, 127.27, 127.11, 126.02, 125.43, 125.28, 122.90, 107.05, 82.69, 81.45, 75.85, 28.21, 27.62, 25.70. HRMS (ESI): Exact mass calcd for C₂₉H₃₃N₃NaO₅S [M+Na]⁺: 558.2039, Found: 558.2046.

2-Naphthyl HN^{Boc} S NBoc S NBoc MBn 3c

Compound **3c** was obtained in 92% yield as white solid, Mp: 91-93 °C. IR (neat): 1700, 1612, 1486, 1392, 1245, 1159 cm⁻¹. HPLC analysis (Chiralcel OZ-H, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 10.21 min, t_r (minor) = 7.77 min) gave the isomeric composition of the

product: 79% ee. $[\alpha]_D^{20} = +11.5$ (c = 1.30, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.82$ (d, J = 8.0 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.71 (s, 1H), 7.57 (d, J = 16.0 Hz, 1H), 7.52-7.50 (m, 2H), 7.46-7.44 (m, 1H), 7.15-7.12 (m, 3H), 7.08-7.02 (m, 5H), 6.96 (s, 1H), 6.32 (d, J = 8.0 Hz, 1H), 4.59 (ABd, J = 16 Hz, 1H), 4.54 (ABd, J = 16 Hz, 1H), 1.61 (s, 9H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 173.60, 155.28, 152.22, 141.33, 137.80, 133.39, 132.97, 132.95, 128.90, 128.35, 128.01, 127.50, 127.41, 127.18, 127.02, 126.14, 108.46, 82.64, 81.38, 75.69, 44.07, 28.27, 27.72. HRMS (ESI): Exact mass calcd for C₃₅H₃₇N₃NaO₅S [M+Na]⁺: 634.2352, Found: 634.2356.

Compound **3d** was obtained in 95% yield as white solid, Mp: 123-125 °C. IR (neat): 1732, 1700, 1482, 1246, 1148 cm⁻¹. HPLC analysis (Chiralcel OZ-H, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 14.00 min, t_r (minor) = 16.44 min) gave the isomeric composition of the product: 94%

ee. $[\alpha]_D^{20} = +46.2$ (c = 1.26, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 7.82-7.73$ (m, 2H), 7.69 (d, J = 4.0 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.50-7.39 (m, 3H), 7.23 (d, J = 1.0 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.50-7.39 (m, 3H), 7.23 (d, J = 1.0 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.50-7.39 (m, 3H), 7.23 (d, J = 1.0 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.50-7.39 (m, 3H), 7.23 (d, J = 1.0 Hz, 1H), 7.50-7.39 (m, 3H), 7.23 (d, J = 1.0 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.50-7.39 (m, 3H), 7.23 (d, J = 1.0 Hz, 1H), 7.58 (d, J = 1.0 Hz, 1H), 7.50-7.39 (m, 3H), 7.23 (d, J = 1.0 Hz, 1H), 7.58 (d, J = 1.0 Hz, 1H), 7.50-7.39 (m, 3H), 7.23 (d, J = 1.0 Hz, 1H), 7.58 (d, J = 1.0 Hz, 1H), 7.50-7.39 (m, 3H), 7.23 (d, J = 1.0 Hz, 1H), 7.58 (d, J = 1.0 Hz, 1H), 7.50-7.39 (m, 3H), 7.23 (d, J = 1.0 Hz, 1H), 7.50-7.39 (m, 3H), 7.23 (d, J = 1.0 Hz, 1H), 7.50-7.39 (m, 3H), 7.23 (d, J = 1.0 Hz, 1H), 7.50-7.39 (m, 3H), 7.50-7.59 (m, 3H), 7

2-Naphthyl

8.0 Hz, 1H), 6.96-6.94 (m, 1H), 6.82-6.81 (m, 1H), 6.35-6.32 (m, 1H), 1.60 (s, 9H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 175.92, 160.36, 157.97, 155.39, 152.40, 138.02, 133.49, 132.99, 128.05, 127.76, 127.46, 127.39, 126.30, 125.01, 115.62, 115.38, 113.87, 113.62, 110.26, 110.18, 83.46, 81.68, 76.22, 28.30, 27.75. HRMS (ESI): Exact mass calcd for C₂₈H₃₀FN₃NaO₅S [M+Na]⁺: 562.1788, Found: 562.1762.

> HN Boc Compound **3e** was obtained in 82% yield as white solid, Mp: 120-122 °C. IR (neat): 1730, 1699, 1619, 1475, 1247, 1146 cm⁻¹. HPLC analysis (Chiralcel IC, 10% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 10.65 min, t_r (minor) = 7.45 min) gave the isomeric composition of the

product: 91% ee. $[\alpha]_D{}^{20} = -73.7$ (c = 1.04, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 7.85$ (s, 1H), 7.76-7.74 (m, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.51-7.45 (m, 2H), 7.22 (d, J = 8.0 Hz, 1H), 7.09-7.07 (m, 1H), 6.93 (s, 1H), 6.34 (d, J = 8.0 Hz, 1H), 1.61 (s, 9H), 1.26 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 175.59, 155.30, 152.47, 138.12, 137.87, 133.48, 132.97, 129.02, 128.11, 128.06, 127.78, 127.43, 126.31, 126.14, 124.97, 110.67, 83.50, 81.64, 76.02, 28.30, 27.76. HRMS (ESI): Exact mass calcd for C₂₈H₃₀ClN₃NaO₅S [M+Na]⁺: 578.1492, Found: 578.1497.

2-Naphthyl HN⁻Boc Compound **3f** was obtained in 89% yield as white solid, Mp: 124-126 °C. Br⁻ Boc N Boc (Chiralcel IC, 10% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 12.20 min, t_r (minor) = 7.94 min) gave the isomeric composition of the

product: 92% ee. $[\alpha]_D^{20} = -88.8$ (c = 1.07, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 7.95$ (s, 1H), 7.79-7.75 (m, 2H), 7.66-7.58 (m, 2H), 7.51-7.45 (m, 3H), 7.23-7.21 (m, 2H), 6.92 (s, 1H), 6.30 (d, J = 8.0 Hz, 1H), 1.61 (s, 9H), 1.26 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 175.43, 155.24, 152.48, 138.33, 138.16, 133.49, 132.97, 131.91, 128.88, 128.08, 127.78, 127.43, 126.32, 125.00, 115.35, 111.14, 83.52, 81.64, 75.97, 28.31, 27.77. HRMS (ESI): Exact mass calcd for C₂₈H₃₀BrN₃NaO₅S [M+Na]⁺: 622.0987, Found: 622.0986.

Compound **3g** was obtained in 78% yield as white solid, Mp: 128-130 °C. IR (neat): 1801, 1699, 1612, 1473, 1248, 1160 cm⁻¹. HPLC analysis (Chiralcel IC, 10% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 14.23 min, t_r (minor) = 8.39 min) gave the isomeric composition of the product:

91% ee. $[\alpha]_D^{20} = -130.0$ (c = 1.12, CHCl₃). ¹H NMR (400 MHz, DCl₃):see below. ¹³C NMR (100 MHz, CDCl₃): δ 175.33, 155.28, 152.64, 139.05, 138.33, 137.95, 134.53, 133.58, 133.05, 131.34, 128.22, 127.86, 127.54, 126.41, 125.15, 111.80, 85.19, 83.60, 81.69, 76.01, 28.42, 27.88. HRMS (ESI): Exact mass calcd for C₂₈H₃₀IN₃NaO₅S [M+Na]⁺: 670.0849, Found: 670.0854.

Compound **3h** was obtained in 98% yield as white solid, Mp: 114-116 Boc 2-Naphthyl HN °C. IR (neat): 1800, 1686, 1492, 1394, 1247, 1152 cm⁻¹. HPLC Me analysis (Chiralcel IC, 10% PrOH/hexane, 1.0 mL/min, 230 nm; tr 3h Ĥ (major) = 22.69 min, t_r (minor) = 10.29 min) gave the isomeric composition of the product: 93% ee. $[\alpha]_{D}^{20} = -10.1$ (c = 1.09, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 7.74$ (s, 2H), 7.63-7.56 (m, 2H), 7.53-7.43 (m, 3H), 7.23 (d, J = 8.0 Hz, 1H), 6.93-6.91 (m, 2H), 6.36 (d, J = 8.0 Hz, 1H), 2.28 (s, 3H), 1.61 (s, 9H), 1.23 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): 8 176.02, 155.32, 152.50, 138.05, 136.78, 133.43, 133.17, 132.96, 132.34, 129.43, 128.06, 127.52, 127.40, 127.21, 126.14, 125.76, 109.44 83.15, 81.35, 76.35, 28.36, 27.72, 21.18. MS (EI): 535 (M⁺, 1), 220 (100), 160 (82), 57 (66), 176 (65), 115 (42), 159 (39), 175 (33). HRMS (EI): Exact mass calcd for $C_{29}H_{33}N_3O_5S$ [M]⁺: 535.2141, Found: 535.2139.

product: 92% ee. $[\alpha]_D^{20} = -9.9$ (c = 1.13, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 7.74-7.72$ (m, 2H), 7.61-7.53 (m, 3H), 7.48-7.40 (m, 2H), 7.26-7.23 (m, 2H), 6.96-6.91 (m, 2H), 6.38 (d, J = 8.0 Hz, 1H), 2.59-2.45 (m, 2H), 1.61 (s, 9H), 1.21 (s, 9H), 1.13 (t, J = 8.0 Hz, 3H). ¹³C NMR (100

MHz, CDCl₃): δ 176.31, 155.24, 152.56 138.89, 138.04, 133.39, 133.17, 132.94, 128.21, 128.03, 127.51, 127.37, 127.17, 126.09, 125.77, 125.19, 109.52, 83.07, 81.24, 76.49, 28.47, 28.33, 27.67, 15.91. HRMS (ESI): Exact mass calcd for C₃₀H₃₅N₃NaO₅S [M+Na]⁺: 572.2195, Found: 572.2200.

HN^{_Boc} Compound 3j was obtained in 98% yield as white solid, Mp: 115-117 2-Naphthyl °C. IR (neat): 1719, 1702, 1489, 1283, 1247, 1155 cm⁻¹. HPLC Boc MeO analysis (Chiralcel IC, 10% PrOH/hexane, 1.0 mL/min, 230 nm; tr 3j Н (major) = 17.56 min, t_r (minor) = 9.45 min) gave the isomeric composition of the product: 91% ee. $[\alpha]_{D}^{20} = -16.5$ (c = 1.21, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 7.76-7.72$ (m, 2H), 7.63-7.55 (m, 2H), 7.48-7.40 (m, 3H), 7.26-7.23 (m, 1H), 7.00 (s, 1H), 6.69-6.66 (m, 1H), 6.39 (d, J = 8.0 Hz, 1H), 3.69 (s, 3H), 1.60 (s, 9H), 1.23 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 175.97, 155.83, 155.30, 152.43, 138.01, 133.40, 133.14, 132.95, 130.10, 128.04, 127.57, 127.38, 127.23, 126.16, 114.91, 111.87, 110.23, 83.18, 81.33, 55.57, 28.28, 27.71. MS (EI): 551 (M⁺, 1), 236 (100), 160 (76), 192 (75), 57 (67), 191 (48), 115 (37), 292 (21). HRMS (EI): Exact mass calcd for $C_{29}H_{33}N_3O_6S$ [M]⁺: 551.2090, Found: 551.2098.

HN^{_Boc} Compound 3k was obtained in 95% yield as white solid, Mp: 113-115 2-Naphthyl °C. IR (neat): 1727, 1703, 1626, 1503, 1246, 1153 cm⁻¹. HPLC analysis (Chiralcel IC, 10% PrOH/hexane, 1.0 mL/min, 230 nm; tr MeO Ĥ 3k (major) = 19.29 min, t_r (minor) = 10.94 min) gave the isomeric composition of the product: 83% ee. $[\alpha]_{D}^{20} = +29.5$ (c = 1.12, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 7.96$ (s, 1H), 7.76-7.71 (m, 3H), 7.61-7.54 (m, 2H), 7.46-7.39 (m, 2H), 7.26-7.23 (m, 1H), 6.95 (s, 1H), 6.58-6.56 (m, 1H), 6.04 (d, J = 4.0 Hz, 1H), 3.69 (s, 3H), 1.60 (s, 9H), 1.23 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 176.23, 160.77, 155.33, 152.41, 140.81, 137.84, 133.34, 133.10, 132.97, 128.04, 127.54, 127.38, 127.11, 126.85, 126.08, 125.80, 120.88, 108.06, 96.39, 83.01, 81.42, 76.15, 55.29, 28.30, 27.73. HRMS (ESI): Exact mass calcd for C₂₉H₃₃N₃NaO₆S [M+Na]⁺: 574.1988, Found: 574.1968.

Compound **31** was obtained in 97% yield as white solid, Mp: 124-126 °C. IR (neat): 1709, 1625, 1481, 1245, 1151 cm⁻¹. HPLC analysis (Chiralcel IC, 10% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 25.01 min, t_r (minor) = 9.59 min) gave the isomeric composition of the product: 92% ee. $[\alpha]_D^{20} = +41.8$ (c = 1.17, CHCl₃). ¹H NMR (400 MHz,

DCl₃): δ = 7.75-7.73 (m, 2H), 7.63-7.56 (m, 2H), 7.49-7.38 (m, 3H), 7.29-7.27 (d, J = 8.0 Hz, 1H), 6.91 (s, 1H), 6.75 (s, 1H), 2.27 (s, 3H), 1.79 (s, 3H), 1.62 (s, 9H), 1.20 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 176.32, 155.24, 152.54, 137.79, 135.53, 133.37, 133.09, 132.90, 132.17, 130.84, 128.89, 127.99, 127.39, 127.32, 127.13, 126.07, 123.23, 118.73, 82.99, 81.23, 28.36, 27.63, 21.10, 15.61. MS (EI): 549 (M⁺, 1), 234 (100), 190 (73), 57 (55), 160 (52), 189 (27), 115 (23), 290 (22). HRMS (EI): Exact mass calcd for C₃₀H₃₅N₃O₅S [M]⁺: 549.2297, Found: 549.2296.

HN^{_Boc} Compound 3m was obtained in 98% yield as white solid, Mp: 120-122 2-Naphthyl °C. IR (neat): 1720, 1708, 1245, 1149, 744 cm⁻¹. HPLC analysis Boc (Chiralcel IC, 10% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 15.56 3m Н min, t_r (minor) = 8.32 min) gave the isomeric composition of the product: Me 92% ee. $[\alpha]_D^{20} = +88.1$ (c = 1.06, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 7.75-7.72$ (m, 2H), 7.66 (d, J = 4.0 Hz, 1H), 7.62-7.55 (m, 2H), 7.49-7.42 (m, 2H), 7.27 (d, J = 8.0 Hz, 1H), 7.00-6.93 (m, 3H), 1.80 (s, 3H), 1.61 (s, 9H), 1.19 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 176.29, 155.30, 152.39, 138.02, 137.71, 133.37, 133.02, 132.91, 130.29, 128.93, 128.01, 127.48, 127.34, 127.16, 126.09, 125.88, 122.92, 122.76, 118.99, 83.05, 81.37, 76.52, 28.32, 27.61, 15.64. HRMS (ESI): Exact mass calcd for C₂₉H₃₃N₃NaO₅S [M+Na]⁺: 558.2039, Found: 558.2053.

Compound **3n** was obtained in 68% yield as white solid, Mp: 99-101 °C. IR (neat): 1729, 1701, 1619, 1476, 1149 cm⁻¹. HPLC analysis (Chiralcel IC, 10% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 14.61 min, t_r (minor) = 6.86 min) gave the isomeric composition of the product: 88% ee.

 $[\alpha]_D^{20} = +74.5$ (c = 0.51, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 7.79-7.77$ (m, 2H), 7.72 (d, J = 100

8.0 Hz, 1H), 7.67-7.61 (m, 2H), 7.52-7.45 (m, 2H), 7.24-7.22 (m, 1H), 7.12 (d, J = 8.0 Hz, 1H), 6.99 (t, J = 8.0 Hz, 1H), 6.88 (d, J = 4.0 Hz, 1H), 1.61 (s, 9H), 1.23 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 174.35, 155.37, 152.23, 137.98, 133.58, 133.02, 132.87, 128.75, 128.03, 127.82, 127.50, 127.41, 126.30, 124.13, 114.64, 83.53, 81.69, 76.44, 28.33, 27.69. HRMS (ESI): Exact mass calcd for C₂₈H₃₀ClN₃NaO₅S [M+Na]⁺: 578.1492, Found: 578.1504.

2-Naphthyl HN^{Boc} Compound **30** was obtained in 88% yield as white solid, Mp: 127-129 °C. **S** N Boc IR (neat): 1800, 1697, 1247, 1150, 1004 cm⁻¹. HPLC analysis (Chiralcel IC, 10% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 8.01 min, t_r (minor) = 6.15 min) gave the isomeric composition of the product: 92% ee. $[\alpha]_D^{20} = +81.5$ (c = 1.03, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 7.77-7.73$ (m, 2H), 7.63-7.58 (m, 3H), 7.51-7.43 (m, 2H), 7.31-7.26 (m, 2H), 7.08 (d, J = 8.0 Hz, 1H), 6.90 (br, 1H), 1.78 (s, 3H), 1.61 (s, 9H), 1.23 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 176.14, 155.34, 152.36, 139.28, 137.93, 135.00, 133.46, 132.93, 128.00, 127.74, 127.43, 127.39, 126.31, 125.46, 123.76, 123.31, 117.75, 83.30, 81.59, 76.45, 28.33, 27.70, 13.15. HRMS (ESI): Exact mass calcd for

C₂₉H₃₂ClN₃NaO₅S [M+Na]⁺: 592.1649, Found: 592.1648.

Compound **3p** was obtained in 97% yield as white solid, Mp: 96-98 °C. IR (neat): 1726, 1698, 1620, 1473, 1245, 1151 cm⁻¹. HPLC analysis (Chiralcel IC, 5% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 22.11 min, t_r (minor) = 16.30 min) gave the isomeric composition of the product: 90% ee. $[\alpha]_D^{20}$ = +47.8 (c =1.12, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 8.00 (br, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.31-7.26 (m, 1H), 7.23-7.21 (m, 2H), 7.15-7.11 (m, 3H), 7.04-6.94 (m, 2H), 6.55 (d, *J* = 8.0 Hz, 1H), 1.59 (s, 9H), 1.22 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 176.16, 155.35, 152.38, 139.32, 137.38, 129.85, 129.11, 128.98, 128.24, 128.14, 125.80, 122.72, 109.58, 83.13, 81.37, 76.22, 28.27, 27.69. HRMS (ESI): Exact mass calcd for C₂₄H₂₉N₃NaO₅S [M+Na]⁺: 494.1726, Found: 494.1736. 3q

Bns

HN^{_Boc} Compound **3q** was obtained in 88% yield as white solid, Mp: 109-111 °C. IR (neat): 1725, 1619, 1473, 1367, 1244, 1153 cm⁻¹. HPLC analysis (Chiralcel OZ-H, 5% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 11.06 min, t_r (minor) = 16.89 min) gave the isomeric composition of the

product: 56% ee. $[\alpha]_D^{20} = +17.6$ (c = 0.91, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00$ (br, 1H), 7.82 (d, J = 4.0 Hz, 1H), 7.33-7.31 (m, 2H), 7.30-7.26 (m, 2H), 7.24-7.21 (m, 2 H), 7.05 (t, J = 8.0 Hz, 1H), 6.84 (d, J = 8.0 Hz, 1H), 6.67 (s, 1H), 4.03 (ABd, J = 12.0 Hz, 1 H), 4.00 (ABd, J = 12.0 Hz, 1 H), 1.54 (s, 9H), 1.23 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 175.20, 155.67, 152.73, 138.88, 136.14, 129.46, 129.39, 129.09, 128.52, 127.31, 124.86, 122.99, 110.03, 83.11, 81.16, 73.17, 34.58, 28.26, 27.73. HRMS (ESI): Exact mass calcd for C₂₅H₃₁N₃NaO₅S [M+Na]⁺: 508.1882, Found: 508.1889.

HN^{_Boc} Boc 3r

Compound **3r** was obtained in 82% yield as white solid, Mp: 88-90 °C. IR (neat): 1792, 1695, 1620, 1395, 1249, 1154 cm⁻¹. HPLC analysis (Chiralcel OZ-H, 5% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 9.11 min, t_r (minor) = 11.25 min) gave the isomeric composition of the product:

47% ee. $[\alpha]_D^{20} = +21.8$ (c =1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.13$ (br, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.23 (t, J = 8.0 Hz, 1H), 7.06 (t, J = 8.0 Hz, 1H), 6.94 (s, 1H), 6.83 (d, J = 8.0 Hz, 1H), 5.84-5.74 (m, 1H), 5.21 (d, J = 16 Hz, 1H), 5.10 (d, J = 8.0 Hz, 1H), 3.51-3.41 (m, 2H), 1.56 (s, 9H), 1.22 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 175.56, 155.66, 152.75, 138.86, 132.51, 129.10, 128.86, 124.91, 122.97, 118.80, 110.02, 83.16, 81.23, 72.64, 32.74, 28.27, 27.72. MS (EI): 435 (M⁺, 1), 57 (100), 206 (97), 162 (66), 204 (35), 145 (16), 161 (14), 262 (13). HRMS (EI): Exact mass calcd for $C_{21}H_{29}N_3O_5S$ [M]⁺: 435.1828, Found: 435.1827.

O	/— В С ₊	^{oc} `N – "N _{Boc}	Chiral catalyst (10 mol%) Solvent, 36 h	\rightarrow	HN BOC -O N BOC -O N BOC -O Sa	
	Ph Ph Ph Ph Ph $(DHQD)_2PYR C2$		OBN W X C3: X = OMe C4: X = OH		Ar'_{N}, H S N C6 OMe $r' = 3,5-(CF_3)_2C_6H_3$	EtO P, N, H EtO T, N, H C7 OMe
Entry ^[a]	Cat.	Solvent	T (°C)	Yield ^[b] (%)	Ee ^[c] (%)	
1	C1	CH ₂ Cl ₂	-10	60	25	
2	C2	CH_2Cl_2	-10	77	83	
3	C3	CH_2Cl_2	-10	42	36	
4	C4	CH_2Cl_2	-10	31	16	
5	C5	CH_2Cl_2	-10	54	21	
6	C6	CH_2Cl_2	-10	32	48	
7	C7	CH_2Cl_2	-10	19	25	
8	C2	THF	-10	57	20	
9	C2	Toluene	-10	72	59	
10	C2	Acetone	-10	82	20	
11	C2	CH ₃ CN	-10	82	45	
12	C2	EtOAc	-10	72	31	
13	C2	EtOH	-10	79	10	
14 ^[d]	C2	CH_2Cl_2	-40	77	90	
^[a] 0.1 mmol s	cale. ^[b] Isolated	l yield. ^[c] Dete	rmined by chira	al HPLC analy	vsis. ^[d] 6 day.	

Boc

4. Condition optimization for the amination of 3-alkoxyoxindoles

Since catalyst C1, used for the the amination reaction of 3-thiooxindoles 1, failed to achieve high ee in the reaction of 3-allyloxyoxindole 4a and DBAD 2, a variety of catalysts were further evaluated, and the results were summarized in the above Table (entries 1-7). Brønsted base catalyst C2 turned out to be the most effective one, which could afford the product in 77% yield with 83% ee (entry 7). The solvent effect was further examined using catalyst C2, CH_2Cl_2 was found to be the best. Lowering the temperature to -40 °C could promote the reaction to 90% ee (entry 10).

5. General procedure for the amination of 3-alkoxyoxyindoles using DBAD.

To a 5 mL vial were added catalyst C2 (22.0 mg, 0.025 mmol) and 3-alkoxyoxyindoles 4 (0.25 mmol), followed by the addition of 2.5 mL of anhydrous CH_2Cl_2 . The reaction mixture was stirred vigorously at room temperature until the full dissolution of 3-alkoxyoxyindoles 4. The resulting mixture was stirred at indicated temperature for about 30 min before DBAD 2 (69.0 mg, 0.30 mmol) was added. After the full conversion of 3-alkoxyoxyindoles 4 by TLC analysis, the mixture was directly subjected to column chromatography using $CH_2Cl_2/EtOAc$ (from 15:1 to 10:1) as the eluent, affording the desired product 5.

Compound **5a** was obtained in 77% yield as white solid, Mp: 79-81 °C. IR (neat): 1730, 1705, 1473, 1247, 1156 cm⁻¹. HPLC analysis (Chiralcel IC, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 19.22 min, t_r (minor) = 15.65 min) gave the isomeric composition of the product: 90% ee. $[\alpha]_D^{20}$ = -8.9 (c = 0.80, CHCl₃). ¹H NMR (400 MHz, DCl₃): δ = 7.91 (br, 1H),

7.77 (d, J = 8.0 Hz, 1H), 7.30-7.27 (m, 1H), 7.08 (t, J = 8.0 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.79(br, 1H), 5.86-5.78 (m, 1H), 5.25-5.21 (m, 1H), 5.13-5.10 (m, 1H), 4.20 (dd, J = 12.0 Hz, J = 4.0 Hz, 1H), 4.06 (dd, J = 12.0 Hz, J = 4.0 Hz, 1H), 1.54 (s, 9H), 1.26 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 174.62, 155.55, 152.95, 141.31, 133.35, 130.23, 126.34, 122.66, 117.00, 110.49, 88.73, 82.81, 81.08, 67.04, 28.21, 27.75. MS (EI): 419 (M⁺, 1), 188 (100), 57 (82), 148 (38), 160 (35), 189 (20), 161 (10), 120 (9). HRMS (EI): Exact mass calcd for C₂₁H₂₉N₃O₆ [M]⁺: 419.2056, Found: 419.2059.

Compound **5b** was obtained in 70% yield as white solid, Mp: 88-90 °C. IR (neat): 1735, 1486, 1368, 1249, 1151 cm⁻¹. HPLC analysis (Chiralcel IC, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 16.42 min, t_r (minor) = 14.05 min) gave the isomeric composition of the product: 92% ee. $\left[\alpha\right]_{D}^{20} =$ -6.7 (c = 1.03, CHCl₃). ¹H NMR (400 MHz, DCl₃): δ = 8.09 (br, 1H), 7.60-7.58 (m, 1H), 6.99 (t, J

= 8.0 Hz, 1H), 6.77-6.75 (m, 2H), 5.85-5.79 (1H), 5.27-5.23 (m, 1H), 5.15-5.12 (m, 1H), 4.18 (dd, *J* = 12.0 Hz, *J* = 4.0 Hz, 1H), 4.10 (dd, *J* = 12.0 Hz, *J* = 4.0 Hz, 1H), 1.54 (s, 9H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 174.50, 160.26, 157.86, 155.58, 153.02, 137.24, 133.15, 128.05, 127.97, 117.32, 116.80, 116.56, 114.50, 114.25, 111.21, 111.14, 88.73, 83.17, 81.38, 67.09, 28.25, 27.89. MS (EI): 437 (M⁺, 1), 57 (100), 206 (90), 166 (41), 178 (26), 207 (23), 138 (9), 116 (9). HRMS (EI): Exact mass calcd for $C_{21}H_{28}N_3O_6F[M]^+$: 437.1962, Found: 437.1963.

Compound 5c was obtained in 80% yield as white solid, Mp: 90-92 °C. IR (neat): 1733, 1708, 1476, 1367, 1152 cm⁻¹. HPLC analysis (Chiralcel IC, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 17.35 min, t_r (minor) = 14.59 min) gave the isometric composition of the

product: 93% ee. $[\alpha]_{D}^{20} = -5.9$ (c = 1.05, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 8.30-8.27$ (m, 1H), 7.75 (s, 1H), 7.51-7.24 (m, 1H), 6.78-6.49 (m, 2H), 5.87-5.79 (m, 1H), 5.28-5.23 (m, 1H), 5.16-5.13 (m, 1H), 4.20 (dd, J = 12.0 Hz, J = 4.0 Hz, 1H), 4.09 (dd, J = 12.0 Hz, J = 8.0 Hz, 1H), 1.54 (s. 9H), 1.31 (s. 9H). ¹³C NMR (100 MHz, CDCl₃): δ 174.13, 155.46, 153.11, 139.87, 133.10, 130.28, 128.10, 128.00, 126.56, 117.43, 111.65, 88.52, 83.24, 81.40, 67.11, 28.26, 27.91. MS (EI): 453 (M⁺, 1), 57 (100), 222 (64), 182 (27), 224 (22), 223 (16), 194 (15), 184 (9). HRMS (EI): Exact mass calcd for C₂₁H₂₈N₃O₆Cl [M]⁺: 453.1667, Found: 453.1665.

Compound **5d** was obtained in 86% yield as white solid, Mp: 99-101 °C. IR (neat): 1734, 1708, 1475, 1367, 1156 cm⁻¹. HPLC analysis (Chiralcel IC, 5% ^{*i*}PrOH/hexane, 0.8 mL/min, 230 nm; t_r (major) = 17.98 min, t_r (minor) = 15.12 min) gave the isomeric composition of the

product: 93% ee. $[\alpha]_D^{20} = -6.2$ (c = 1.02, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 8.48$ (br, 1H),

7.86 (d, J = 4.0 Hz, 1H), 7.40-7.37 (m, 1H), 6.82 (br, 1H), 6.73-6.69 (m, 1H), 5.87-5.79 (m, 1H), 5.28-5.23 (m, 1H), 5.16-5.13 (m, 1H), 4.21 (dd, J = 12.0 Hz, J = 4.0 Hz, 1H), 4.09 (dd, J = 12.0 Hz, J = 8.0 Hz, 1H), 1.54 (s, 9H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 173.95, 155.42, 153.16, 140.38, 133.19, 133.11, 129.22, 128.33, 117.45, 115.36, 112.16, 88.46, 83.26, 81.40, 67.10, 28.28, 27.92. MS (EI): 497 (M⁺, 1), 57 (100), 266 (45), 268 (44), 226 (19), 228 (16), 267 (11), 269 (11). HRMS (EI): Exact mass calcd for C₂₁H₂₈N₃O₆Br [M]⁺: 497.1161, Found: 497.1165.

Compound **5e** was obtained in 67% yield as white solid, Mp: 98-100 °C. IR (neat): 1736, 1707, 1476, 1366, 1154 cm⁻¹. HPLC analysis (Chiralcel IC, 5% ^{*i*}PrOH/hexane, 0.8 mL/min, 230 nm; t_r (major) = 20.25 min, t_r (minor) = 17.15 min) gave the isomeric composition of the product: 93%

ee. $[\alpha]_D{}^{20} = -8.2$ (c = 1.05, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 8.22$ (br, 1H), 7.99 (m, 1H), 7.60-7.58 (m, 1H), 6.77 (s, 1H), 6.61 (d, J = 8.0 Hz, 1H), 5.88-5.79 (m, 1H), 5.28-5.23 (m, 1H), 5.16-5.14 (m, 1H), 4.22 (dd, J = 12.0 Hz, J = 4.0 Hz, 1H), 4.08 (dd, J = 12.0 Hz, J = 8.0 Hz, 1H), 1.54 (s, 9H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 173.48, 155.23, 153.11, 140.87, 139.09, 134.62, 133.07, 128.50, 117.42, 112.58, 88.15, 85.14, 83.18, 81.34, 66.96, 28.22, 27.84. MS (EI): 545 (M⁺, 1), 57 (100), 314 (77), 274 (25), 315 (20), 187 (16), 286 (12), 287 (11). HRMS (EI): Exact mass calcd for C₂₁H₂₈N₃O₆I [M]⁺: 545.1023, Found: 545.1024.

Compound **5f** was obtained in 79% yield as white solid, Mp: 88-90 °C. IR (neat): 1737, 1707, 1494, 1367, 1157 cm⁻¹. HPLC analysis (Chiralcel IC, 5% ^{*i*}PrOH/hexane, 0.8 mL/min, 230 nm; t_r (major) = 28.11 min, t_r (minor) = 22.69 min) gave the isomeric composition of the

product: 86% ee. $[\alpha]_D^{20} = -8.2$ (c = 1.00, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 7.50-7.48$ (m, 2H), 7.07 (d, J = 8.0 Hz, 1H), 6.71-6.69 (m, 2H), 5.85-5.75 (m, 1H), 5.25-5.20 (m, 1H), 5.11-5.09 (m, 1H), 4.19 (dd, J = 12.0 Hz, J = 4.0 Hz, 1H), 4.03 (dd, J = 12.0 Hz, J = 4.0 Hz, 1H), 2.33 (s, 3H), 1.52 (s, 9H), 1.26 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 174.59, 155.45, 153.10, 138.75, 133.44, 132.14, 130.54, 126.77, 126.36, 117.00, 110.20, 88.81, 82.75, 80.99, 66.93, 28.23, 27.78,

21.11. MS (EI): 433 (M⁺, 1), 202 (100), 57 (65), 174 (37), 162 (34), 203 (18), 132 (13), 146 (12). HRMS (EI): Exact mass calcd for $C_{22}H_{31}N_3O_6 [M]^+$: 433.2213, Found: 433.2214.

HN^{_Boc} Compound 5g was obtained in 71% yield as white solid, Mp: 77-79 °C. IR (neat): 1728, 1707, 1491, 1367, 1155 cm⁻¹. HPLC analysis Boc Et (Chiralcel ADH, 10% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 5a 10.16 min, t_r (minor) = 13.83 min) gave the isomeric composition of the product: 86% ee. $[\alpha]_{D}^{20} = -5.5$ (c = 0.98, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 7.66$ (br, 1H), 7.53 (br, 1H), 7.09 (d, J = 4.0 Hz, 1H), 6.74-6.72 (m, 2H), 5.85-5.75 (m, 1H), 5.24-5.20 (m, 1H), 5.11-5.08 (m, 1H), 4.23-4.18 (m, 1H), 4.06-4.01 (m, 1H), 2.66-2.62 (m, 2H), 1.52 (s, 9H), 1.24-1.19 (m, 12H). ¹³C NMR (100 MHz, CDCl₃): δ 174.61, 155.39, 153.17, 138.91, 138.81, 133.48, 129.34, 126.43, 125.80, 117.00, 110.25, 88.84, 82.73, 80.97, 66.94, 28.48, 28.25, 27.77, 15.86. MS (EI): 447 (M⁺, 1), 216 (100), 57 (68), 188 (35), 176 (31), 217 (18), 146 (15), 174 (14).

HRMS (EI): Exact mass calcd for $C_{23}H_{33}N_3O_6 [M]^+$: 447.2369, Found: 447.2368.

IR (neat): 1731, 1689, 1484, 1247, 1157 cm⁻¹. HPLC analysis Boc (Chiralcel IC, 5% ⁱPrOH/hexane, 0.8 mL/min, 230 nm; t_r (major) = 23.93 min, t_r (minor) = 21.11 min) gave the isomeric composition of the product: 88% ee. $[\alpha]_D^{20} = -6.5$ (c = 0.98, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 7.78$ (s, 1H), 7.34 (s, 1H), 6.91 (s, 1H), 6.71 (s, 1H), 5.85-5.76 (m, 1H), 5.25-5.20 (m, 1H), 5.11-5.09 (m, 1H), 4.19 (dd, J = 12.0 Hz, J = 4.0 Hz, 1H), 4.02 (dd, J = 12.0 Hz, J = 4.0 Hz, 1H), 2.30 (s, 3H), 2.17 (s, 3H), 1.52 (s, 9H), 1.23 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 175.19, 155.42, 153.09, 137.37, 133.52, 132.08, 132.03, 126.13, 124.15, 119.22, 117.00, 89.22, 82.71, 80.96, 67.01, 28.24, 27.71, 21.05, 15.99. MS (EI): 447 (M⁺, 1), 216 (100), 57 (54), 188 (40), 176 (31), 146 (18), 217 (17), 160 (12). HRMS (EI): Exact mass calcd for $C_{23}H_{33}N_3O_6$ [M]⁺: 447.2369, Found: 447.2366.

Compound **5h** was obtained in 50% yield as white solid, Mp: 97-99 °C.

Compound **5i** was obtained in 73% yield as white solid, Mp: 88-90 °C. IR (neat): 1726, 1392, 1367, 1247, 1153 cm⁻¹. HPLC analysis (Chiralcel IC, 5% ^{*i*}PrOH/hexane, 0.8 mL/min, 230 nm; t_r (major) = 19.79 min, t_r (minor) = 17.22 min) gave the isomeric composition of the product: 90% ee. $[\alpha]_D^{20}$ =

-10.5 (c = 1.07, CHCl₃). ¹H NMR (400 MHz, DCl₃): δ = 8.36 (br, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.10 (d, *J* = 8.0 Hz, 1H), 6.98 (t, *J* = 8.0 Hz, 1H), 6.74 (s, 1H), 5.84-5.75 (m, 1H), 5.24-5.23 (m, 1H), 5.11-5.08 (m, 1H), 4.18 (dd, *J* = 12.0 Hz, *J* = 4.0 Hz, 1H), 4.03 (dd, *J* = 12.0 Hz, *J* = 4.0 Hz, 1H), 2.22 (s, 3H), 1.52 (s, 9H), 1.22 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 175.28, 155.50, 152.90, 139.90, 133.43, 131.57, 126.12, 123.75, 122.58, 119.55, 117.00, 89.13, 82.75, 81.04, 67.12, 28.21, 27.68, 16.04. MS (EI): 433 (M⁺, 1), 202 (100), 57 (70), 174 (37), 162 (36), 203 (18), 132 (11). HRMS (EI): Exact mass calcd for C₂₂H₃₁N₃O₆ [M]⁺: 433.2213, Found: 433.2212.

Compound **5j** was obtained in 97% yield as white solid, Mp: 85-87 °C. IR (neat): 1736, 1621, 1476, 1246, 1150 cm⁻¹. HPLC analysis (Chiralcel ODH, 10% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 4.58 min, t_r (minor) = 4.07 min) gave the isomeric composition of the product: 89% ee. $[\alpha]_D^{20}$ =

+10.3 (c = 1.02, CHCl₃). ¹H NMR (400 MHz, DCl₃): δ = 7.74-7.71 (m, 2H), 7.30-7.28 (m, 1H), 7.05 (t, *J* = 8.0 Hz, 1H), 6.70 (s, 1H), 5.86-5.76 (m, 1H), 5.26-5.22 (m, 1H), 5.15-5.12 (m, 1H), 4.22-4.17 (m, 1H), 4.10-4.06 (m, 1H), 1.54 (s, 9H), 1.27 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 173.68, 155.60, 152.69, 138.87, 133.13, 130.11, 128.35, 124.64, 123.69, 117.32, 115.49, 89.04, 83.28, 81.31, 67.24, 28.26, 27.76. MS (EI): 453 (M⁺, 1), 57 (100), 222 (71), 182 (39), 194 (25), 224 (25). HRMS (EI): Exact mass calcd for C₂₁H₂₈N₃O₆Cl [M]⁺: 453.1667, Found: 453.1666.

C Compound **5k** was obtained in 96% yield as white solid, Mp: 87-89 °C. IR (neat): 1738, 1617, 1474, 1247, 1146 cm⁻¹. HPLC analysis (Chiralcel ODH, 10% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 4.67 min, t_r (minor) = 4.13 min) gave the isomeric composition of the product: 89% ee.

 $[\alpha]_D^{20} = +14.3$ (c = 1.07, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 7.76$ (d, J = 8.0 Hz, 1H), 7.62 (br, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.00 (t, J = 8.0 Hz, 1H), 6.68 (s, 1H), 5.86-5.76 (m, 1H),

5.26-5.22 (m, 1H), 5.15-5.13 (m, 1H), 4.19 (dd, J = 12.0 Hz, J = 4.0 Hz, 1H), 4.07 (dd, J = 12.0 Hz, J = 8.0 Hz, 1H), 1.54 (s, 9H), 1.27 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 173.44, 155.60, 152.66, 140.44, 133.12, 132.89, 128.45, 125.20, 124.10, 117.33, 103.47, 99.98, 89.32, 83.32, 81.32, 67.25, 28.26, 27.78. MS (EI): 497 (M⁺, 1), 57 (100), 266 (43), 268 (42), 226 (24), 228 (21), 240 (16). HRMS (EI): Exact mass calcd for C₂₁H₂₈N₃O₆Br[M]⁺: 497.1161, Found: 497.1158.

HN Boc Compound **51** was obtained in 92% yield as white solid, Mp: 101-103 °C. N Boc IR (neat): 1731, 1709, 1368, 1248, 1152 cm⁻¹. HPLC analysis (Chiralcel IC, 5% ^{*i*}PrOH/hexane, 0.8 mL/min, 230 nm; t_r (major) = 11.26 min, t_r (minor) = 9.70 min) gave the isomeric composition of the product:

88% ee. $[\alpha]_D{}^{20} = +7.2$ (c = 0.95, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 8.81$ (s, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.08 (d, J = 8.0 Hz, 1H), 6.75 (s, 1H), 5.85-5.74 (m, 1H), 5.24-5.23 (m, 1H), 5.12-5.09 (m, 1H), 4.15 (dd, J = 12.0 Hz , J = 8.0 Hz, 1H), 4.03 (dd, J = 12.0 Hz , J = 8.0 Hz, 1H), 2.24 (s, 3H), 1.52 (s, 9H), 1.26 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 175.23, 155.49, 152.81, 141.22, 136.29, 133.20, 124.58, 124.49, 123.18, 118.33, 117.20, 88.94, 82.98, 81.23, 67.11, 28.19, 27.75, 13.57. MS (EI): 467 (M⁺, 1), 57 (100), 236 (99), 238 (34), 196 (30), 208 (22), 237 (18), 209 (11). HRMS (EI): Exact mass calcd for C₂₂H₃₀N₃O₆Cl[M]⁺: 467.1823, Found: 467.1819.

Me

Compound **5m** was obtained in 97% yield as white solid, Mp: 74-76 °C. IR (neat): 1726, 1691, 1472, 1244, 1155 cm⁻¹. HPLC analysis (Chiralcel IC, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 19.15 min, t_r (minor) = 15.67 min) gave the isomeric composition of the product: 81% ee. $[\alpha]_D^{20}$ =

-1.5 (c = 0.76, CHCl₃). ¹H NMR (400 MHz, DCl₃): δ = 7.86-7.82 (m, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.28-7.24 (m, 1H), 7.06 (t, *J* = 8.0 Hz, 1H), 6.81 (d, *J* = 8.0 Hz, 1H), 6.74 (br, 1H), 3.71-3.63 (m, 1H), 3.55-3.47 (m, 1H), 1.53 (s, 9H), 1.23 (s, 9H), 1.14 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 174.75, 155.53, 152.96, 141.16, 130.12, 126.59, 126.43, 122.67, 110.33, 88.85, 82.72, 81.04, 62.13, 28.23, 27.78, 15.13. MS (EI): 407 (M⁺, 1), 148 (100), 176 (88), 57 (40), 177 (26), 149 (10), 146 (6), 120 (5). HRMS (EI): Exact mass calcd for C₂₀H₂₉N₃O₆ [M]⁺: 407.2056, Found: 407.2058.

HN^{_Boc} Compound **5n** was obtained in 92% yield as white solid, Mp: 75-77 °C. IR ⁱPrO (neat): 1703, 1619, 1474, 1246, 1159 cm⁻¹. HPLC analysis (Chiralcel ADH, Boc 10% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 13.20 min, t_r (minor) = O 9.78 min) gave the isomeric composition of the product: 86% ee. $[\alpha]_D^{20} = -9.9$ 5n н $(c = 1.09, CHCl_3)$. ¹H NMR (400 MHz, DCl₃): $\delta = 7.87-7.85$ (m, 2H), 7.29-7.25 (m, 1H), 7.06 (t, J = 8.0 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.74 (br, 1H), 4.10-4.04 (m, 1H), 1.54 (s, 9H), 1.23 (s, 1H), 1.54 (s, 2H), 1.23 9H), 1.14 (d, J = 4.0 Hz, 3H), 0.84 (d, J = 4.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 175.79, 155.53, 152.63, 141.33, 130.06, 127.10, 126.46, 122.70, 110.29, 89.03, 82.54, 80.92, 69.65, 28.23, 27.76, 23.52, 23.21. MS (EI): 421 (M⁺, 1), 148 (100), 57 (32), 190 (15), 149 (13), 120 (10), 191 (7), 146 (6). HRMS (EI): Exact mass calcd for $C_{21}H_{31}N_3O_6$ [M]⁺: 421.2213, Found: 421.2212.

HN^{-Boc} Compound **50** was obtained in 96% yield as white solid, Mp: 89-91 °C. IR ^tBuO^N, Boc (neat): 1731, 1709, 1473, 1248, 1160 cm⁻¹. HPLC analysis (Chiralcel ADH, 15% ⁱPrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 6.83 min, t_r (minor) = 5.61 min) gave the isomeric composition of the product: 88% ee. $[\alpha]_D^{20}$ = -22.9 (c = 0.84, CHCl₃). ¹H NMR (400 MHz, DCl₃): δ = 7.87 (d, *J* = 8.0 Hz, 1H), 7.75 (br, 1H), 7.26-7.24 (m, 1H), 7.03 (t, *J* = 8.0 Hz, 1H), 6.77 (d, *J* = 4.0 Hz, 1H), 6.69 (br, 1H), 1.54 (s, 9H), 1.24 (s, 9H), 1.14 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 177.29, 155.50, 152.44, 141.76, 130.29, 128.40 127.66, 122.49, 110.19, 87.47, 82.16, 80.50, 79.18, 29.77, 28.31, 27.86. MS (EI): 435 (M⁺,

1), 148 (100), 57 (52), 149 (15), 232 (15), 120 (15), 176 (13), 132 (12). HRMS (EI): Exact mass calcd for $C_{22}H_{33}N_3O_6 [M]^+$: 435.2369, Found: 435.2368.

Compound **5p** was obtained in 83% yield as white solid, Mp: 78-80 °C. IR (neat): 1732, 1708, 1473, 1247, 1154 cm⁻¹. HPLC analysis (Chiralcel IC, 5% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 18.99 min, t_r (minor) = 13.96 min) gave the isomeric composition of the product: 91% ee. $[\alpha]_D^{20}$ =

-21.7 (c = 1.01, CHCl₃). ¹H NMR (400 MHz, DCl₃): δ = 8.15 (br, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.28-7.22 (m, 6H), 7.08 (t, *J* = 8.0 Hz, 1H), 6.83-6.81 (m, 2H), 4.64 (ABd, *J* = 12.0 Hz, 1H), 4.56 (ABd, *J* = 12.0 Hz, 1H), 1.47 (s, 9H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 174.59, 155.55, 152.92, 141.38, 136.96, 130.32, 128.07, 127.55, 127.45, 126.46, 126.31, 122.81, 110.49, 88.91, 82.85, 81.09, 67.71, 28.14, 27.75. MS (EI): 469 (M⁺, 1), 91 (100), 57 (56), 166 (33), 148 (28), 238 (19), 92 (12), 146 (11). HRMS (EI): Exact mass calcd for C₂₅H₃₁N₃O₆ [M]⁺: 469.2213, Found: 469.2215.

7. Transformation of Adduct 12a⁴.

An stream of ozone was bubbled through a solution of 5a (42.0 mg, 0.1 mmol) in CH₂Cl₂ (2 mL) at -78 °C until it turned light blue. Excess ozone was removed by flushing the solution with O₂, and then Na[BH(OAc)₃] (110.0 mg, 0.5 mmol) was added. The mixture was vigorously stirred and warm to room temperature naturally. After 3 h, the reaction was quenched by the addition of aqueous NaOH (2 N, 0.2 mL), followed by dehydration using anhydrous Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by column chromatography (hexanes/ethyl acetate 1:1), affording compound 6 in 32.7 mg (77% yield) as white solid, Mp: 59-61 °C. IR (neat): 1697, 1622, 1474, 1393, 1250, 1154 cm⁻¹. HPLC analysis (Chiralcel IC, 15% ^{*i*}PrOH/hexane, 1.0 mL/min, 230 nm; t_r (major) = 10.61 min, t_r (minor) = 25.01 min) gave the isomeric composition of the product: 90% ee. $\left[\alpha\right]_{D}^{20} = +7.7$ (c = 1.01, CHCl₃). ¹H NMR (400 MHz, DCl₃): $\delta = 8.77-8.71$ (m, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.49-7.33 (m, 1H), 7.24 (t, J = 8.0Hz, 1H), 7.06-7.01 (m, 1H), 6.83-6.81 (m, 1H), 3.72-3.61 (m, 4H), 2.28 (br, 1H), 1.52 (s, 9H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 174.38, 155.61, 152.92, 141.16, 130.45, 126.44, 126.00, 122.89, 110.55, 88.67, 82.88, 81.22, 67.49, 61.46, 28.22, 27.83. MS (EI): 423 (M⁺, 1), 148 (100), 57 (54), 192 (33), 193 (14), 149 (10), 176 (9), 132 (8). HRMS (EI): Exact mass calcd for C₂₀H₂₉N₃O₇[M]⁺: 423.2006, Found: 423.2003.

To a stirred solution of **6** (30.0 mg, 0.07 mmol) and Ph₃P (39.3 mg, 0.15mmol) in THF (3 mL) was added diethyl azodicarboxylate (DBAD) (24 μ L, 0.15 mmol) at room temperature. After 3 h, the solvent was removed under reduced pressure. The residue was purified by column chromatography (hexanes/ethyl acetate 1:1), giving compound **7** in 15.4 mg (52% yield) as white solid. Mp: 57-59 °C. IR (neat): 1799, 1700, 1624, 1473, 1394, 1260, 1149 cm⁻¹. HPLC analysis (Chiralcel ADH, 10% ^{*i*}PrOH/hexane, 1.0 mL/min, 215 nm; t_r (major) = 10.49 min, t_r (minor) = 13.78 min) gave the isomeric composition of the product: 90% ee. $[\alpha]_D^{20} = -7.3$ (c = 0.71, CHCl₃). ¹H NMR (400 MHz, DCl₃): see below. ¹³C NMR (100 MHz, CDCl₃): see below. MS (EI): 405 (M⁺, 1), 57 (100), 177 (73), 221 (39), 148 (26), 249 (21), 175 (16), 119 (13). HRMS (EI): Exact mass calcd for C₂₀H₂₇N₃O₆[M]⁺: 405.1900, Found: 405.1901.

⁴ H. Bittermann, P. Gmeiner, J. Org. Chem. 2006, 71, 97.

8. Single-Crystal X-ray Crystallography of product 3a⁵

Data intensity of **3a** was collected using a Bruker SMART APEX II (Mo radiation). The X-ray condition of was 50 kV × 30 mA. Data collection and reduction were done by using the Bruker ApexII software package. The structure was solved by direct methods and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for **3a**: C₂₈H₃₁N₃O₅S, M = 521.62, T = 296(2) K, λ = 0.71073 Å, monoclinic, space group P2(1)/n, a = 13.8796(10) Å, b = 23.1960(17) Å, c = 8.6991(6) Å, V = 2785.3(3) Å³, z = 4, d_{calc} = 1.244 mg/m³, 32345 reflections measured, 4920 unique [R_{int} = 0.0604], R₁ = 0.0865, wR₂ = 0.2238 ($I > 2\sigma(I)$, final), R₁ = 0.1233, wR₂ = 0.2563 (all data), GOF = 1.054, and 334 parameters.

Table 1. Crystal data and structure refinement for z.

Identification code	Ζ
Empirical formula	C28 H31 N3 O5 S
Formula weight	521.62
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	a = 13.8796(10) A alpha = 90 deg.
	b = 23.1960(17) A beta = 96.000(2) deg.
	c = 8.6991(6) A gamma = 90 deg.

⁵ CCDC number: 910674.

Volume	2785.3(3) A^3
Z, Calculated density	4, 1.244 Mg/m^3
Absorption coefficient	0.157 mm^-1
F(000)	1104
Crystal size	0.44 x 0.23 x 0.11 mm
Theta range for data collection	1.48 to 25.01 deg.
Limiting indices	-16<=h<=16, -27<=k<=27, -10<=l<=9
Reflections collected / unique	32345 / 4920 [R(int) = 0.0604]
Completeness to theta = 25.01	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9829 and 0.9341
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4920 / 11 / 334
Goodness-of-fit on F^2	1.054
Final R indices [I>2sigma(I)]	R1 = 0.0865, wR2 = 0.2238
R indices (all data)	R1 = 0.1233, wR2 = 0.2563
Largest diff. peak and hole	1.048 and -0.757 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic

displacement parameters (A 2 x 10 3) for z.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	у	Z	U(eq)
S(1)	34501(1)	8733(1)	-14456(1)	60(1)
O(1)	34364(3)	10027(2)	-13002(5)	73(1)
O(2)	37448(3)	8479(2)	-13727(4)	70(1)
O(3)	37462(3)	8772(2)	-16215(4)	61(1)

O(4)	37452(2)	9841(2)	-13233(4)	61(1)
O(5)	36464(2)	9843(2)	-11317(4)	62(1)
N(1)	34409(3)	9463(2)	-10844(4)	51(1)
N(2)	36365(3)	9124(2)	-14864(4)	47(1)
N(3)	36094(3)	9317(2)	-13466(4)	48(1)
C(11)	34877(3)	8956(2)	-10286(5)	45(1)
C(12)	34886(4)	8715(2)	-8854(6)	63(1)
C(13)	35396(5)	8205(3)	-8599(7)	77(2)
C(14)	35882(4)	7958(2)	-9713(6)	71(2)
C(15)	35894(4)	8216(2)	-11158(6)	55(1)
C(16)	35385(3)	8721(2)	-11431(5)	42(1)
C(17)	35222(3)	9095(2)	-12841(5)	43(1)
C(18)	34614(3)	9602(2)	-12267(6)	51(1)
C(19)	36671(3)	9686(2)	-12572(6)	50(1)
C(20)	38206(4)	10203(3)	-12385(7)	72(2)
C(21)	38572(5)	9917(4)	-10874(9)	107(2)
C(22)	38978(5)	10209(4)	-13476(10)	113(3)
C(23)	37788(6)	10796(3)	-12156(9)	98(2)
C(24)	37143(3)	8760(2)	-14827(6)	50(1)
C(25)	38305(4)	8422(2)	-16557(7)	67(2)
C(26)	39177(4)	8579(3)	-15432(9)	95(2)
C(27)	38436(6)	8607(3)	-18178(8)	104(2)
C(28)	38056(5)	7790(2)	-16474(8)	82(2)
C(1)	33514(4)	8502(4)	-13462(7)	101(3)
C(2)	32730(5)	8807(5)	-13223(9)	161(6)
C(3)	32000(6)	8456(4)	-12315(8)	96(2)
C(4)	32214(6)	7897(4)	-11805(9)	120(3)
C(5)	32979(8)	7566(5)	-12087(13)	239(10)

C(6)	33540(8)	7946(5)	-12889(11)	170(6)
C(7)	31232(8)	8787(5)	-12101(13)	299(14)
C(8)	30639(9)	8433(6)	-11312(15)	197(8)
C(9)	30717(6)	7885(5)	-10684(10)	141(4)
C(10)	31500(7)	7562(6)	-10912(11)	162(5)

Table 3. Bond lengths [A] and angles [deg] for z.

S(1)-C(1)	1.778(6)
S(1)-C(17)	1.840(4)
O(1)-C(18)	1.206(6)
O(2)-C(24)	1.198(6)
O(3)-C(24)	1.328(5)
O(3)-C(25)	1.481(6)
O(4)-C(19)	1.329(5)
O(4)-C(20)	1.477(6)
O(5)-C(19)	1.213(5)
N(1)-C(18)	1.338(6)
N(1)-C(11)	1.405(6)
N(2)-C(24)	1.369(6)
N(2)-N(3)	1.385(5)
N(3)-C(19)	1.360(6)
N(3)-C(17)	1.470(5)
C(11)-C(12)	1.365(7)
C(11)-C(16)	1.390(6)
C(12)-C(13)	1.384(8)
C(13)-C(14)	1.363(8)
C(14)-C(15)	1.395(7)

C(15)-C(16)	1.376(6)
C(16)-C(17)	1.499(6)
C(17)-C(18)	1.560(6)
C(20)-C(22)	1.504(9)
C(20)-C(21)	1.512(9)
C(20)-C(23)	1.514(9)
C(25)-C(27)	1.503(8)
C(25)-C(28)	1.508(8)
C(25)-C(26)	1.520(9)
C(1)-C(2)	1.333(8)
C(1)-C(6)	1.381(9)
C(2)-C(3)	1.575(8)
C(3)-C(7)	1.342(9)
C(3)-C(4)	1.392(8)
C(4)-C(5)	1.354(9)
C(4)-C(10)	1.533(8)
C(5)-C(6)	1.409(9)
C(7)-C(8)	1.394(10)
C(8)-C(9)	1.383(9)
C(9)-C(10)	1.351(9)
C(1)-S(1)-C(17)	98.7(2)
C(24)-O(3)-C(25)	121.0(4)
C(19)-O(4)-C(20)	120.3(4)
C(18)-N(1)-C(11)	112.6(4)
C(24)-N(2)-N(3)	117.7(4)
C(19)-N(3)-N(2)	120.5(4)
C(19)-N(3)-C(17)	117.8(4)
N(2)-N(3)-C(17)	121.4(4)

C(12)-C(11)-C(16)	122.4(4)
C(12)-C(11)-N(1)	128.2(4)
C(16)-C(11)-N(1)	109.4(4)
C(11)-C(12)-C(13)	116.9(5)
C(14)-C(13)-C(12)	121.9(5)
C(13)-C(14)-C(15)	120.9(5)
C(16)-C(15)-C(14)	117.9(5)
C(15)-C(16)-C(11)	120.0(4)
C(15)-C(16)-C(17)	131.6(4)
C(11)-C(16)-C(17)	108.4(4)
N(3)-C(17)-C(16)	116.4(4)
N(3)-C(17)-C(18)	110.4(4)
C(16)-C(17)-C(18)	102.4(3)
N(3)-C(17)-S(1)	106.3(3)
C(16)-C(17)-S(1)	112.6(3)
C(18)-C(17)-S(1)	108.6(3)
O(1)-C(18)-N(1)	127.6(4)
O(1)-C(18)-C(17)	125.6(4)
N(1)-C(18)-C(17)	106.8(4)
O(5)-C(19)-O(4)	126.1(4)
O(5)-C(19)-N(3)	121.5(4)
O(4)-C(19)-N(3)	112.4(4)
O(4)-C(20)-C(22)	101.8(5)
O(4)-C(20)-C(21)	109.9(5)
C(22)-C(20)-C(21)	110.8(6)
O(4)-C(20)-C(23)	108.7(5)
C(22)-C(20)-C(23)	112.5(6)
C(21)-C(20)-C(23)	112.5(6)

O(2)-C(24)-O(3)	128.0(4)
O(2)-C(24)-N(2)	124.5(4)
O(3)-C(24)-N(2)	107.5(4)
O(3)-C(25)-C(27)	102.0(5)
O(3)-C(25)-C(28)	109.5(4)
C(27)-C(25)-C(28)	111.9(6)
O(3)-C(25)-C(26)	109.4(5)
C(27)-C(25)-C(26)	111.6(6)
C(28)-C(25)-C(26)	111.9(6)
C(2)-C(1)-C(6)	115.5(8)
C(2)-C(1)-S(1)	126.8(7)
C(6)-C(1)-S(1)	117.7(6)
C(1)-C(2)-C(3)	112.5(9)
C(7)-C(3)-C(4)	129.4(9)
C(7)-C(3)-C(2)	109.7(9)
C(4)-C(3)-C(2)	120.9(8)
C(5)-C(4)-C(3)	128.1(9)
C(5)-C(4)-C(10)	111.4(9)
C(3)-C(4)-C(10)	120.4(8)
C(4)-C(5)-C(6)	102.6(10)
C(1)-C(6)-C(5)	140.2(11)
C(3)-C(7)-C(8)	104.5(11)
C(9)-C(8)-C(7)	135.2(12)
C(10)-C(9)-C(8)	118.8(9)
C(9)-C(10)-C(4)	111.5(9)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($A^2 \times 10^3$) for z.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	; 1	U 33	U23	U13	U12
S(1)	52(1)	87(1)	43(1)	-6(1)	8(1)	-12(1)	
O(1)	78(3)	63(2)	83(3)	23(2)	23(2)	27(2)	
O(2)	72(2)	79(3)	61(2)	19(2)	18(2)	24(2)	
O(3)	67(2)	67(2)	54(2)	5(2)	28(2)	13(2)	
O(4)	51(2)	67(2)	68(2)	-8(2)	19(2)	-12(2)	
O(5)	59(2)	66(2)	64(2)	-17(2)	19(2)	-4(2)	
N(1)	51(2)	52(2)	53(2)	-3(2)	19(2)	7(2)	
N(2)	45(2)	57(2)	41(2)	2(2)	9(2)	4(2)	
N(3)	45(2)	53(2)	46(2)	-3(2)	13(2)	-3(2)	
C(11)	44(2)	47(3)	45(2)	-1(2)	9(2)	1(2)	
C(12)	71(3)	74(4)	46(3)	1(3)	16(2)	3(3)	
C(13)	97(4)	82(4)	54(3)	23(3)	18(3)	13(4)	
C(14)	85(4)	62(3)	67(3)	18(3)	9(3)	19(3)	
C(15)	62(3)	48(3)	58(3)	2(2)	12(2)	8(2)	
C(16)	42(2)	45(2)	40(2)	-1(2)	8(2)	-2(2)	
C(17)	39(2)	48(2)	43(2)	1(2)	9(2)	2(2)	
C(18)	45(3)	52(3)	56(3)	4(2)	11(2)	5(2)	
C(19)	48(3)	47(3)	57(3)	-1(2)	14(2)	0(2)	
C(20)	52(3)	69(4)	95(4)	-6(3)	8(3)	-18(3)	
C(21)	73(4)	121(6)	122(6)	13(5)	-12(4)	2(4)	
C(22)	66(4)	129(7)	147(7)	-11(5)	33(4)	-40(4)	
C(23)	106(5)	65(4)	123(6)	-14(4)	6(5)	-19(4)	
C(24)	50(3)	50(3)	55(3)	-1(2)	18(2)	1(2)	

C(25)	60(3)	67(3)	80(4)	-9(3)	34(3)	4(3)
C(26)	56(4)	101(5)	132(6)	-30(4)	27(4)	-10(3)
C(27)	119(6)	113(6)	92(5)	3(4)	65(5)	10(5)
C(28)	80(4)	61(4)	107(5)	-12(3)	22(4)	2(3)
C(1)	67(4)	188(8)	49(3)	-27(4)	8(3)	-59(5)
C(2)	48(4)	333(16)	105(6)	-106(8)	21(4)	-39(6)
C(3)	97(5)	118(6)	70(4)	-22(4)	-13(4)	1(5)
C(4)	87(5)	148(8)	115(6)	-45(6)	-37(5)	17(5)
C(5)	340(20)	146(11)	199(14)	-63(10)	-146(15)	115(13)
C(6)	175(10)	245(14)	91(6)	19(7)	8(6)	-157(11)
C(7)	360(20)	244(17)	243(18)	-166(15)	-225(18)	165(18)
C(8)	166(11)	289(19)	139(10)	5(11)	26(8)	-151(13)
C(9)	107(7)	231(12)	89(6)	2(7)	26(5)	-106(8)
C(10)	85(6)	289(16)	112(7)	7(8)	15(5)	-65(9)

Table 5. Hydrogen coordinates ($x \ 10^{4}$) and isotropic

displacement parameters (A 2 x 10 3) for z.

	x	У	Z	U(eq)
H(1A)	34032	9663	-10326	61
H(2B)	36055	9229	-15726	57
H(12A)	34565	8885	-8085	75
H(13A)	35408	8026	-7641	92
H(14A)	36210	7612	-9506	85
H(15A)	36235	8053	-11914	66
H(21A)	38829	9544	-11077	160
H(21B)	38047	9876	-10245	160

H(21C)	39071	10151	-10340	160
H(22A)	39219	9825	-13584	169
H(22B)	39498	10457	-13072	169
H(22C)	38708	10350	-14467	169
H(23A)	37566	10960	-13144	147
H(23B)	38279	11040	-11639	147
H(23C)	37254	10765	-11542	147
H(26A)	39312	8983	-15517	143
H(26B)	39730	8361	-15672	143
H(26C)	39042	8493	-14396	143
H(27A)	37874	8501	-18856	156
H(27B)	38997	8421	-18507	156
H(27C)	38520	9018	-18204	156
H(28A)	37506	7707	-17204	123
H(28B)	37905	7698	-15451	123
H(28C)	38599	7563	-16716	123
H(2A)	32625	9185	-13555	193
H(5A)	33103	7183	-11818	287
H(6A)	34109	7765	-13101	205
H(7A)	31121	9167	-12410	359
H(8A)	30050	8606	-11174	237
H(9A)	30239	7741	-10116	169
H(10B)	31594	7184	-10570	194

Table 6. Torsion angles [deg] for z.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

*)—O N H 3f

ZHF-ZK-084B C

ZHF-ZK-084E C

5e

Н

ZHF-ZK-032B C

ZHF-ZK-032D C

ZHF-ZK-032E C

ZHF-ZK-118

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	8.43	n.a.	26.808	18.724	3.96	n.a.	BMB
2	13.77	n.a.	213.023	454.582	96.04	n.a.	BMB
Total	:		239.831	473.306	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	8.55	n.a.	77.683	49.103	49.05	n.a.	BMB
2	13.95	n.a.	28.189	50.997	50.95	n.a.	BMB
Total:			105.872	100.100	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	5.67	n.a.	1375.106	452.928	91.14	n.a.	BMB*
2	12.75	n.a.	46.229	44.008	8.86	n.a.	BMB*
Total:			1421.335	496.936	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	5.74	n.a.	324.558	107.970	50.27	n.a.	BMB
2	12.79	n.a.	106.774	106.814	49.73	n.a.	BMB
Total:			431.332	214.784	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	7.77	n.a.	118.465	54.425	10.44	n.a.	BMB*
2	10.21	n.a.	519.780	466.701	89.56	n.a.	BMB*
Tota	:		638.245	521.126	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	7.77	n.a.	181.227	86.768	50.10	n.a.	BM
2	10.25	n.a.	95.226	86.412	49.90	n.a.	MB
Total:			276.453	173.180	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	14.00	n.a.	641.072	777.698	97.18	n.a.	BM
2	16.44	n.a.	16.962	22.552	2.82	n.a.	MB
Total:			658.034	800.250	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	14.14	n.a.	110.636	129.840	49.99	n.a.	BM
2	16.55	n.a.	94.949	129.881	50.01	n.a.	MB
Total:			205.584	259.721	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	7.45	n.a.	22.661	12.728	4.48	n.a.	BMB
2	10.65	n.a.	189.942	271.358	95.52	n.a.	BMB
Total:			212.603	284.086	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	7.45	n.a.	131.898	78.248	48.72	n.a.	BM
2	10.63	n.a.	46.964	82.356	51.28	n.a.	MB
Total:			178.863	160.604	100.00	0.000	

Ν	۱o.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
		min		mAU	mAU*min	%		
Γ	1	7.94	n.a.	59.396	34.898	4.04	n.a.	BMB
L	2	12.20	n.a.	559.854	828.154	95.96	n.a.	BMB
Т	otal:			619.249	863.051	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	7.87	n.a.	343.172	225.922	49.88	n.a.	BMb*
2	11.83	n.a.	149.720	227.011	50.12	n.a.	bMB
Total:			492.892	452.933	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	8.39	n.a.	24.416	15.226	4.29	n.a.	BMB
2	14.23	n.a.	220.730	339.572	95.71	n.a.	BMB
Total:			245.146	354.798	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	8.45	n.a.	123.318	79.928	48.43	n.a.	BMB
2	14.22	n.a.	56.803	85.125	51.57	n.a.	BMB*
Total:			180.121	165.052	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.29	n.a.	21.773	16.281	3.64	n.a.	BMB
2	22.69	n.a.	179.636	430.853	96.36	n.a.	BMB
Total:			201.409	447.134	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.29	n.a.	184.645	138.666	50.36	n.a.	BMB
2	22.10	n.a.	60.396	136.694	49.64	n.a.	BMB
Total:			245.042	275.361	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	10.24	n.a.	26.021	19.739	3.94	n.a.	BMB
2	20.77	n.a.	215.172	481.320	96.06	n.a.	BMB
Total:			241.193	501.059	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	10.06	n.a.	186.972	138.288	50.37	n.a.	BMB
2	20.18	n.a.	64.497	136.275	49.63	n.a.	BMB
Total	:		251.469	274.563	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	9.45	n.a.	38.033	26.081	4.40	n.a.	BMB
2	17.56	n.a.	244.801	566.069	95.60	n.a.	BMB
Total:			282.833	592.150	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	9.51	n.a.	71.010	48.154	49.49	n.a.	BMB
2	2 17.42	n.a.	22.319	49.154	50.51	n.a.	BMB
Tota	l:		93.329	97.308	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.94	n.a.	116.683	88.399	8.36	n.a.	BMB
2	19.29	n.a.	383.640	968.903	91.64	n.a.	BMB
Total:			500.322	1057.301	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.94	n.a.	366.915	292.086	50.04	n.a.	BMB
2	19.33	n.a.	108.552	291.675	49.96	n.a.	BMB
Total:			475.467	583.761	100.00	0.000	

No	. Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
	1 9.59	n.a.	26.203	18.141	3.77	n.a.	BMB
	2 25.01	n.a.	104.913	462.798	96.23	n.a.	BMB
Tota	ıl:		131.117	480.939	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	9.61	n.a.	226.627	158.621	50.54	n.a.	BMB*
2	24.71	n.a.	37.606	155.261	49.46	n.a.	BMB
Total:			264.233	313.881	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	8.32	n.a.	42.564	29.709	3.78	n.a.	BMB
2	15.56	n.a.	249.240	755.841	96.22	n.a.	BMB
Total:			291.804	785.549	100.00	0.000	

I	No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
l		min		mAU	mAU*min	%		
I	1	8.36	n.a.	45.895	31.400	49.74	n.a.	BMB
l	2	15.43	n.a.	10.528	31.734	50.26	n.a.	BMB
ĺ	Total:			56.424	63.134	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	6.86	n.a.	22.143	11.089	5.76	n.a.	BMB
2	14.61	n.a.	49.930	181.405	94.24	n.a.	BMB
Total:			72.073	192.494	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	7.09	n.a.	354.812	191.068	49.16	n.a.	BMB
2	14.71	n.a.	49.776	197.599	50.84	n.a.	BMB
Total:			404.588	388.667	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	6.15	n.a.	21.147	8.995	3.79	n.a.	BMB*
2	8.01	n.a.	152.657	228.457	96.21	n.a.	BM *
Total:			173.804	237.453	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	6.37	n.a.	27.704	11.877	50.09	n.a.	BM
2	7.93	n.a.	8.798	11.837	49.91	n.a.	MB
Total:			36.502	23.714	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	16.30	n.a.	12.148	11.084	5.18	n.a.	BMB
2	22.11	n.a.	76.786	203.035	94.82	n.a.	BMB
Total:			88.934	214.119	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	16.21	n.a.	99.063	93.402	50.07	n.a.	BMB
2	22.37	n.a.	36.042	93.148	49.93	n.a.	BMB
Total:			135.104	186.551	100.00	0.000	

	No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
Γ	1	11.06	n.a.	69.373	70.927	77.89	n.a.	BMB*
L	2	16.89	n.a.	5.477	20.132	22.11	n.a.	BMB*
ŀ	Total:			74.850	91.059	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	11.14	n.a.	52.204	52.850	48.63	n.a.	BMB
2	17.21	n.a.	15.499	55.823	51.37	n.a.	BMB
Total:			67.703	108.673	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	9.11	n.a.	79.682	66.658	73.68	n.a.	BM *
2	11.25	n.a.	14.422	23.806	26.32	n.a.	MB*
Total:			94.104	90.464	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	9.09	n.a.	786.134	706.011	49.01	n.a.	BM *
2	11.01	n.a.	433.740	734.436	50.99	n.a.	MB*
Total:			1219.875	1440.447	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	15.65	n.a.	9.953	8.903	5.15	n.a.	BMB*
2	19.22	n.a.	138.019	163.864	94.85	n.a.	BMB*
Total:			147.972	172.767	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	15.03	n.a.	38.969	37.667	50.42	n.a.	BMB
2	18.38	n.a.	35.205	37.041	49.58	n.a.	BMB
Total:			74.174	74.708	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	14.05	n.a.	2.926	4.181	3.93	n.a.	BM
2	16.42	n.a.	89.161	102.324	96.07	n.a.	MB
Total:			92.087	106.505	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	13.46	n.a.	61.414	80.735	49.08	n.a.	BM
2	15.86	n.a.	80.729	83.766	50.92	n.a.	MB
Total:			142.143	164.500	100.00	0.000	

1	No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
Г	1	14.59	n.a.	3.164	4.593	3.48	n.a.	BM
	2	17.35	n.a.	99.768	127.459	96.52	n.a.	MB
Т	otal:			102.932	132.052	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	14.63	n.a.	67.034	106.367	49.72	n.a.	BM
2	17.56	n.a.	86.621	107.552	50.28	n.a.	MB
Total:			153.655	213.918	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	15.12	n.a.	4.554	6.292	3.63	n.a.	BM
2	17.98	n.a.	142.574	167.083	96.37	n.a.	MB
Total:			147.128	173.375	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	14.99	n.a.	18.341	26.067	50.25	n.a.	BM
2	17.98	n.a.	22.516	25.808	49.75	n.a.	MB
Total:			40.858	51.874	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	17.15	n.a.	5.745	9.004	3.45	n.a.	BM
2	20.25	n.a.	218.540	252.067	96.55	n.a.	MB
Total:			224.284	261.071	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	16.29	n.a.	87.152	116.580	49.91	n.a.	BM
2	19.73	n.a.	130.914	117.005	50.09	n.a.	MB
Total	:		218.066	233.585	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	22.69	n.a.	12.899	17.693	7.17	n.a.	BMB
2	28.11	n.a.	162.572	229.054	92.83	n.a.	BMB
Total:			175.471	246.747	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	22.61	n.a.	61.443	84.971	49.91	n.a.	BMB
2	28.09	n.a.	60.623	85.264	50.09	n.a.	BMB
Total:			122.066	170.236	100.00	0.000	

Ī	No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
Γ	1	10.16	n.a.	337.846	185.775	92.79	n.a.	BMB
L	2	13.83	n.a.	12.404	14.430	7.21	n.a.	BMB
ŀ	Total:			350.250	200.205	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.31	n.a.	189.332	110.144	51.13	n.a.	BMB*
2	14.07	n.a.	86.731	105.275	48.87	n.a.	BMB*
Total:			276.064	215.420	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	21.11	n.a.	17.981	19.545	6.05	n.a.	BMb*
2	23.93	n.a.	240.372	303.596	93.95	n.a.	bMB*
Total:			258.352	323.141	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	20.37	n.a.	167.356	259.171	49.72	n.a.	BM
2	24.39	n.a.	166.843	262.087	50.28	n.a.	MB
Total:			334.200	521.258	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	17.22	n.a.	15.062	12.449	5.02	n.a.	BM
2	19.79	n.a.	321.465	235.739	94.98	n.a.	MB
Total:			336.527	248.188	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	17.10	n.a.	136.017	113.611	50.17	n.a.	BM *
2	19.79	n.a.	157.763	112.828	49.83	n.a.	MB*
Total:			293.780	226.439	100.00	0.000	

I	No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
İ	1	4.07	n.a.	87.851	17.009	5.33	n.a.	BM
	2	4.58	n.a.	923.112	301.848	94.67	n.a.	MB
	Total:			1010.963	318.857	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	4.09	n.a.	125.245	22.056	50.33	n.a.	BM
2	4.66	n.a.	81.705	21.763	49.67	n.a.	MB
Total:			206.950	43.818	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	4.13	n.a.	84.437	16.538	5.64	n.a.	BM *
2	4.67	n.a.	822.473	276.938	94.36	n.a.	MB*
Total:			906.911	293.476	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	4.13	n.a.	512.001	90.207	50.34	n.a.	BM
2	4.67	n.a.	339.882	88.985	49.66	n.a.	MB
Total:			851.883	179.193	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	9.70	n.a.	140.106	79.294	5.95	n.a.	BM *
2	11.26	n.a.	1793.995	1252.548	94.05	n.a.	MB*
Total:			1934.101	1331.842	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	9.84	n.a.	1986.804	1475.331	49.42	n.a.	BM *
2	11.48	n.a.	1896.891	1510.250	50.58	n.a.	MB*
Total:			3883.695	2985.582	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	15.67	n.a.	17.343	5.529	9.62	n.a.	BMB
2	19.15	n.a.	34.234	51.946	90.38	n.a.	BMB
Total:			51.577	57.476	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	16.47	n.a.	180.407	255.628	49.98	n.a.	BM
2	19.59	n.a.	206.856	255.804	50.02	n.a.	MB
Total:			387.263	511.432	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	9.78	n.a.	12.907	11.376	7.10	n.a.	BMB
2	13.20	n.a.	151.748	148.788	92.90	n.a.	BMB
Total:			164.654	160.164	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	9.71	n.a.	385.170	332.516	49.75	n.a.	BM
2	13.13	n.a.	336.530	335.917	50.25	n.a.	MB
Total:			721.700	668.433	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	5.61	n.a.	12.922	4.002	6.08	n.a.	BMB
2	6.83	n.a.	143.632	61.868	93.92	n.a.	BMB
Total:			156.553	65.869	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	5.57	n.a.	764.115	252.556	49.45	n.a.	BM
2	6.78	n.a.	595.397	258.216	50.55	n.a.	MB
Total:			1359.512	510.773	100.00	0.000	

Γ	No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
L		min		mAU	mAU*min	%		
Γ	1	13.96	n.a.	5.050	5.328	4.58	n.a.	BMB
L	2	18.99	n.a.	69.719	110.890	95.42	n.a.	BMB
ŀ	Total:			74.769	116.218	100.00	0.000	

No.	Ret.Time	F	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min			mAU	mAU*min	%		
1	13.94	n.a.		122.578	139.197	49.95	n.a.	BMB
2	19.47	n.a.		110.320	139.449	50.05	n.a.	BMB
Total:				232.898	278.646	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	10.61	n.a.	168.933	107.250	94.89	n.a.	BMB*
2	25.01	n.a.	4.675	5.774	5.11	n.a.	BMB*
Total:			173.608	113.024	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.75	n.a.	48.419	31.454	50.34	n.a.	BMB
2	25.18	n.a.	23.063	31.035	49.66	n.a.	BMB
Total:			71.482	62.490	100.00	0.000	

Ν	lo.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
		min		mAU	mAU*min	%		
Г	1	10.49	n.a.	186.661	62.169	94.90	n.a.	BMB
	2	13.78	n.a.	6.786	3.341	5.10	n.a.	BMB
Тс	otal:			193.448	65.510	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.51	n.a.	54.772	18.320	50.40	n.a.	BMB
2	13.79	n.a.	34.784	18.032	49.60	n.a.	BMB
Total:			89.557	36.351	100.00	0.000	