Highly diastereoselective synthesis of 3-indolylglycines via asymmetric oxidative heterocoupling reaction of chiral nickel(II) complex and indoles

Daizong Lin, ^{*a*} Jiang Wang, ^{*a*} Xu Zhang, ^{*a,b*} Shengbin Zhou, ^{*a*} Jie Lian, ^{*a,b*} Hualiang Jiang ^{*a*} and Hong Liu^{*, *a,b*}

^a State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.

^bDepartment of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, P. R. China

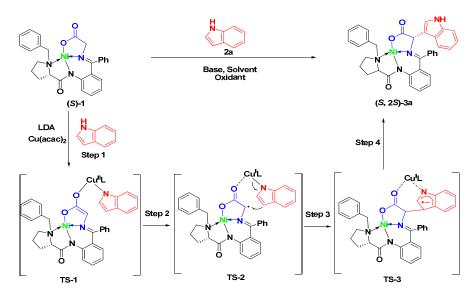

E-mail: hliu@mail.shcnc.ac.cn

Table of Contents

(A) A Proposed Mechanism	S2
(B) Optimization of the Reaction Conditions	
(C) The Absolute Configuration of 3a	
(D) General Methods	S6
(E) General Procedure for the Asymmetric Reactions	S7
(F) Analytical Characterization Data of Products	
(G) Copies of ¹ H NMR and ¹³ C NMR Spectra for the Products	S27
(H) Reference	S42

(A) A Proposed Mechanism

We proposed a mechanism of this oxidative coupling reaction (Scheme S1). Under the basic condition, the nickel complex enolate and an indole anion initially coordinate to the copper(II) center, giving the chelated intermediate **TS-1**, the chelate **TS-1** can undergo single-electron transfer to form the chelated nickel(II) complex radical **TS-2**. Due to its proximity to the indole anion, the radical is attacked by this nucleophilic species, resulting in radical anion **TS-3**. This intermediate **TS-3** can then be further oxidized by the proximal copper(I) to generate the product **3a** and copper(0).

Scheme S1

(B) Optimization of the Reaction Conditions

Copper(II) were considered to be good oxidants for this reaction (in Table 1, entry). We also explored copper(II) oxidants listed in Table S1, CuCl₂ and CuSO₄ afforded the target product in very low yield due to the poor conversion (entries 1 and 2). A higher yield and diastereoselectivity was observed with Cu(acac)₂ as the oxidant than with Cu(OMs)₂, Cu(OAc)₂, Cu(OTf)₂.

Table S1 Optimization of the Oxidants

$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$						
	(S)-1		(S, 2S)-3a		
Entry	Base	Solution	Oxidant	Temp/°C	Yield	de^b
Entry	Dase	Base Solution	Oxidant	Temp/C	(%)	(%)
1	LDA	THF	CuCl ₂	-40	15	ND
2	LDA	THF	CuSO ₄	-40	trace	ND
3	LDA	THF	Cu(OMs) ₂	-40	30	ND^{c}
4	LDA	THF	Cu(acac) ₂	-40	59	>99
5	LDA	THF	Cu(OTf) ₂	-40	48	98
6	LDA	THF	Cu(OAc) ₂	-40	42	98

The equivalents of the base, oxidant and indole were also optimized, which were listed in Table S2. The reactions were run under with 0.20 mmol of (*S*)-**1** and **2a** in 10 mL of THF with LDA for 0.5 h, then added Cu(acac)₂ for 1h at -40°C. 3.3 and 3.5 equiv. of LDA yields the best product (entries 3 and 6). Decreasing LDA would lower the yield due to the poor conversion(entries 1-2), and increasing the base would also lower the chemical yield due to the side reactions(entries 4-5), 1.5 equiv. of Cu(acac)₂ demonstrated the best performance among the screening the equiv. of the oxidant (entries 6-8). The yields enhanced when the equiv. of indole increased (entries 9-11). From the viewpoint of practical applications, we chose 3.3 equiv. of LDA, 1.5 equiv. of Cu(acac)₂ and 4 equiv. of indole to carry out the reaction.

C V V V V V V V V V V V V V V V V V V V	Ph LDA, TH Cu(acac) -40°C	
uiv. of LDA	Equiv. of Cu(acac) ₂ Equiv. of indole
2	1.0	2

Table S2 Optimization of the equivalents of base, oxidant, and indole

Entry	Equiv. of LDA	Equiv. of Cu(acac) ₂	Equiv. of indole	Yield (%)
1	2	1.2	2	12
2	3	1.2	2	34
3	3.5	1.2	2	38
4	4	1.2	2	22
5	5	1.2	2	trace
6	3.3	1.2	2	38
7	3.3	1.5	2	42
8	3.3	2	2	35
9	3.3	1.5	3	47
10	3.3	1.5	4	59
11	3.3	1.5	5	60

(C) The Absolute Configuration of 3a and Quantum Chemical Calculation

X-ray Single Crystal Stucture Analysis of (S, 2S)-3a:

X-ray crystallographic data of (*S*, 2*S*)-**3a** were solutions at T = 293(2) K: C₃₅H₃₀N₄NiO₃, M_r = 613.34, monoclinic. Space group *P2* (1), a = 11.435 (5) Å, b = 9.023 (4) Å, c = 15.152 (7) Å, α = 90°, β = 99.011 (10)°, γ = 90°, *V* = 1544.2 (13) Å³, *Z* = 2.

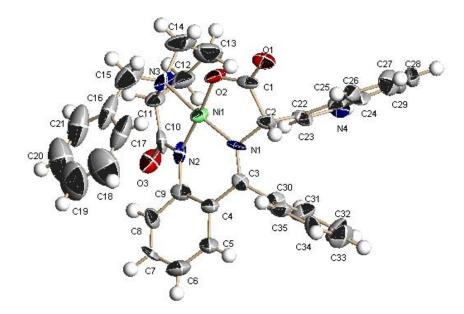


Figure S1. The crystal structure of (*S*, 2*S*)-3a by X-ray analysis.

These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>, the CCDC number is 909566.

(D) General Methods

The reagents (chemicals) were purchased from commercial sources, and used without further purification. Analytical thin layer chromatography (TLC) was HSGF 254 (0.15-0.2 mm thickness). All products were characterized by their NMR and MS spectra. ¹H and ¹³C NMR spectra were recorded in deuterochloroform (CDCl₃) on a 300 MHz or 400 MHz instrument. Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br). Low- and high-resolution mass spectra (LRMS and HRMS) were measured on spectrometer. Optical rotations were reported as follows: [α]_D²⁰ (c: g/100 mL, in solvent).

(E) General Procedure for the Asymmetric Reactions

General Procedure for the Synthesis of (*S*, 2*S*)-3a. The nickel(II) complex of glycine (*S*)-1 (100 mg, 0.201 mmol) and indole (94 mg, 0.803mmol)was dissolved in tetrahydrofuran (10 mL), and stirred at -40°C under nitrogen. LDA (0.33 mL, 2M, 0.662 mmol) were added and the reaction mixture was stirred for 30 min. Then, the Cu(acac)₂ (78.8 mg, 0.301mmol) was added at -40°C. The reaction was moved out of the cool bath, and allowed to warm to room temperature naturally and to stir for 1 h. The reaction was quenched by pouring the crude reaction mixture over 30 mL of aq. sat. NH₄Cl. The suspension was extracted with ethyl acetate (3 times). The combined organic layers were dried with MgSO₄, concentrated, and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1) to give (*S*,2*S*)-3a as a red solid.

Procedure for the Synthesis of (*2S*,*3R*)-4a: The crystallized complex (*S*, 2*S*)-3a (1 g, 1.64 mmol) was dissolved in THF/MeOH (1:1, v/v) 50 mL, and aqueous 1 N HCl (2 mL) was added. The reaction mixture was stirred for 6 h at room temperature, until the red color of the solution disappeared. The reaction was evaporated to dryness. Water (20 mL) was added to the residue to form a clear solution, and this solution was then separated by column chromatography on C₁₈-reversed phase (230-400 mesh) silica gel. Pure water as an eluent was employed to remove the green NiCl₂ and excess HCl; water was then used to obtain optically pure product (*S*)-4a (288 mg,

93%). The ligand BPB that decomposed from (S, 2S)-**3a** was recovered by MeOH eluent (608 mg, 97%), and the column chromatography was washed with 100 mL of MeOH for further use.

(F) Analytical Characterization Data of Products

Nickel(II)-(S)-BPB/(S)-2-amino-2-(1H-indol-3-yl)acetic acid Schiff Base Complex 3a.

Obtained as a red solid by flash column chromatography (petroleum ether/ethyl acetate = 1/1), yield 63%. Mp > 280 °C; $[\alpha]_D^{20}$ = +2440 (c = 0.10 g/100 mL, CHCl₃). ¹H NMR (CDCl₃, 400 MHz) δ 11.12 (s, 1H), 8.42 (d, *J* = 7.6 Hz, 2H), 8.02-7.96 (m, 2H), 7.56-7.54(m, 3H), 7.43-7.39 (m, 2H), 7.35-7.31 (m, 2H), 7.21-7.17(m, 1H), 7.12-7.03 (m, 2H), 6.95-6.89 (m, 2H), 6.64 (t, *J* = 7.6 Hz, 1H), 6.51 (d, *J* = 8.0 Hz, 1H), 6.16 (d, *J* = 8.0 Hz, 1H), 4.91 (s, 1H), 4.14 (d, *J* = 12.4 Hz, 1H), 3.63-3.57 (m, 2H), 3.32-3.23 (m, 2H), 2.57-2.50 (m, 2H), 2.16-2.08 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz) δ 180.9, 177.1, 171.1, 143.1, 136.4, 135.2, 134.2, 133.0, 132.0, 131.7, 129.5, 129.0, 128.9, 128.8, 127.2, 124.0, 123.4, 121.8, 120.6, 119.7, 119.0, 113.0, 112.1, 70.2, 69.0, 63.3, 57.9, 30.8, 23.8 ppm. LRMS (ESI) [M+H]⁺ found m/z 613. HRMS (ESI) [M+Na]⁺ found m/z 635.1559, calcd for C₃₅H₃₀N₄NiO₃Na 635.1569. HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{maior} = 16.22 min, de > 99%.

Nickel(II)-(S)-BPB/(S)-2-amino-2-(5-methoxy-1H-indol-3-yl)acetic acid Schiff Base Complex 3b.

Obtained as a red solid by flash column chromatography (petroleum ether/ethyl acetate = 1/1), yield 60%. Mp >280 °C; $[\alpha]_D^{20} = +1773$ (c = 0.11 g/100 mL, CHCl₃).

¹H NMR (CDCl₃, 300 MHz) δ 10.97 (s, 1H), 8.41 (d, J = 7.5 Hz, 2H), 8.05 (d, J = 8.1 Hz, 1H), 7.69 (d, J = 2.1 Hz, 1H), 7.55 (d, J = 4.2 Hz, 2H), 7.41 (t, J = 7.5 Hz, 2H), 7.35-7.32 (m, 1H), 7.30-7.07 (m, 4H), 6.91 (t, J = 7.8 Hz, 1H), 6.73-6.62 (m, 2H), 6.52 (dd, J = 8.4, 1.5 Hz, 1H), 6.17 (d, J = 7.5 Hz, 1H), 4.86 (s, 1H), 4.14 (d, J = 12.0)Hz, 1H), 3.61-3.57 (m, 5H), 3.29-3.22 (m,2H), 2.56-2.53 (m, 2H), 2.17-2.04 (m, 2H).8.34 (d, J = 8.7 Hz, 1H), 8.03 (d, J = 7.5 Hz, 2H), 7.90 (s, 1H), 7.65 (s, 1H), 7.54-7.52 (m, 2H), 7.45-7.31 (m, 5H), 7.19-7.07 (m, 5H), 6.97-6.95 (m, 1H), 6.81-6.66 (m, 5H), 4.76 (d, J = 2.1 Hz, 1H), 4.41 (d, J = 1.8 Hz, 1H), 4.25 (d, J = 12.3 Hz, 1Hz, 1Hz), 4.25 (d, J = 12.3 Hz, 1Hz), 4.25 (d, J = 12.3 Hz, 1Hz), 4.25 (d, J = 12.3 Hz, 1Hz), 4.25 (d, J = 12.3 Hz), 4.25 (d, J = 12.3 Hz), 4.25 (d, J = 12.3 Hz), 4.25Hz, 1H), 3.44-3.29 (m, 2H), 2.82-2.73 (m, 1H), 2.38-2.24 (m, 5H), 2.04-1.98 (m, 1H) ppm. ¹³C NMR (CDCl₃, 125 MHz) δ 181.0, 177.1, 171.0, 153.4, 143.1, 135.2, 134.2, 133.0, 132.1, 131.8, 131.6, 129.0, 128.9, 128.8, 127.2, 124.0, 123.9, 120.6, 112.8, 112.6, 111.6, 101.8, 70.1, 69.0, 63.2, 57.9, 55.8, 30.8, 23.9 ppm. LRMS (ESI) [M+H]⁺ found m/z 643. HRMS (ESI) $[M+Na]^+$ found m/z 665.1656, calcd for $C_{36}H_{32}N_4NiO_4Na$ 665.1675. HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{major} = 15.58 min, de > 99%.

Nickel(II)-(S)-BPB/(S)-2-amino-2-(5-fluoro-1H-indol-3-yl)acetic acid Schiff Base Complex 3c.

Obtained as a red solid by flash column chromatography (petroleum ether/ethyl acetate = 1/1), yield 40%. Mp >280 °C; $[\alpha]_D^{20}$ = +2210 (c = 0.10 g/100 mL, CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 11.22 (s, 1H), 8.43 (d, *J* = 7.5 Hz, 2H), 8.03 (d, *J* = 8.7 Hz, 1H), 7.66-7.55 (m, 4H), 7.45-7.31 (m, 4H), 7.23-7.09 (m, 2H), 6.97-6.89 (m, 2H), 6.66 (t, J = 7.5 Hz, 1H), 6.53 (d, J = 8.1 Hz, 1H), 6.18 (d, J = 7.5 Hz, 1H), 4.90 (s, 1H), 4.16 (d, J = 12.3 Hz, 1H), 3.64-3.59 (m, 2H), 3.31-3.24 (m, 2H), 2.60-2.56 (m, 2H), 2.20-2.07 (m, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz) δ^{13} C NMR (126 MHz, DMSO) δ 180.9, 177.0, 171.3, 157.0 (d, J = 230.1 Hz), 143.1, 135.2, 134.2, 133.1, 132.0, 131.8, 129.5, 129.0, 128.9, 128.3, 127.2, 126.2, 125.5, 124.0, 120.6, 113.1 (d, J = 8.0 Hz), 110.0 (d, J = 25.5 Hz), 104.2 (d, J = 23.8 Hz), 70.2, 68.7, 63.3, 57.8, 30.7, 23.8. ppm. LRMS (ESI) [M+H]⁺ found m/z 631. HRMS (ESI) [M+Na]⁺ found m/z 653.1498, calcd for C₃₅H₂₉N₄NiO₃NaF 653.1475. HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, $\lambda = 220$ nm), t_{major} = 13.97 min, de > 99%.

Nickel(II)-(S)-BPB/(S)-2-amino-2-(5-chloro-1H-indol-3-yl)acetic acid Schiff Base Complex 3d.

Obtained as a red solid by flash column chromatography (petroleum ether/ethyl acetate = 1/1), yield 35%. Mp >280 °C; $[\alpha]_D^{20} = +1764$ (c = 0.11 g/100 mL, CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 11.30 (s, 1H), 8.43 (d, J = 7.8 Hz, 2H), 8.02 (d, J = 12.3 Hz, 2H), 7.59-7.51 (m, 3H), 7.45-7.36 (m, 4H), 7.23-7.05 (m, 3H), 6.94 (t, J = 7.8 Hz, 1H), 6.65 (t, J = 7.5 Hz, 1H), 6.52 (d, J = 8.4 Hz, 1H), 6.16 (d, J = 8.1 Hz, 1H), 4.91 (s, 1H), 4.16 (d, J = 12.9 Hz, 1H), 3.65-3.59 (m, 2H), 3.30-3.27 (m, 2H), 2.68-2.57 (m, 2H), 2.20-2.14 (m, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz) δ 180.5, 176.5, 170.9, 142.6, 134.7, 134.4, 133.8, 132.6, 131.6, 131.3, 129.0, 128.6, 128.4, 127.9, 126.8, 126.7, 125.9, 125.6, 125.0, 123.5, 123.3, 121.3, 118.2, 113.2, 112.1, 69.6, 68.0, 62.8, 57.4, 30.3, 23.4 ppm. LRMS (ESI) $[M+H]^+$ found m/z 647. HRMS (ESI) $[M+Na]^+$ found m/z 669.1160, calcd for $C_{35}H_{29}N_4NiO_3NaCl$ 669.1179. HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{major} = 13.03 min, de > 99%.

Nickel(II)-(S)-BPB/(S)-2-amino-2-(5-bromo-1H-indol-3-yl)acetic acid Schiff Base Complex 3e.

Obtained as a red solid by flash column chromatography (petroleum ether/ethyl acetate = 1/1), yield 33%. Mp 180-182 °C; $[\alpha]^{20}{}_{D}$ = +1790 (c = 0.10 g/100 mL, CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 11.31 (s, 1H), 8.43 (d, *J* = 7.2 Hz, 2H), 8.10 (s, 1H), 8.03 (d, *J* = 7.8 Hz, 1H), 7.59-7.55 (m, 2H), 7.51 (s, 1H), 7.45-7.31 (m, 4H), 7.23-7.16 (m, 2H), 7.11 (t, *J* = 7.8 Hz, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.65 (t, *J* = 7.8 Hz, 1H), 6.52 (d, *J* = 8.4 Hz, 1H), 6.15 (d, *J* = 7.5 Hz, 1H), 4.91 (s, 1H), 4.16 (d, *J* = 12.3 Hz, 1H), 3.65-3.59 (m, 2H), 3.18-3.13 (m, 2H), 2.65-2.59 (m, 2H), 2.20-2.09 (m, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz) δ 181.0, 177.0, 171.4, 143.1, 135.2, 135.1, 134.3, 133.1, 132.1, 131.8, 129.5, 129.1, 128.9, 128.4, 127.3, 127.2, 127.1, 126.1, 125.3, 124.3, 124.0, 121.7, 120.6, 114.2, 112.5, 111.8, 70.1, 68.5, 63.3, 57.9, 30.8, 24.0 ppm. LRMS (EI) [M]⁺ found m/z 690. HRMS (EI) [M]⁺ found m/z 690.0721, calcd for C₃₅H₂₉N₄NiO₃Br 690.0777. HPLC (Chiralpak IA, *n*-hexane/ *i*-propanol 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{major} = 14.03 min, de > 99%.

Nickel(II)-(S)-BPB/(S)-2-amino-2-(4-methyl-1H-indol-3-yl)acetic acid Schiff Base

Complex 3g.

Obtained as a red solid by flash column chromatography (petroleum ether/ethyl acetate = 1/1), yield 62%. Mp 242-244 °C; $[\alpha]_D^{20}$ = +1250 (c = 0.10 g/100 mL, CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 11.25 (s, 1H), 8.84 (s, 1H), 8.43 (d, *J* = 7.8 Hz, 2H), 8.09 (d, *J* = 8.7 Hz, 1H), 7.62-7.51 (m, 2H), 7.43 (t, *J* = 7.2 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.23-7.10 (m, 3H), 6.90-6.77 (m, 2H), 6.66 (t, *J* = 7.5 Hz, 1H), 6.57-6.50 (m, 2H), 6.09 (d, *J* = 7.5 Hz, 1H), 5.13 (s, 1H), 4.16 (d, *J* = 12.0 Hz, 1H), 3.67-3.59 (m, 2H), 3.49-3.37 (m, 2H), 2.65-2.57 (m, 2H), 2.21-2.14 (m, 2H), 1.99 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz) δ 181.1, 177.4, 171.1, 143.1, 136.1, 135.3, 134.6, 133.0, 132.0, 131.8, 130.3, 129.4, 129.1, 128.9, 128.5, 127.1, 126.7, 125.9, 124.2, 124.0, 122.4, 121.7, 120.7, 120.6, 115.9, 109.9, 70.3, 68.6, 63.2, 57.9, 30.8, 24.0, 19.5 ppm. LRMS (ESI) [M+H]⁺ found m/z 627. HRMS (ESI) [M+Na]⁺ found m/z 627.1756, calcd for C₃₆H₃₂N₄NiO₃Na 649.1726. HPLC (Chiralpak AD, *n*-hexane/*i*-propanol = 75/25, flow rate 1.0 mL/min, λ = 220 nm), t_{major} = 13.73 min, de > 99 %.

Nickel(II)-(S)-BPB/(S)-2-amino-2-(5-methyl-1H-indol-3-yl)acetic acid Schiff Base Complex 3h.

Obtained as a red solid by flash column chromatography (petroleum ether/ethyl acetate = 1/1), yield 56%. Mp 232-234 °C; $[\alpha]_D^{20} = +1600$ (c = 0.10 g/100 mL, CHCl₃). ¹H NMR (CDCl₃, 400 MHz) δ 10.96 (s, 1H), 8.43 (d, *J* = 8.1 Hz, 2H), 8.03 (d, *J* = 9.0 Hz, 1H), 7.70 (s, 1H), 7.59-7.55 (m, 2H), 7.43-7.33 (m, 4H), 7.25-7.17 (m, 2H), 7.14-7.08 (m, 1H), 6.98-6.88 (m, 2H), 6.65 (t, *J* = 7.5 Hz, 1H), 6.52 (d, *J* = 8.4

Hz, 1H), 6.15 (d, J = 7.8 Hz, 1H), 4.89 (s, 1H), 4.17 (d, J = 12.0 Hz, 1H), 3.65-3.60 (m, 2H), 3.26-3.17 (m, 2H), 2.60-2.57 (m, 2H), 2.32 (s, 3H), 2.20-2.09 (m, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz) δ 180.9, 177.1, 171.0, 143.0, 135.2, 134.8, 134.3, 133.0, 132.1, 131.7, 129.4, 129.0, 128.9, 128.4, 127.4, 127.3, 127.2, 126.2, 125.6, 123.9, 123.6, 123.4, 120.5, 119.2, 112.3, 111.7, 70.1, 69.0, 63.3, 57.8, 30.8, 23.9, 21.7 ppm. LRMS (ESI) [M+H]⁺ found m/z 627. HRMS (ESI) [M+H]⁺ found m/z 627.1890, calcd for C₃₆H₃₃N₄NiO₃ 627.1906. HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{major} = 15.62 min, de > 99 %.

Nickel(II)-(S)-BPB/(S)-2-amino-2-(6-methyl-1H-indol-3-yl)acetic acid Schiff Base Complex 3i.

Obtained as a red solid by flash column chromatography (petroleum ether/ethyl acetate = 1/1), yield 60 %. Mp 238-240°C; $[\alpha]_D^{20} = +2206$ (c = 0.16 g/100 mL, CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 10.93 (s, 1H), 8.42 (d, *J* = 6.9 Hz, 2H), 8.03 (d, *J* = 9.0 Hz, 1H), 7.95 (d, *J* = 8.4 Hz, 1H), 7.56-7.54 (m, 2H), 7.45-7.31 (m, 4H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.14-7.08 (m, 2H), 6.96 (t, *J* = 7.5 Hz, 1H), 6.79 (d, *J* = 9.3 Hz, 1H), 6.65 (t, *J* = 6.6 Hz, 1H), 6.52 (d, *J* = 8.4 Hz, 1H), 6.16 (d, *J* = 8.4 Hz, 1H), 4.87 (s, 1H), 4.15 (d, *J* = 12.6 Hz, 1H), 3.64-3.59 (m, 2H), 3.28-3.23 (m, 2H), 2.60-2.57 (m, 2H), 2.36 (s, 3H), 2.18-2.10 (m, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz) δ 180.9, 177.0, 171.0, 143.1, 136.9, 135.2, 134.2, 133.0, 132.1, 131.7, 130.8, 129.5, 129.0, 128.9, 128.8, 128.4, 127.2, 126.2, 124.0, 123.3, 122.8, 120.8, 120.6, 119.5, 112.8, 111.8, 70.2, 69.2, 63.3, 57.8, 30.8, 23.8, 21.8 ppm. LRMS (ESI) [M+H]⁺ found

m/z 627. HRMS (ESI) $[M+Na]^+$ found m/z 649.1744, calcd for C₃₆H₃₂N₄NiO₃Na 649.1726. HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{major} = 16.20 min, de > 99 %.

Nickel(II)-(S)-BPB/(S)-2-amino-2-(7-methyl-1H-indol-3-yl)acetic acid Schiff Base

Complex 3j.

Obtained as a red solid by flash column chromatography (petroleum ether/ethyl acetate = 1/1), yield 54%. Mp 229-231 °C; $[\alpha]_D^{20}$ = +1890 (c = 0.15 g/100 mL, CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 11.11 (s, 1H), 8.43 (d, *J* = 7.2 Hz, 2H), 8.04 (d, *J* = 8.7 Hz, 1H), 7.89-7.85 (m, 1H), 7.58-7.52 (m, 3H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.35-7.33 (m, 1H), 7.23-7.17 (m, 1H), 7.14-7.09 (m, 1H), 6.97 (t, *J* = 7.5 Hz, 1H), 6.88-6.86 (m, 2H), 6.70-6.63 (m, 1H), 6.53 (d, *J* = 9.6 Hz, 1H), 6.19 (d, *J* = 7.2 Hz, 1H), 4.90 (s, 1H), 4.15 (d, *J* = 12.0 Hz, 1H), 3.64-3.59 (m, 4H), 2.61-2.57 (m, 2H), 2.45 (s, 3H), 2.19-2.13 (m, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz) δ 181.0, 177.3, 171.2, 142.9, 136.0, 135.3, 134.1, 133.0, 132.6, 132.0, 131.8, 129.6, 129.2, 129.1, 128.9, 128.4, 127.1, 126.2, 125.0, 124.0, 122.4, 121.1, 120.7, 119.3, 117.4, 113.3, 70.4, 69.1, 63.4, 57.9, 30.8, 23.8, 17.2 ppm. LRMS (ESI) [M+H]⁺ found m/z 627. HRMS (ESI) [M+Na]⁺ found m/z 649.1734, calcd for C₃₆H₃₂N₄NiO₃Na 649.1726. HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{minor} = 6.75 min, t_{major} = 16.32 min, de = 98 %.

Nickel(II)-(S)-BPB/(S)-2-amino-2-(2-methyl-1H-indol-3-yl)acetic acid Schiff Base

Complex 3k.

Obtained as a red solid by flash column chromatography (petroleum ether/ethyl acetate = 1/1), yield 65%. Mp 186-188 °C; $[\alpha]_D^{20} = +1340$ (c = 0.10 g/100 mL, CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 10.81 (s, 1H), 10.09 (d, J = 8.1 Hz, 1H), 8.46 (d, J = 7.5 Hz, 2H), 8.15 (d, J = 8.4 Hz, 1H), 7.56-7.54 (m, 2H), 7.44 (t, J = 7.5 Hz, 2H), 7.39-7.34 (m, 1H), 7.30-7.03 (m, 5H), 6.96 (t, J = 7.8 Hz, 1H), 6.59 (t, J = 7.8 Hz, 1H), 6.40 (d, J = 7.2 Hz, 1H), 5.64 (d, J = 7.2 Hz, 1H), 4.98 (s, 1H), 4.20 (d, J = 12.3 Hz, 1H), 3.73-3.63 (m, 2H), 3.27-3.22 (m, 2H), 2.66-2.61 (m, 2H), 2.22-2.07 (m, 2H), 1.65 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz) δ 181.0, 178.1, 171.8, 143.0, 135.5, 135.3, 134.9, 134.6, 133.0, 132.1, 131.8, 129.3, 129.1, 129.0, 128.9, 128.1, 126.7, 126.5, 126.1, 125.9, 123.9, 120.7, 120.5, 119.4, 118.8, 111.5, 107.7, 70.4, 68.7, 63.8, 57.7, 30.8, 23.4, 11.2 ppm. LRMS (ESI) [M+H]⁺ found m/z 627. HRMS (ESI) [M+Na]⁺ found m/z 649.1724, calcd for C₃₆H₃₂N₄NiO₃Na 649.1726. HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{minor} = 6.85 min, t_{major} = 15.53 min, de = 98 %.

Nickel(II)-(S)-BPB/(S)-2-amino-2-(2-(ethoxycarbonyl)-1H-indol-3-yl)acetic acid Schiff Base Complex 3I.

Obtained as a red solid by flash column chromatography (petroleum ether/ethyl acetate = 1/1), yield 55%. Mp 172-174 °C; $[\alpha]_D^{20} = +1168$ (c = 0.19 g/100 mL, CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 11.54 (s, 1H), 10.47 (s, 1H), 8.48 (d, *J* = 7.5 Hz, 2H), 8.13 (d, *J* = 8.7 Hz, 1H), 7.48-7.42 (m, 5H), 7.34-7.20 (m, 4H), 7.14-7.08 (m,

1H), 6.81 (t, J = 7.8 Hz, 1H), 6.59 (t, J = 7.8 Hz, 1H), 6.40 (d, J = 8.1 Hz, 1H), 6.07 (s, 1H), 5.49 (d, J = 7.8 Hz, 1H), 4.24 (d, J = 12.3 Hz, 1H), 4.19-3.99 (m, 2H), 3.73 (d, J = 12.3 Hz, 1H), 3.66 (t, J = 8.7 Hz, 1H), 3.26-3.15 (m, 2H), 2.68-2.59 (m, 2H), 2.26-2.08 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz) δ 181.0, 176.7, 172.5, 160.6, 143.1, 136.4, 135.2, 135.1, 133.1, 132.2, 131.9, 129.1, 129.0, 128.9, 127.5, 126.9, 126.0, 125.9, 125.2, 124.7, 124.0, 122.2, 120.6, 120.3, 118.2, 113.7, 70.3, 67.5, 63.7, 60.5, 57.7, 30.8, 23.5, 14.6 ppm. LRMS (ESI) [M+H]⁺ found m/z 685. HRMS (ESI) [M+H]⁺ found m/z 685.1972, calcd for C₃₈H₃₅N₄NiO₅ 685.1961. HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, $\lambda = 220$ nm), t_{minor} = 10.63 min, t_{major} = 21.82 min, de = 96 %.

Nickel(II)-(S)-BPB/(S)-2-amino-2-(2-phenyl-1H-indol-3-yl)acetic acid Schiff Base Complex 3m.

Obtained as a red solid by flash column chromatography (petroleum ether/ethyl acetate = 1/1), yield 74 %. Mp 222-224 °C; $[\alpha]_D^{20} = +2080$ (c = 0.10 g/100 mL, CHCl₃). ¹H NMR (CDCl₃, 300 MHz) δ 11.23 (s, 1H), 10.98 (d, J = 8.1 Hz, 1H), 8.52 (d, J = 7.2 Hz, 2H), 8.13-8.08 (m, 1H), 7.56-7.53 (m, 2H), 7.45-7.40 (m, 3H), 7.32-7.30 (m, 4H), 7.23-7.14 (m, 2H), 7.08-7.03 (m, 2H), 6.97-6.88 (m, 2H), 6.74 (t, J = 6.0 Hz, 1H), 6.54-6.47 (m, 1H), 6,19 (d, J = 7.5 Hz, 1H), 5.50-5.42 (m, 1H), 5.30 (s, 1H), 4.25 (d, J = 12.3 Hz, 1H), 3.76-3.67 (m, 2H), 3.53-3.45 (m, 1H), 3.27-3.20 (m, 1H), 2.73-2.64 (m, 2H), 2.31-2.16 (m, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz) δ 180.8, 178.5, 172.3, 143.0, 137.4, 136.5, 135.2, 134.4, 133.0, 132.2, 132.1, 131.7, 131.2,

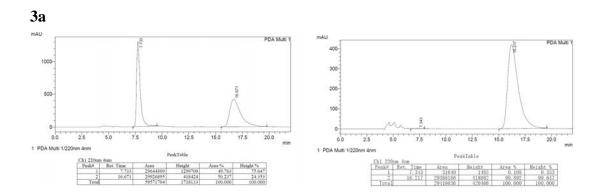
129.2, 129.0, 128.8, 128.1, 128.0, 127.7, 127.6, 126.0, 125.9, 125.6, 123.7, 121.9, 121.0, 120.3, 119.1, 112.3, 108.5, 70.5, 67.6, 64.0, 57.8, 30.8, 23.4 ppm. LRMS (ESI) $[M+H]^+$ found m/z 689. HRMS (ESI) $[M+Na]^+$ found m/z 711.1882, calcd for $C_{41}H_{34}N_4NiO_3Na$ 711.1882. HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{minor} = 7.83 min, t_{major} = 30.52 min, de = 97 %

Nickel(II)-(S)-BPB/(S)-2-amino-2-(5-methoxy-2-methyl-1H-indol-3-yl)acetic acid Schiff Base Complex 3n.

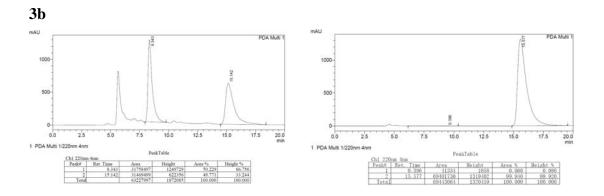
Obtained as a red solid by flash column chromatography (petroleum ether/ethyl acetate = 1/1), yield 60 %. Mp 242-244°C; $[\alpha]_D^{20}$ = +2120 (c = 0.20 g/100 mL, CHCl₃). ¹H NMR (CDCl₃, 400 MHz) δ 10.64 (s, 1H), 9.08 (s, 1H), 8.47 (d, *J* = 6.8 Hz, 2H), 8.18 (d, *J* = 7.2 Hz, 1H), 7.52 (d, *J* = 4.0 Hz, 2H), 7.43 (t, *J* = 8.0 Hz, 2H), 7.35-7.30 (m, 1H), 7.21-7.14 (m, 2H), 7.09 (t, *J* = 8.4 Hz, 1H), 6.90 (t, *J* = 7.6 Hz, 1H), 6.72 (dd, *J* = 8.8 Hz, 2.4 Hz, 1H), 6.58 (t, *J* = 7.6 Hz, 1H), 6.41 (d, *J* = 8.0 Hz, 1H), 5.60 (d, *J* = 8.0 Hz, 1H), 4.95 (s, 1H), 4.20 (d, *J* = 11.6 Hz, 1H), 3.69-3.63 (m, 5H), 3.46-3.44 (m, 1H), 3.22-3.15 (m, 1H), 2.60-2.53 (m, 2H), 2.24-2.17 (m, 2H), 1.70 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz) δ 180.8, 177.7, 171.3, 153.1, 142.6, 135.0, 134.8, 134.4, 132.6, 131.7, 131.5, 130.3, 128.7, 128.6, 128.4, 127.4, 126.3, 126.1, 125.2, 123.2, 120.0, 111.3, 108.5, 106.9, 103.1, 69.7, 68.3, 63.3, 57.5, 55.9 30.1, 23.2, 11.1 ppm. LRMS (ESI) [M+H]⁺ found m/z 657. HRMS (ESI) [M+Na]⁺ found m/z 679.1841, calcd for C₃₇H₃₄N₄NiO₄Na 679.1831. HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{minor} = 7.74 min,

 $t_{major} = 14.10 \text{ min}, \text{ de} = 97 \%.$

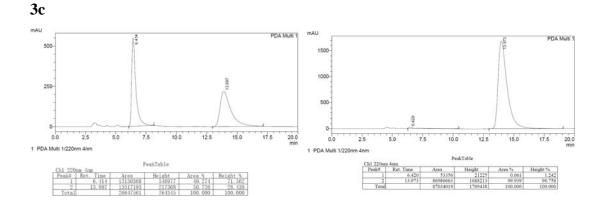
(S)-2-amino-2-(1H-indol-3-yl)acetic acid 4a.

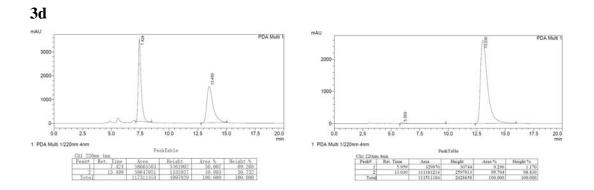

Obtained as a pink solid by column chromatography on C₁₈-reversed phase (230-400 mesh) silica gel (methanol /water = 20/80), yield 93 %. Mp 214-216 °C; $[\alpha]_D^{20}$ = +113.1 (c = 0.31 g/100 mL, H₂O). ¹H NMR (D₂O, 400 MHz): δ 7.53 (d, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.33 (s, 1H), 7.13 (dd, *J* = 7.6 Hz, 8.0 Hz, 1H), 7.04 (dd, *J* = 7.6 Hz, 8.0 Hz, 1H), 4.96 (s, 1H) ppm. ¹³C NMR (D₂O, 125 MHz): δ 173.9, 136.2, 126.5, 124.8, 122.3, 119.9, 118.3, 112.1, 107.6 51.2 ppm. LRMS (EI) [M]⁺ found *m/z* 190.0739, calcd. for C₁₀H₁₀N₂O₂ 190.0742. HPLC (Chirobiotic T, methanol/water = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{major} = 9.36 min, t_{minor} =17.36 min, de = 98%.

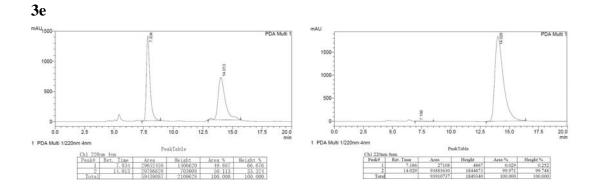
(S)-2-amino-2-(2-phenyl-1H-indol-3-yl)acetic acid 4m.

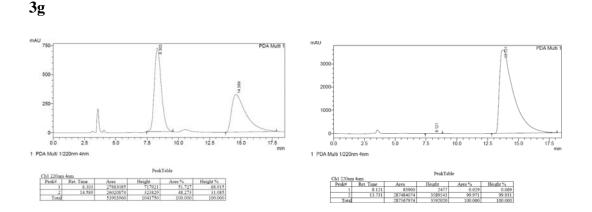

Obtained as a pink solid by column chromatography on C_{18} -reversed phase (230-400 mesh) silica gel (methanol /water = 20/80), yield 85 %. Mp >300 °C; $[\alpha]_D^{25} = +53.3$ (c = 0.10 g/100 mL, H₂O). ¹H NMR (D₂O, 400 MHz): δ 7.70-7.66 (m, 3H), 7.60-7.51 (m, 4H), 7.30 (t, J = 7.6 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 5.19 (s, 1H) ppm. ¹³C NMR (D₂O, 125 MHz): δ 174.2, 139.5, 135.8, 131.1, 129.1, 128.9, 128.8, 125.5, 122.5, 120.1, 118.6, 111.7, 104.6 50.8 ppm. LRMS (ESI) [M]⁻ found *m/z* 265.0973, calcd. for C₁₆H₁₃N₂O₂ 265.0977. HPLC (Chirobiotic T,

methanol/water = 80/20, flow rate 1.0 mL/min, λ = 220 nm), t_{major} = 6.31 min, t_{minor} = 20.68 min, de = 97%.

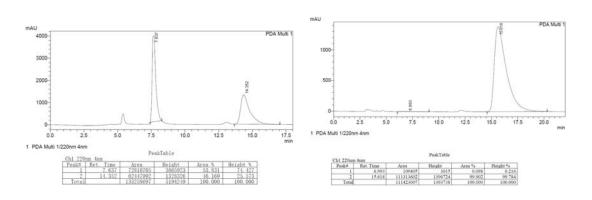

Analytical high performance liquid chromatography was carried out using the Model 410 automated sampler, using the Chiralpak IA column or the Chiralpak AD column. The loading loop was 20 μ L. The eluting employed was an isocratic mixture of *n*-hexane and *i*-propanol (60/40 or 75/25 respectively) at a flow of 1 mL/min unless stated. Retention times are reported in minutes. The enantiomeric excess was calculated from the integration of the absorption peaks at 220 nm.


HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{major} = 16.22 min, de > 99%.

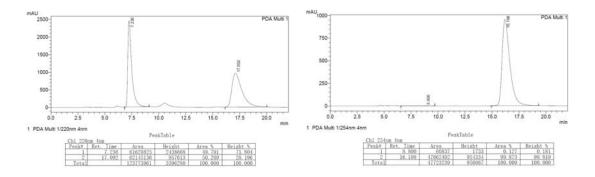

HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{major} = 15.58 min, de > 99%.


HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{major} = 13.97 min, de > 99%.

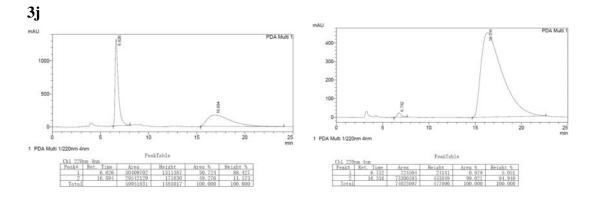
HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{major} = 13.03 min, de > 99%.



HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{major} = 14.03 min, de > 99%.

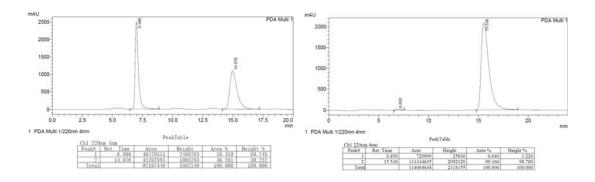

HPLC (Chiralpak AD, *n*-hexane/*i*-propanol = 75/25, flow rate 1.0 mL/min, λ = 220 nm), t_{major} = 13.73 min, de > 99%.

3h

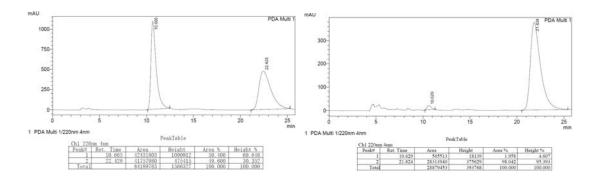


HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{major} = 15.62 min, de > 99 %.

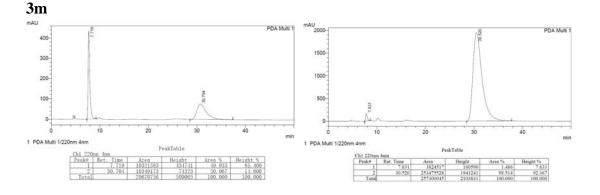
3i



HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{major} = 16.20 min, de > 99%.

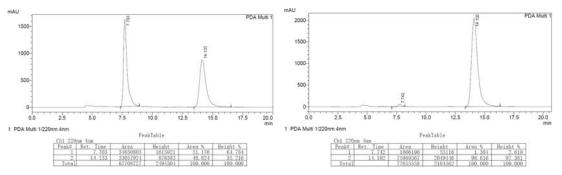

HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{minor} = 6.75 min, t_{major} = 16.32 min, de = 98 %.

3k

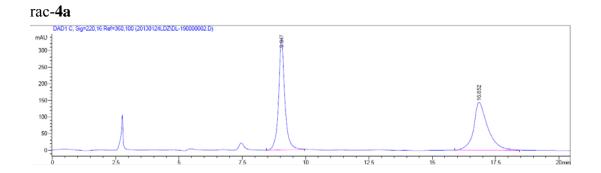


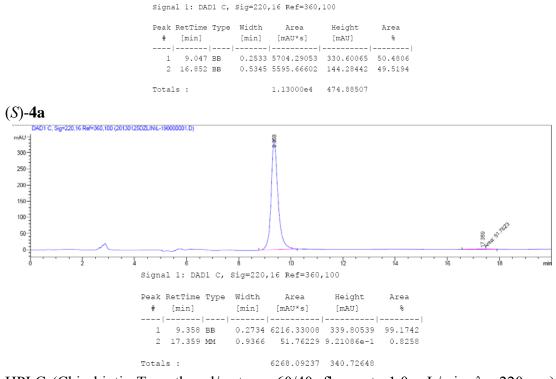
HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{minor} = 6.85 min, t_{major} = 15.53 min, de = 98 %.

31

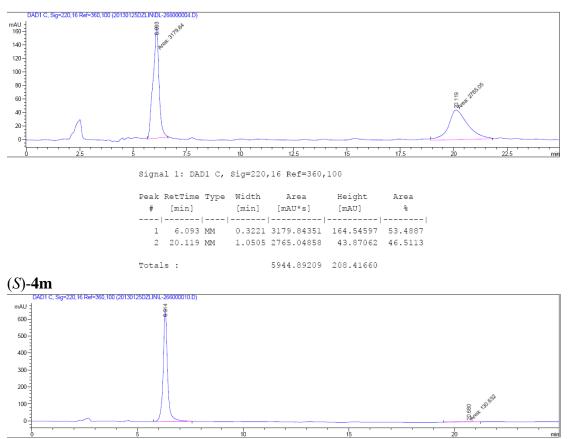


HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{minor} = 10.63 min, t_{major} = 21.82 min, de = 96%.

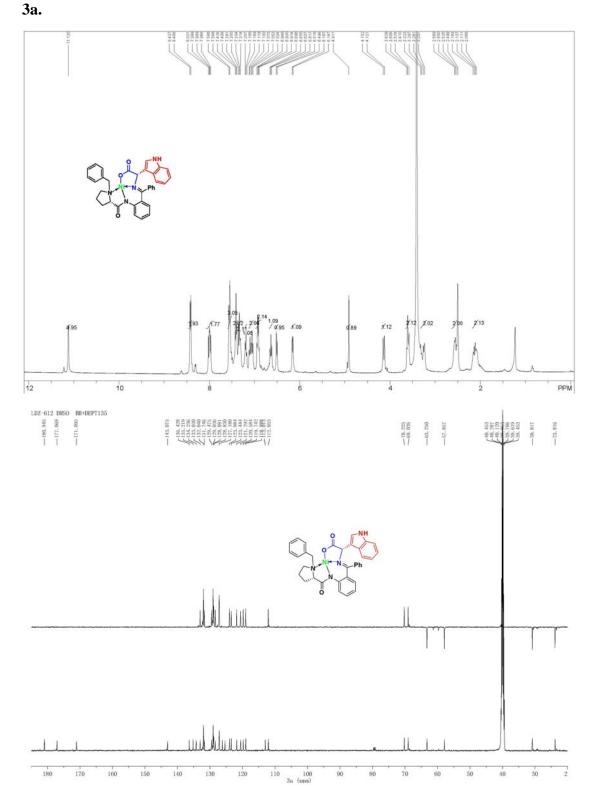

HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{minor} = 7.83 min, t_{major} = 30.52 min, de = 97%.


3n

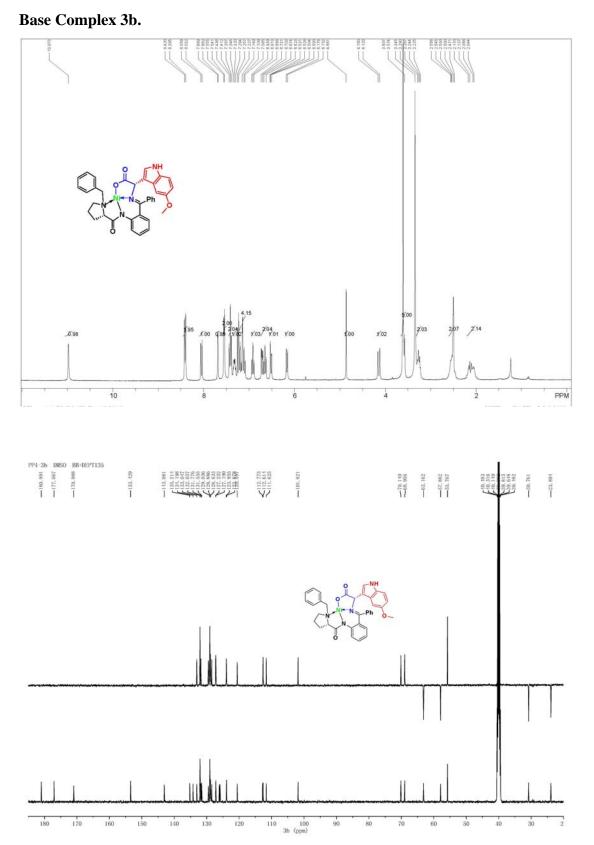
HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 60/40, flow rate 1.0 mL/min, λ = 220 nm), t_{minor} = 7.74 min, t_{major} = 14.10 min, de = 97%.


Analytical high performance liquid chromatography was carried out using the Model 410 automated sampler, using the Chirobiotic T column. The loading loop was 10 μ L. The eluting employed was an isocratic mixture of methanol and water (60/40 or 80/20 respectively) at a flow of 1.0 mL/min unless stated. Retention times are reported in minutes. The enantiomeric excess was calculated from the integration of the absorption peaks at 220 nm.

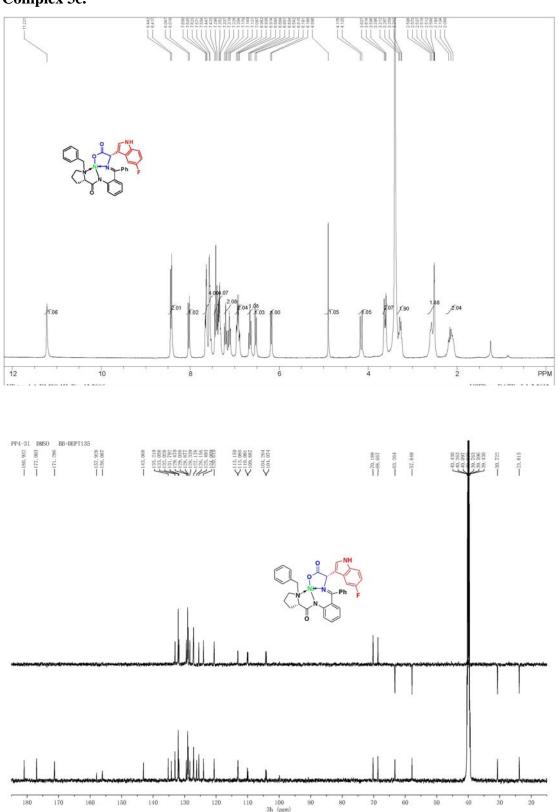
HPLC (Chirobiotic T, methanol/water = 60/40, flow rate 1.0 mL/min, λ = 220 nm), $t_{major} = 9.36$ min, $t_{minor} = 17.36$ min, de = 98%.

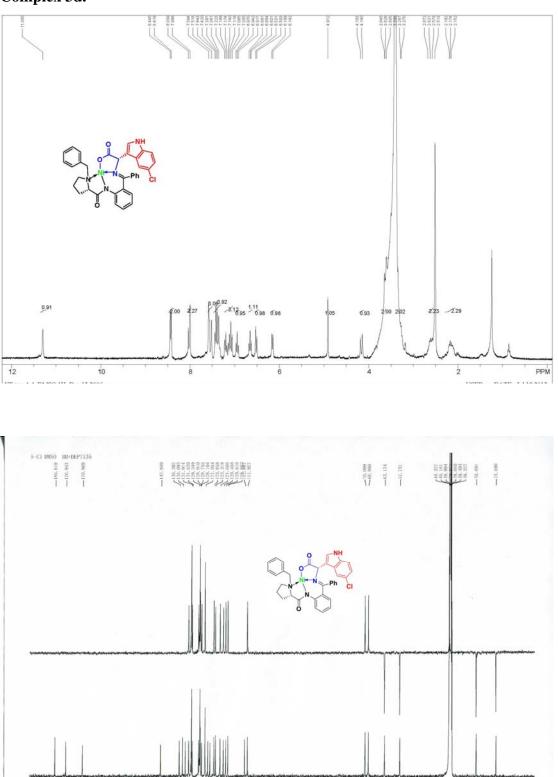


Signal 1: DAD1 C, Sig=220,16 Ref=360,100				
Peak RetTime Type # [min]			2	Area %
1 6.314 BB	0.2075	9506.65625	662.25110	98.6445
2 20.680 MM	1.4954	130.63235	1.45597	1.3555
Totals :		9637.28860	663.70707	


HPLC (Chirobiotic T, methanol/water = 80/20, flow rate 1.0 mL/min, λ = 220 nm), $t_{major} = 6.31$ min, $t_{minor} = 20.68$ min, de = 97%.

(G) Copies of ¹H NMR and ¹³C NMR Spectra for the Products


Nickel(II)-(S)-BPB/(S)-2-amino-2-(1H-indol-3-yl)acetic acid Schiff Base Complex


Nickel(II) - (S) - BPB/(S) - 2 - amino - 2 - (5 - methoxy - 1H - indol - 3 - yl) acetic acid Schiff

Nickel(II)-(S)-BPB/(S)-2-amino-2-(5-fluoro-1H-indol-3-yl)acetic acid Schiff Base

Nickel(II)-(S)-BPB/(S)-2-amino-2-(5-chloro-1H-indol-3-yl)acetic acid Schiff Base

Complex 3d.

70

60

80

ñ0

40

30

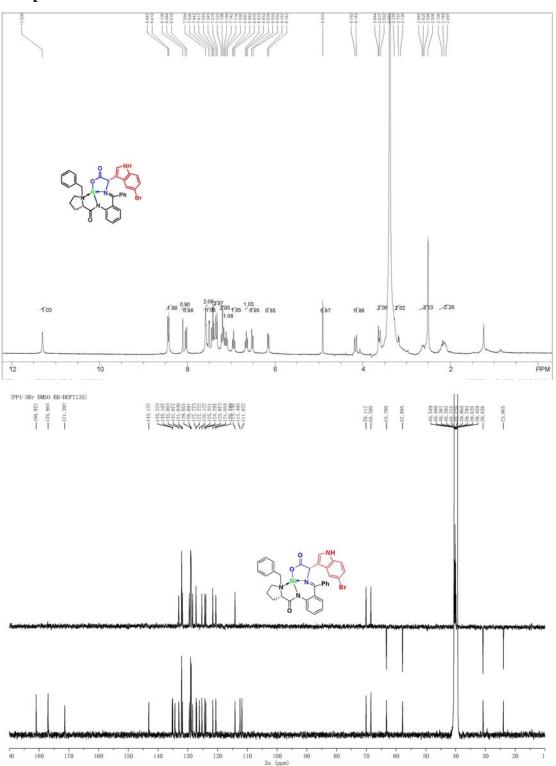
20

160

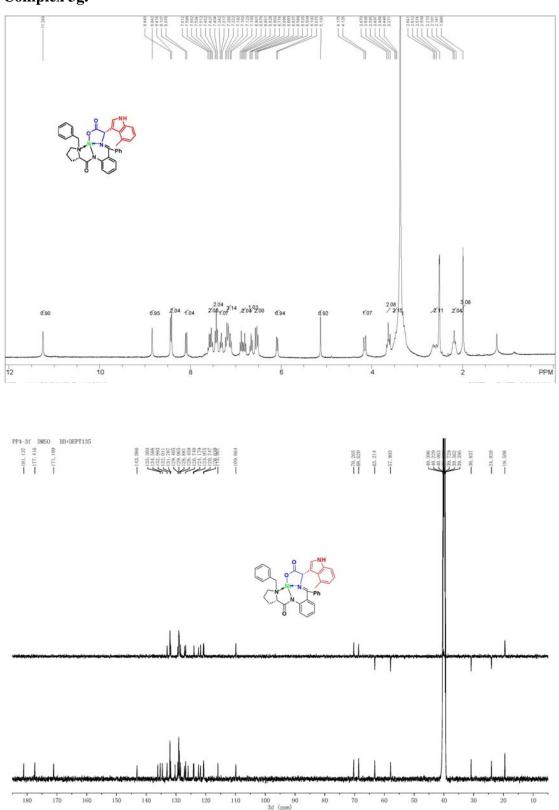
170

10 180

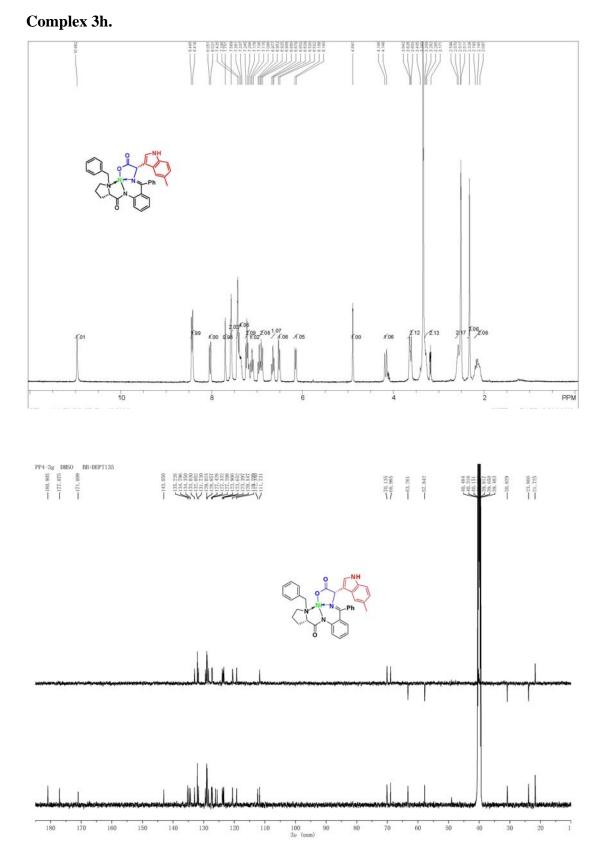
150

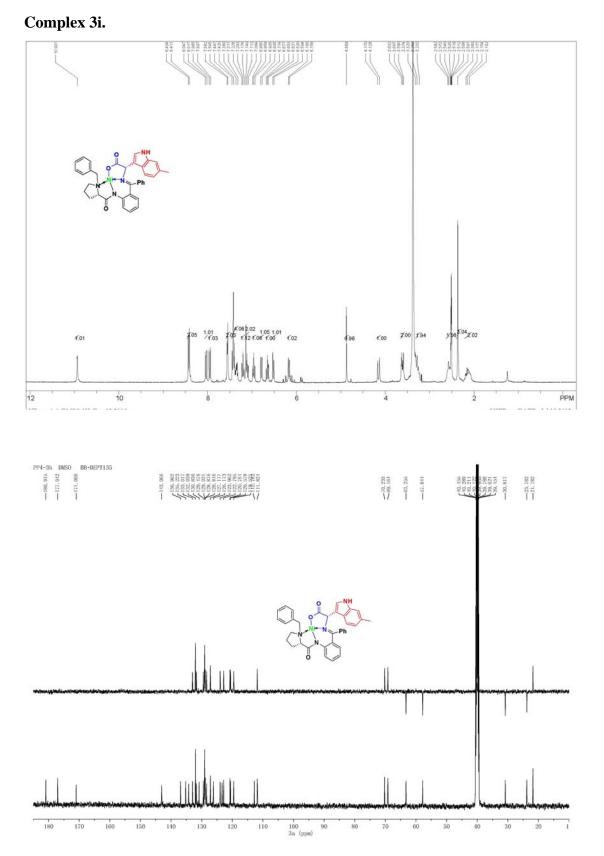

140

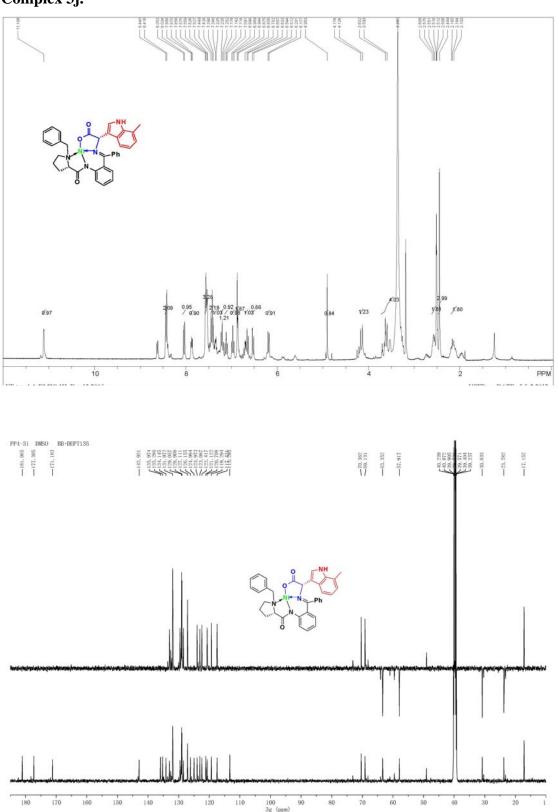
130

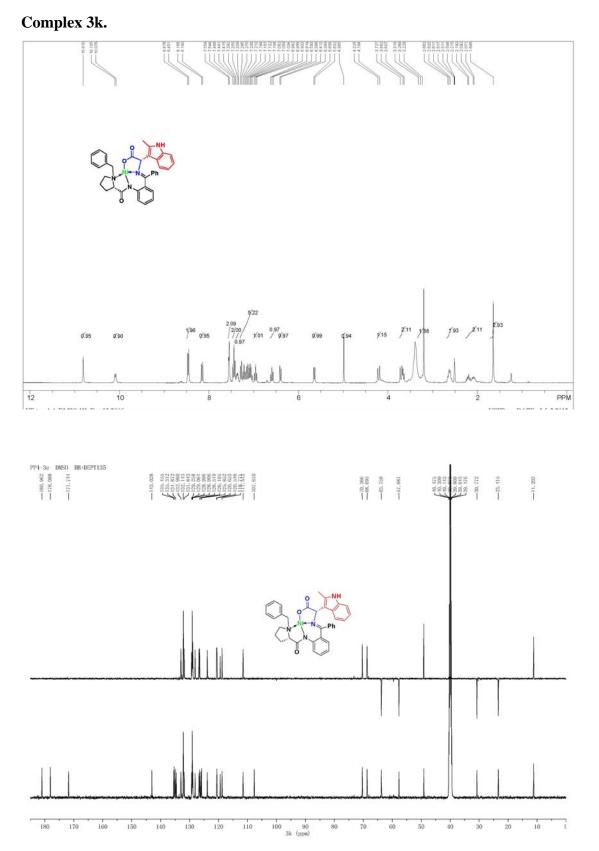

120

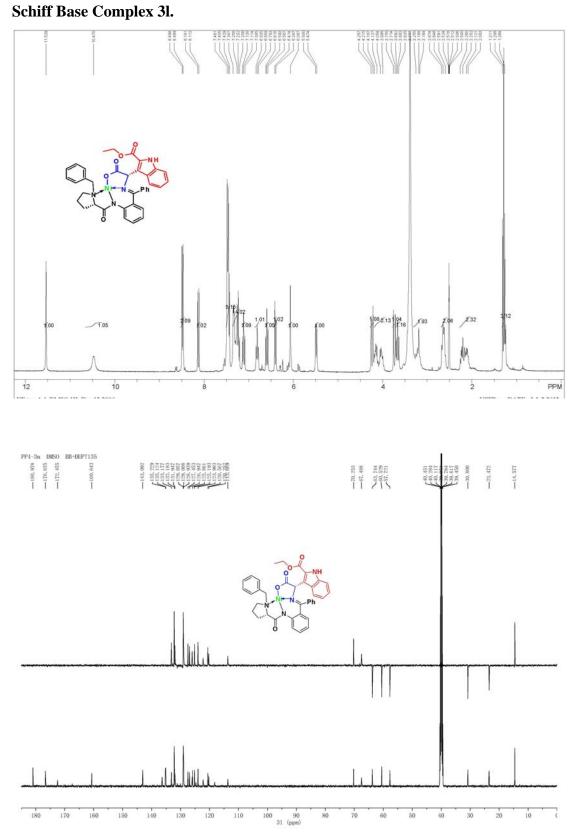
110 100 31 (ppm)

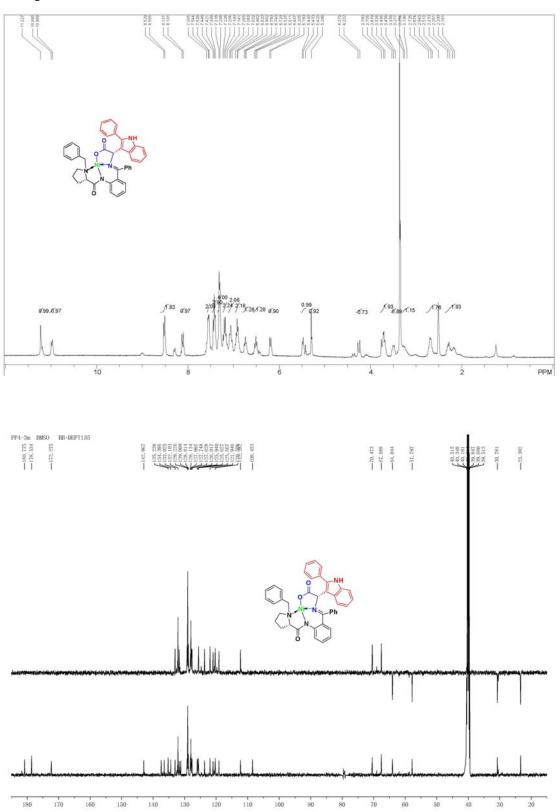

Nickel(II)-(S)-BPB/(S)-2-amino-2-(5-bromo-1H-indol-3-yl)acetic acid Schiff Base


Nickel(II)-(S)-BPB/(S)-2-amino-2-(4-methyl-1H-indol-3-yl)acetic acid Schiff Base

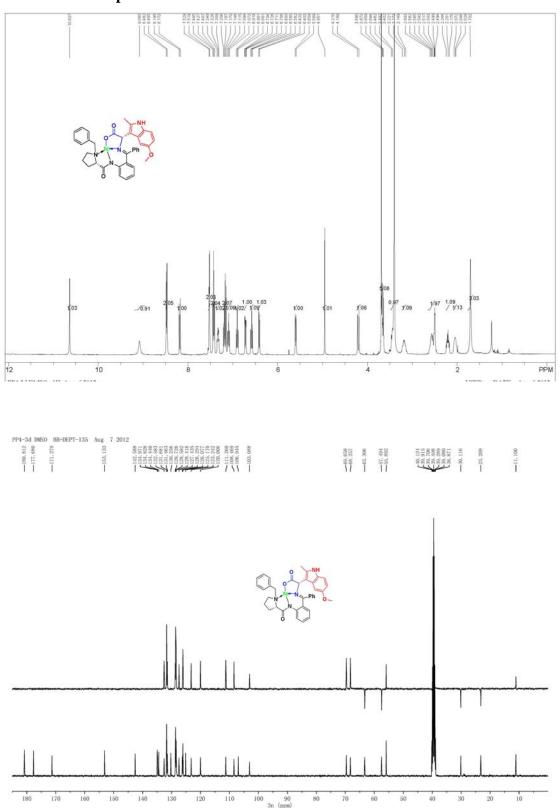

Nickel(II)-(S)-BPB/(S)-2-amino-2-(5-methyl-1H-indol-3-yl)acetic acid Schiff Base


Nickel(II)-(S)-BPB/(S)-2-amino-2-(6-methyl-1H-indol-3-yl)acetic acid Schiff Base

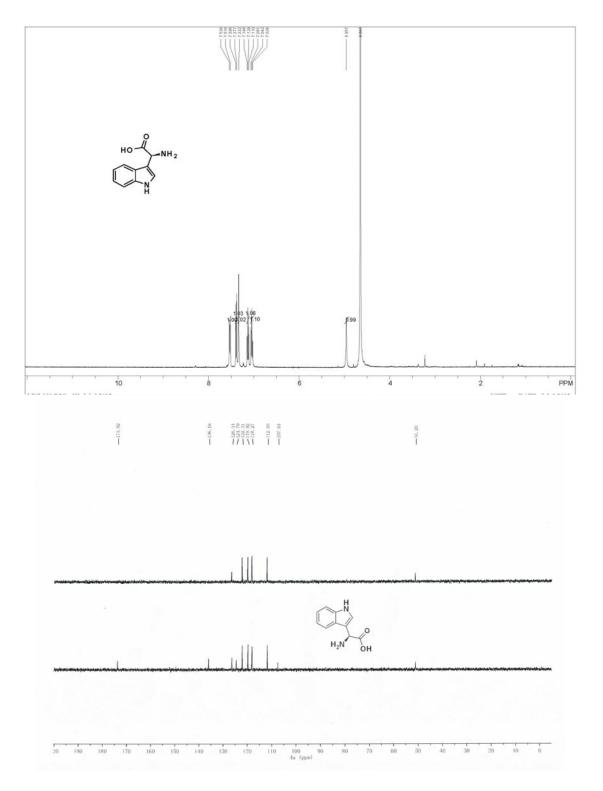

Nickel(II)-(S)-BPB/(S)-2-amino-2-(7-methyl-1H-indol-3-yl)acetic acid Schiff Base

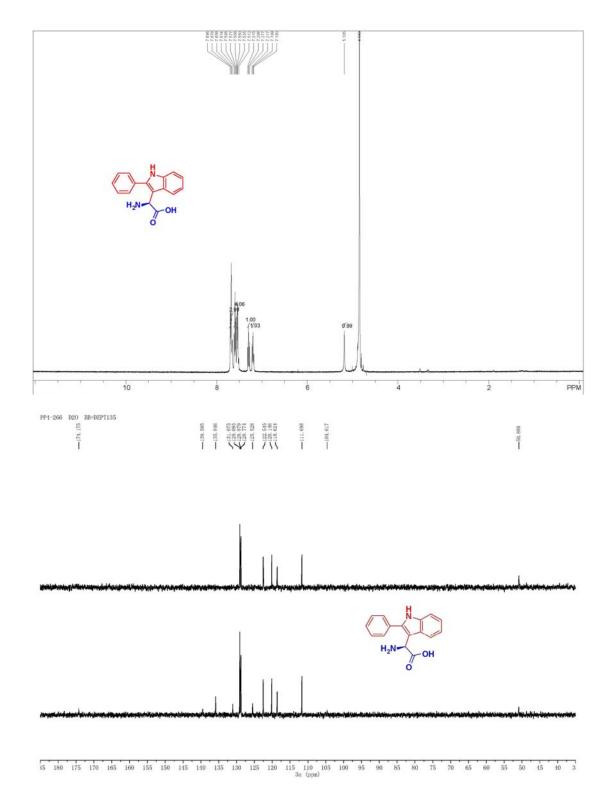

Nickel(II)-(S)-BPB/(S)-2-amino-2-(2-methyl-1H-indol-3-yl)acetic acid Schiff Base

Nickel(II)-(S)-BPB/(S)-2-amino-2-(2-(ethoxycarbonyl)-1H-indol-3-yl)acetic acid



Nickel(II)-(S)-BPB/(S)-2-amino-2-(2-phenyl-1H-indol-3-yl)acetic acid Schiff Base


Complex 3m.


Nickel(II)-(S)-BPB/(S)-2-amino-2-(5-methoxy-2-methyl-1H-indol-3-yl)acetic acid

Schiff Base Complex 3n.

(S)-2-amino-2-(2-phenyl-1H-indol-3-yl)acetic acid 4m.

(H) Reference

1 J. Wang, S. B. Zhou, D. Z. Lin, X. Ding, H. L. Jiang and H. Liu, Chem. Commun.,

2011, **47**, 8355