## **Supporting Information for**

# Immunomodulation and the quorum sensing molecule $3-0x0-C_{12}$ -homoserine lactone: The importance of chemical scaffolding for probe development

Amanda L. Garner, Jing Yu, Anjali K. Struss, Gunnar F. Kaufmann, Vladimir V. Kravchenko and Kim D. Janda

### A. General Methods and Materials

*General chemistry methods:* Reactions were carried out under a nitrogen atmosphere with dry, freshly distilled solvents under anhydrous conditions, unless otherwise noted. Methylene chloride  $(CH_2Cl_2)$  was distilled from calcium hydride. Yields refer to chromatographically and spectroscopically homogenous materials, unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25-mm EMD silica gel plates (60F-254) using permanganate or ninhydrin staining. Flash chromatography separations were performed on Silicycle silica gel (40-63 mesh). NMR spectra were recorded on Bruker 400 MHz spectrometer instruments and calibrated using a solvent peak as an internal reference. The following abbreviations are used to indicate the multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad.

*General biology methods:* All mammalian cell experiments were performed as previously described.<sup>1</sup> Reporter assay experiments using *P. aeruginosa* strain PAO-JP2 were performed as previously described with minor changes as described below.<sup>2,3</sup> All luminescence and absorbance readings were measured on a SpectraMax M2<sub>e</sub> Microplate Reader (Molecular Devices).

*Materials:* L-Serine- $\beta$ -lactone tetrafluoroborate salt was purchased from Sigma Aldrich and used as received. Azidodecanoic acid was prepared according to literature precedent.<sup>4,5</sup>

### **B.** Synthetic Procedures and Characterization Data



*General synthetic protocol:* A round-bottom flask was charged with carboxylic acid (decanoic acid **1** or azidodecanoic acid **S1**) (7.0 mmol, 1.0 equiv) and  $CH_2Cl_2$  (50 mL) at 25 °C. Meldrum's acid (7.0 mmol, 1.0 equiv), DCC (7.7 mmol, 1.1 equiv) and DMAP (7.7 mmol, 1.1 equiv) were then added, and the solution was stirred at 25 °C overnight. The insoluble DCC by-product was then filtered off and the remaining solution was concentrated. The crude extract was then

dissolved in MeOH (50 mL) and refluxed overnight. Following concentration *in vacuo*, the crude material was purified via flash column chromatography (1:9 EtOAc in hexanes) to yield the coupled methyl ester (**2** or **S2**) (85–93% yield). The 3-oxo-substituent was then protected with ethylene glycol under standard conditions. The resulting crude protected methyl ester was hydrolyzed in 2N NaOH in MeOH. Extraction with EtOAc and concentration *in vacuo* yielded the protected acid as a white solid (**3** or **S3**) (60% yield). A fritted polypropylene tube was charged with protected acid (**3** or **S3**) (0.116 mmol, 1.0 equiv), polystyrene-supported PPh<sub>3</sub> (3 mmol/g, 0.255 mmol, 2.2 equiv), CBr<sub>4</sub> (0.127 mmol, 1.1 equiv) and CH<sub>2</sub>Cl<sub>2</sub> (10 mL) at 25 °C. After shaking overnight at 25 °C, the resin was filtered off. The filtrate was concentrated *in vacuo*, and fresh CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added followed by **4** (0.116 mmol, 1.0 equiv) and Et<sub>3</sub>N (0.174 mmol, 1.5 equiv). The mixture was stirred overnight at 25 °C and the crude residue was purified by flash column chromatography (1:1 EtOAc in hexanes). Deprotection was afforded by stirring with Montmorillonite K10 (350 mg). **βC12** and **βC12-N<sub>3</sub>** were obtained via preparative TLC (2:1 EtOAc in hexanes).

**Data for βC12:** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 8.09$  (br s, 1H), 5.21 (ddd, J = 8.0 Hz, 4.0 Hz, 1.2 Hz, 1H), 4.47–4.49 (m, 2H), 3.51 (s, 2H), 2.54 (t, J = 4.0 Hz, 2H), 1.58–1.63 (m, 4H), 1.26–1.31 (m, 11H), 0.89 (t, J = 8.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 207.4$ , 168.3, 166.5, 65.9, 58.5, 47.5, 44.3, 32.0, 29.6, 29.5, 29.4, 29.2, 23.6, 22.9, 24.3; HRMS (ESI-TOF) *m/z* calcd for C<sub>15</sub>H<sub>26</sub>NO<sub>4</sub> [M+H]<sup>+</sup> 284.3633, found 284.2819.

**Data for βC12-N<sub>3</sub>:** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 8.05$  (br s, 1H), 5.20 (ddd, J = 7.2 Hz, 6.0 Hz, 1.2 Hz, 1H), 4.45–4.47 (m, 2H), 3.49 (s, 2H), 2.52 (t, J = 7.2 Hz, 2H), 1.55–1.61 (m, 7H), 1.25–1.38 (m, 10H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 207.0$ , 168.2, 166.3, 65.7, 58.3, 51.5, 47.3, 44.0, 29.2, 28.9, 28.8, 26.7, 23.3, 21.1, 14.2; HRMS (ESI-TOF) *m/z* calcd for C<sub>15</sub>H<sub>25</sub>N<sub>4</sub>O<sub>4</sub> [M+H]<sup>+</sup> 325.3758, found 325.4001.

### C. Reporter Assay for Autoinducer Activity in Pseudomonas aeruginosa

PAO-JP2 (*lasI/rhlI*-deleted) strain, harboring plasmid pKD201 containing a *LasI* reporter coupled to the *luxCDABE* luminescence system, was incubated overnight in LB medium containing 300 µg/mL trimethprim. 500 µL of overnight culture was diluted in 50 mL fresh LB/trimethoprim. The diluted culture was then allowed to grow at 37 °C (250 rpm) until the culture reached an optical density (OD<sub>600</sub>) of 0.4–0.6. Aliquots (99 µL) of this culture were then plated into black, clear-bottom 96-well assay plates, and treated with compounds (1.0 µL of 100 µM DMSO stock, 1.0 µM final concentration). DMSO (1.0 µL) was used as a negative control. All samples were examined in triplicate. The plates were then incubated for 4 h at 37 °C (150 rpm) after which both luminescence and absorbance were measured. Relative luminescence units were normalized with respect to cell viability ([luminescence read-out]/[absorbance read-out]).



Figure S1. Dose-dependent autoinducer activity of C12.



Figure S2. Dose-dependent autoinducer activity of  $\beta$ C12.

#### **D. References**

- Kravchenko, V. V.; Kaufmann, G. F.; Mathison, J. C.; Scott, D. A.; Katz, A. Z.; Wood, M. R.; Brogan, A. P.; Lehmann, M.; Mee, J. M.; Iwata, K.; Pan, Q.; Fearns, C.; Knaus, U. G.; Meijler, M. M.; Janda, K. D.; Ulevitch, R. J. J. Biol. Chem. 2006, 281, 28822.
- 2. Duan, K.; Surette, M. G. J. Bacteriol. 2007, 189, 4827.
- 3. Amara, N.; Mashiach, R.; Amar, D.; Krief, P.; Spieser, S. A. H.; Bottomely, M. J.; Aharoni, A.; Meijler, M. M. J. Am. Chem. Soc. 2009, 131, 10610.
- Nagarajan, S. R.; Devadas, B.; Zupec, M. E.; Freeman, S. K.; Brown, D. L.; Lu, H.-F.; Mehta, P. P.; Kishoe, N. S.; McWherter, C. A.; Getman, D. P.; Gordon, J. I.; Sikorski, J. A. J. Med. Chem. 1997, 40, 1422.
- Garner, A. L.; Yu, J.; Struss, A. K.; Lowery, C. A.; Zhu, J.; Kim, S. K.; Park, J.; Mayorov, A. V.; Kaufmann, G. F.; Kravchenko, V. V.; Janda, K. D. *Bioorg. Med. Chem. Lett.* 2011, 21, 2702.