Contents

Asymmetric direct α -alkylation of 2-oxindoles with Michlers Hydrol catalyzed by bis-cinchona alkaloid/Brønsted acid via S_N 1-type pathway

Tao Zhang,^{*a,b*} Zhen Qiao,^{*a,b*} Yan Wang,^{*a,b*} Nengjun Zhong,^{*a,b*} Li Liu,^{**a*} Dong Wang,^{*a*} and Yong-Jun Chen^{*a*}

^aBeijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; ^aGraduate School of Chinese Academy of Sciences, Beijing 100049, China

Supporting information

1. General methods	S2
2. Experimental section	S2
2.1 Solvent Screening	
2.2 Effect of N-substituent of oxindoles	
2.3 General procedure for direct α -alkylation of 2-oxindoles with Michlers Hydrol	
2.4 Other attempts of alcohols	
2.50ther attempts of nucleophiles	
3. Determination of absolute configuration of 5a	S 8
4. HPLC tracks and NMR spectrums	S 14

1. General methods

Unless otherwise noted, all reagents were obtained from commercial suppliers and were used without further purification. All reactions were carried out directly in air atmosphere, unless otherwise noted. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s= singlet, d= doublet, t= triplet, q= quartet, h= heptet, m= multiplet, br= broad. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). IR spectra were recorded on a Bruker tensor 27 infrared spectrometer. Melting points were measured on Beijing Tech X-4 apparatus without correction. Mass spectra were obtained using electrospray ionization (ESI) mass spectrometer. Optical rotations were measured using a 1 mL cell with a 1 dm path length and are reported as follows: $[\alpha]_{D}^{\pi}$ (c in g per 100 mL of solvent). HPLC analysis was performed using ChiralPak columns purchased. Column chromatography was performed using silica gel (200-300 mesh). TLC was performed on glass-backed silica plates.

- 2. Experimental section
- 2.1 Solvent screening

Bn N Boc 1a	2	SOH (20%) Bn Boc 5a
Entry ^a	Solvent	$\operatorname{Ee}(\%)^b$
1	CCl_4	-14 ^c
2	CHCl ₃	73
3	EA	58
4	CH ₃ COCH ₃	75
5	THF	69
6	CH ₃ CN	68
7	DMF	52
8	H_2O	37
9^d	DCM	74
10 ^e	DCM	75

^{*a*} Reaction performed at a 0.11 mmol scale **1a** with 0.1 mmol of **2**, 20 mol % of **3b** in solvent (0.2M) for 2d. ^{*b*} Determined by chiral HPLC analysis. ^{*c*} The opposite enantiomer was obtained. ^{*d*} 0.1 mol/L, yield 76%. ^{*e*} 0.5 mol/L, yield 59%.

2.2 Effect of N-substituent of oxindoles

R = H, yield 65%, ee rac

R = Me, no desired product

R = Boc, yield 85%, ee 76%

2.3 General procedure for direct a-alkylation of 2-oxindoles with Michlers Hydrol

To the mixture of 2-oxindoles (0.11mmol) and catalyst **3d** (0.02 mmol, 15.6 mg) in 0.5 mL DCM, MsOH (0.02 mmol, 1.3μ L) was added. After 5 minutes Michlers Hydrol **2** (0.1 mmol, 27 mg) was added to the mixture. Then, the reaction system was stirred for 1-2 days at room temperature. After silica gel was treated with Et₃N in petroleum ether (10%), FC (petroleum ether/ ethyl acetate, 8: 1 to 4: 1) afforded target products.

(R)-tert-butyl 3-benzyl-3-(bis(4-(dimethylamino)phenyl)methyl)-2-oxoindoline-1-carboxylate (5a):

white solid. yield 85%, ee 76%. $[\alpha]_D^{20}$ +56.3 (*c* 0.72, ethyl acetate). m.p. 60-62 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.44-7.47 (d, *J* = 7.8 Hz, 1H), δ 7.10-7.23 (m, 5H), δ 6.93 (s, 3H), δ 6.79-6.81 (d, *J* = 8.0 Hz, 2H), δ 6.65-6.73 (m, 4H), δ 6.44-6.49 (d, *J* = 8.0 Hz, 2H), δ 4.47 (s, 1H), δ 3.43-3.47(d, *J* = 12.8 Hz, 1H), δ 3.05-3.09 (d, *J* = 12.8 Hz, 1H), δ 2.92 (s, 6H), δ 2.81 (s, 6H), δ 1.40 (s, 9H). ¹³C NMR (75.0 MHz, CDCl₃): δ 177.5, 149.4, 149.2, 148.6, 140.7, 135.8, 131.3, 130.0, 129.8, 129.1, 128.5, 128.0, 127.5,

127.5, 126.2, 125.6, 123.1, 114.7, 112.4, 112.0, 83.1, 59.2, 58.3, 44.6, 40.6, 40.5, 27.9. IR ν_{max} (KBr, film, cm⁻¹): 1151, 1347, 1521, 1609, 1728, 1761. HRMS (ESI): calcd for $C_{37}H_{42}O_3N_3$ [M+H]⁺ 576.3221; found: 576.3214. HPLC analysis [Chiralcel OD-H, n-hexane/ i-propanol (90:10), 15°C, 0.5 mL·min⁻¹, $t_R = 20.2$ min (major), 15.0 min (minor)].

(R)-tert-butyl

3-(bis(4-(dimethylamino)phenyl)methyl)-3-(3-methoxybenzyl)-2-oxoindoline-1-carboxylate (5b):

white solid. yield 63%, ee 82%. $[\alpha]_D^{20}$ +56.8 (*c* 0.76, DCM). m.p. 73-74 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.47-7.50 (d, *J* = 7.8 Hz, 1H), δ 7.19-7.23 (m, 3H), δ 7.07-7.12 (m, 1H), δ 6.78-6.87 (m, 3H), δ 6.65-6.68 (d, *J* = 8.7 Hz, 2H), δ 6.44-6.53 (m, 3H), δ 6.34-6.36 (d, *J* = 7.5 Hz, 1H), δ 6.20 (s, 1H), δ 4.47 (s, 1H), δ 3.50 (s, 3H), δ 3.40-3.44 (d, *J* = 12.9 Hz, 1H), δ 2.99-3.03 (d, *J* = 12.9 Hz, 1H), δ 2.93 (s, 6H), δ 2.81 (s, 6H), δ 1.41 (s, 9H). ¹³C NMR (75.0 MHz, CDCl₃): δ 177.4, 158.7,

149.4, 149.2, 148.7, 140.9, 137.2, 131.3, 129.8, 129.2, 128.5, 128.4, 128.1, 127.5, 125.5, 123.1, 122.5, 114.7, 114.5, 112.9, 112.4, 112.0, 83.2, 59.1, 58.2, 54.9, 44.8, 40.6, 40.5, 27.9. IR ν_{max} (KBr, film, cm⁻¹): 1151, 1347, 1521, 1609, 1728, 1763. HRMS (ESI): calcd for C₃₈H₄₄O₄N₃ [M+H]⁺ 606.3326; found: 606.3316. HPLC analysis [Chiralcel OD-H, n-hexane/ i-propanol (90:10), 20°C, 0.5 mL·min⁻¹, t_R =

18.0 min (major), 16.2 min (minor)].

(R)-tert-butyl

3-(bis(4-(dimethylamino)phenyl)methyl)-3-(3-methylbenzyl)-2-oxoindoline-1-carboxylate (5c):

white solid. yield 71%, ee 76%. $[\alpha]_D^{20}$ +54.5 (*c* 0.84, DCM). m.p. 145-147 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.46-7.49 (d, *J* = 8.1 Hz, 1H), δ 7.19-7.24 (m, 4H), δ 7.10-7.12 (m, 2H), δ 6.58-6.81 (m, 8H), δ 6.44-6.47 (d, *J* = 8.7 Hz, 2H), δ 4.46 (s, 1H), δ 3.38-3.42 (d, *J* = 12.9 Hz, 1H), δ 2.81-2.93 (d, *J* = 12.9 Hz, 1H), δ 2.93 (s, 6H), δ 2.81 (s, 6H), δ 2.11 (m, 3H), δ 1.26 (s, 9H). ¹³C NMR (75.0 MHz, CDCl₃): δ 177.6, 149.4, 149.2, 148.7, 140.8, 135.5, 132.7, 131.3, 129.8, 129.8, 129.3, 128.6, 128.2, 128.0, 127.6, 125.6, 123.1, 114.7, 112.4, 112.0, 83.1, 59.3, 58.3, 44.1, 40.6, 40.5, 27.9, 20.9. IR v_{max}

(KBr, film, cm⁻¹): 1153, 1339, 1519, 1609, 1726, 1762. HRMS (ESI): calcd for $C_{38}H_{44}O_3N_3 [M+H]^+$ 590.3377; found: 590.3369. HPLC analysis [Chiralcel OD-H, n-hexane/ i-propanol (90:10), 25°C, 0.5 mL·min⁻¹, t_R = 13.1 min (major), 11.6 min (minor)].

(R)-tert-butyl

3-(bis(4-(dimethylamino)phenyl)methyl)-3-(3-chlorobenzyl)-2-oxoindoline-1-carboxylate (5d):

white solid. yield 62%, ee 76%. $[\alpha]_D^{20}$ +41.1 (*c* 0.76, DCM). m.p. 139-141 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.49-7.52 (d, J = 8.1 Hz, 1H), δ 7.08-7.24 (m, 5H), δ 6.92-6.95 (d, J = 8.1Hz, 2H), δ 6.79-6.88 (m, 3H), δ 6.58-6.71 (m, 4H), δ 6.45-6.47 (d, J = 8.7 Hz, 2H), δ 4.44 (s, 1H), δ 3.38-3.42 (d, J =12.9 Hz, 1H), δ 2.97-3.01 (d, J = 12.9 Hz, 1H), δ 2.93 (s, 6H), δ 2.82 (s, 6H), δ 1.43 (s, 9H). ¹³C NMR (75.0 MHz, CDCl₃): δ 177.2, 149.5, 149.2, 148.6, 140.7, 137.9, 133.2,

131.2, 130.1, 129.8, 128.7, 128.3, 128.1, 127.3, 126.5, 125.4, 123.3, 114.7, 112.4, 112.0, 83.4, 59.0, 58.2, 44.2, 40.6, 40.5, 27.9. IR v_{max} (KBr, film, cm⁻¹): 1151, 1251, 1520, 1610, 1729, 1762. HRMS (ESI): calcd for $C_{37}H_{41}O_3N_3Cl [M+H]^+$ 610.2831; found: 610.2824. HPLC analysis [Chiralcel IA, n-hexane/ i-propanol (90:10), 25°C, 0.5 mL·min⁻¹, t_R = 15.1 min (major), 16.7 min (minor)]. (*R*)-tert-butyl

3-(bis(4-(dimethylamino)phenyl)methyl)-3-(3-fluorobenzyl)-2-oxoindoline-1-carboxylate (5e):

white solid. yield 64%, ee 80%. $[\alpha]_D^{20}$ +47.1 (*c* 0.76, DCM). m.p. 169-171 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.48-7.51 (d, *J* = 8.1 Hz, 1H), δ 7.08-7.22 (m, 5H), δ 6.78-6.92 (m, 3H), δ 6.63-6.68 (m, 3H), δ 6.44-6.51 (m, 3H), δ 4.45 (1, 1H), δ 3..41-3.45 (d, *J* = 12.9 Hz, 1H), δ 2.99-3.03 (d, *J* = 12.9 Hz, 1H), δ 2.93 (s, 6H), δ 2.82 (s, 6H), δ 1.42 (s, 9H). ¹³C NMR (75.0 MHz, CDCl₃): δ 177.3, 162.0 (¹*J*_{CF} = 243.3 Hz), 149.5, 149.2, 148.6, 140.7, 138.4, 138.3, 131.2, 129.8, 128.9, 128.8, 128.3, 127.3, 125.7, 125.4, 123.3, 116.8 (²*J*_{CF}

Boc

= 21.2 Hz), 114.7, 113.2 (${}^{2}J_{CF}$ = 20.7 Hz), 112.4, 112.0, 83.4, 59.0, 58.3, 44.2, 40.6, 40.5, 27.9. IR v_{max} (KBr, film, cm⁻¹): 1151, 1520, 1611, 1728, 1760. HRMS (ESI): calcd for C₃₇H₄₁O₃N₃F [M+H]⁺ 594.3127; found: 594.3116. HPLC analysis [Chiralcel IC, n-hexane/ i-propanol (90:10), 25°C, 0.5 mL·min⁻¹, t_R = 38.6 min (major), 32.2 min (minor)].

(R)-tert-butyl

3-(bis(4-(dimethylamino)phenyl)methyl)-3-(4-methoxybenzyl)-2-oxoindoline-1-carboxylate (5f):

white solid. yield 71%, ee 73%. $[\alpha]_D^{20}$ +42.6 (*c* 0.86, DCM). m.p. 79-81 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.46-7.48 (d, *J* = 8.1 Hz, 1H), δ 7.17-7.24 (m, 3H), δ 7.07-7.15 (m, 2H), δ 6.78-6.86 (m, 2H), δ 6.61-6.69 (m, 4H), δ 6.44-6.47 (d, *J* = 8.7 Hz, 4H), δ 4.45 (s, 1H), δ 3.62 (s, 3H), δ 3.36-3.41 (d, *J* = 13.2 Hz, 1H), δ 2.95-2.99 (d, *J* = 13.2 Hz, 1H), δ 2.93 (s, 6H), δ 2.81 (s, 6H), δ 1.41 (s, 9H). ¹³C NMR (75.0 MHz, CDCl₃): δ 177.7, 157.9, 149.4, 149.2, 148.7, 140.8, 131.3, 130.9, 129.8, 129.3, 128.6, 128.0, 127.8, 127.6,

125.5, 123.1, 114.7, 112.9, 112.4, 112.1, 83.1, 59.3, 58.2, 54.9, 43.7, 40.6, 40.6, 27.9. IR v_{max} (KBr, film, cm⁻¹): 1150, 1250, 1516, 1611, 1728, 1763. HRMS (ESI): calcd for $C_{38}H_{44}O_4N_3$ [M+H]⁺ 606.3326; found: 606.3318. HPLC analysis [Chiralcel IA, n-hexane/ i-propanol (90:10), 20°C, 0.5 mL·min⁻¹, t_R = 20.2 min (major), 25.5 min (minor)].

(R)-tert-butyl

3-(bis(4-(dimethylamino)phenyl)methyl)-3-(4-methylbenzyl)-2-oxoindoline-1-carboxylate (5g):

white solid. yield 64%, ee 70%. $[\alpha]_D^{20}$ +48.7 (*c* 0.76, DCM). m.p. 69-71 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.39-7.42 (d, *J* = 7.8 Hz, 1H), δ 7.12-7.18 (m, 3H), δ 7.01-7.07 (m, 2H), δ 6.51-6.74 (m, 8H), δ 6.37-6.40 (d, *J* = 8.7 Hz, 2H), δ 4.38 (s, 1H), δ 3.31-3.35 (d, *J* = 12.9 Hz, 1H), δ 2.90-2.94 (d, *J* = 12.9 Hz, 1H), δ 2.85 (s, 6H), δ 2.74 (s, 6H), δ 2.04 (s, 3H), δ 1.33 (s, 9H). ¹³C NMR (75.0 MHz, CDCl₃): δ 176.6, 148.4, 148.1, 147.6, 139.8, 134.5, 131.6, 130.2, 128.8, 128.7, 128.2, 127.5, 127.2, 126.9, 126.5, 124.5, 122.1, 113.6, 111.3, 111.0, 82.0,

58.2, 57.3, 43.1, 39.5, 39.5, 26.8, 19.9. IR v_{max} (KBr, film, cm⁻¹): 1151, 1251, 1520, 1610, 1728, 1763. HRMS (ESI): calcd for $C_{38}H_{44}O_3N_3$ [M+H]⁺ 590.3377; found: 590.3369. HPLC analysis [Chiralcel AD-H, n-hexane/ i-propanol (90:10), 25 °C, 0.5 mL·min⁻¹, t_R = 16.0 min (major), 18.8 min (minor)]. (*R*)-tert-butyl

3-(bis(4-(dimethylamino)phenyl)methyl)-3-(4-bromobenzyl)-2-oxoindoline-1-carboxylate (5h):

white solid. yield 63%, ee 72%. $[\alpha]_D^{20}$ +43.3 (*c* 0.82, DCM). m.p. 94-96 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.46-7.49 (d, J = 8.1 Hz, 1H), δ 7.03-7.24 (m, 7H), δ 6.78-6.81 (d, J = 8.4Hz, 2H), δ 6.64-6.67 (d, J = 8.7 Hz, 2H), δ 6.58-6.60 (d, J =8.1 Hz, 2H), δ 6.44-6.47 (d, J = 8.7 Hz, 2H), δ 4.44 (s, 1H), 3.36-3.41 (d, J = 12.9 Hz, 1H), δ 2.93-2.99 (overlap: s, 6H; d, J = 12.9 Hz, 1H), δ 2.81 (s, 6H), δ 1.42 (s, 9H). ¹³C NMR (75.0 MHz, CDCl₃): δ 177.4, 149.5, 149.3, 148.5, 140.7,

134.9, 131.7, 131.2, 130.6, 129.8, 128.7, 128.3, 128.1, 127.2, 125.4, 123.3, 120.4, 114.9, 112.3, 112.0, 83.4, 59.1, 58.4, 43.7, 40.6, 40.5, 27.9. IR v_{max} (KBr, film, cm⁻¹): 1150, 1520, 1610, 1729, 1762. HRMS (ESI): calcd for $C_{37}H_{41}O_3N_3Br$ [M+H]⁺ 654.2326; found: 654.2318. HPLC analysis [Chiralcel IA, n-hexane/i-propanol (90:10), 20°C, 0.5 mL·min⁻¹, t_R = 19.8 min (major), 26.3 min (minor)].

(R)-tert-butyl

 $\label{eq:constraint} 3- (benzo[d][1,3] dioxol-5-ylmethyl)-3- (bis(4-(dimethylamino)phenyl)methyl)-2-oxoindoline-1-carb benzo[d][1,3] dioxol-5-ylmethyl)-3- (bis(4-(dimethylamino)phenyl)methyl)-3- (bis(4-(dimethylamino)phenyl)methylamino)phenyl methylamino)phenyl methylam$

oxylate (5i): white solid. yield 73%, ee 70%. $[\alpha]_D^{20}$ +51.3 (*c* 0.8, ethyl acetate). m.p. 83-85 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.51-7.54 (d, *J* = 8.1 Hz, 1H), δ 7.06-7.23 (m, 5H), δ 6.77-6.80 (d, *J* = 8.7 Hz, 2H), δ 6.64-6.67 (d, *J* = 8.7 Hz, 2H), δ 6.44-6.47 (d, *J* = 8.7 Hz, 2H), δ 6.37-6.39 (d, *J* = 7.8 Hz, 1H), δ 6.17-6.23 (td, *J* = 8.1 Hz, *J* = 1.2 Hz, 2H), δ 5.74 (t, *J* = 1.2 Hz, 2H), δ 4.42 (s, 1H), δ 3.34-3.38 (d, *J* = 13.2 Hz, 1H), δ 2.92-2.97 (overlap: d, *J* = 13.2 Hz, 1H; s, 6H), δ 2.81

(s, 6H), δ 1.43 (s, 9H). ¹³C NMR (75.0 MHz, CDCl₃): δ 177.5, 149.4, 149.2, 148.7, 146.7, 145.8, 140.8, 131.2, 129.8, 129.5, 129.1, 128.4, 128.1, 127.5, 125.5, 123.3, 123.2, 114.7, 112.4, 112.0, 110.3, 107.4, 100.5, 83.2, 59.3, 58.3, 44.1, 40.6, 40.5, 27.9. IR v_{max} (KBr, film, cm⁻¹): 1150, 1250, 1520, 1610, 1728, 1762. HRMS (ESI): calcd for C₃₈H₄₂O₃N₅ [M+H]⁺ 620.3119; found: 620.3109. HPLC analysis [Chiralcel IA, n-hexane/ i-propanol (90:10), 25°C, 0.5 mL·min⁻¹, t_R = 22.8 min (major), 28.0 min (minor)].

(R)-tert-butyl 3-(bis(4-(dimethylamino)phenyl)methyl)-2-oxo-3-propylindoline-1-carboxylate (5j):

white solid. yield 58%, ee 76%. $[\alpha]_D^{20}$ +32.1 (*c* 0.61, DCM). m.p. 49-51 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.69-7.72 (d, *J* = 8.4 Hz, 1H), δ 7.29-7.34 (t, *J* = 7.8 Hz, 1H), δ 7.11-7.14 (d, *J* = 8.4 Hz, 3H), δ 6.88-6.91 (d, *J* = 7.2 Hz, 1H), δ 6.76-6.78 (d, *J* = 8.7 Hz, 2H), δ 6.61-6.63 (d, *J* = 8.4 Hz, 2H), δ 6.44-6.47 (d, *J* = 8.7 Hz, 2H), δ 4.19 (s, 1H), δ 2.90 (s, 6H), δ 2.81 (s, 6H), δ 2.04-2.13 (m, 1H), δ 1.68-1.77 (m, 1H), δ 1.46 (s, 9H), δ 0.91-0.99 (m, 2H), δ 0.69-0.74 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (75.0 MHz, CDCl₃): δ 178.6, 149.3,

149.3, 148.9, 140.9, 131.0, 130.0, 129.7, 128.3, 127.9, 127.6, 124.9, 123.5, 114.7, 112.2, 112.0, 83.3, 59.1, 58.2, 40.6, 40.6, 39.7, 27.9, 18.0, 14.2. IR ν_{max} (KBr, film, cm⁻¹): 1154, 1291, 1521, 1727, 1763. HRMS (ESI): calcd for $C_{33}H_{42}O_3N_3$ [M+H]⁺ 528.3221; found: 528.3218. HPLC analysis [Chiralcel IB, n-hexane/i-propanol (90:10), 15°C, 0.3 mL·min⁻¹, t_R = 15.0 min (major), 16.1 min (minor)].

2.4 Other attempts of alcohols

2.5 Other attempts of nucleophiles

ethyl 1-(bis(4-(dimethylamino)phenyl)methyl)-2-oxocyclopentanecarboxylate: pale solid. yield 90%, ee 15%. $[\alpha]_D^{20}$ +30.7 (c 0.98, EA). m.p. 113-115 °C. ¹H NMR

(3 00 MHz, CDCl₃): δ 7.10-7.13 (d, J = 8.5 Hz, 1H), δ 6.94-6.96 (d, J = 8.5 Hz, 2H), δ 6.62-6.65 (d, J = 8.5 Hz, 2H), δ 6.55-6.57 (d, J = 8.5 Hz, 2H), δ 5.07 (s, 1H), δ 3.84-4.02 (m, 2H), δ 2.98-3.03 (m, 1H), δ 2.87-2.89 (s, 6H; s, 6H), δ 2.19-2.32 (m, 2H), δ 1.67-1.87 (m, 2H), δ 1.51-1.54 (m, 1H), δ 0.89-0.93 (t, J = 7.2 Hz, 3H). ¹³C NMR (75.0 MHz, CDCl₃): δ 214.8, 169.0, 149.0, 149.0, 130.7, 129.8, 129.5,

129.0, 112.6, 112.2, 66.7, 61.5, 53.6, 40.7, 40.5, 38.8, 29.2, 19.9, 13.7. IR v_{max} (KBr, film, cm⁻¹): 1221, 1356, 1521, 1614, 1715. HRMS (ESI): calcd for $C_{25}H_{33}O_2N_3$ [M+H]⁺ 409.24857; found: 409.24947. HPLC analysis [Chiralcel AD, n-hexane/ i-propanol (90:10), 15 °C, 0.5 mL·min⁻¹, t_R = 28.5 min (major), 20.5 min (minor)].

ethyl 2-cyano-3,3-bis(4-(dimethylamino)phenyl)-2-phenylpropanoate: colorless oil. yield 92%, ee 6%. ¹H NMR (300 MHz, CDCl₃): δ 7.60-7.64 (m, 2H), δ 7.41-7.44

(d, J = 8.7 Hz, 2H), δ 7.28-7.33 (m, 3H), δ 6.89-6.92 (d, J = 8.7 Hz, 2H), δ 6.66-6.69 (d, J = 8.8 Hz, 2H), δ 6.41-6.44 (d, J = 8.8 Hz, 2H), δ 4.92 (s, 1H), δ 4.01-4.21 (m, 2H), δ 2.91 (s, 6H), δ 2.81 (s, 6H), δ 1.08-1.13 (t, J = 7.2 Hz, 3H). ¹³C NMR (75.0 MHz, CDCl₃): δ 167.5, 149.6, 149.2, 134.1, 130.1, 129.5, 128.6, 128.5, 128.2,

127.3, 126.2, 118.8, 112.5, 111.9, 63.0, 60.1, 56.6, 40.6, 40.4, 13.7. IR ν_{max} (KBr, film, cm⁻¹): 1229, 1353, 1522, 1612, 1741. HRMS (ESI): calcd for $C_{28}H_{32}O_3N_2$ [M+H]⁺ 442.24890; found: 442.24804. HPLC analysis [Chiralcel AD, n-hexane/ i-propanol (90:10), 15°C, 0.5 mL·min⁻¹, t_R = 36.3 min (major), 28.0 min (minor)].

3. Determination of absolute configuration of 5a

Experimental:

The sample (**5a**) was dissolved in CDCl_3 (5.2 mg/0.15mL) and placed in a 100 µm pathlength cell with BaF₂ windows. IR and VCD spectra were recorded on a Chiral*IR-2X*TM VCD spectrometer (BioTools, Inc.) equipped with dual-*PEM* accessory, with 4 cm⁻¹ resolution, 23h collection for both the sample and CDCl3, and instrument optimized at 1400 cm⁻¹. The solvent-subtracted IR&VCD spectra are shown in *Figure 1*.

Theoretical Calculations:

Since there is only one chiral center in the molecule, the R configuration was built with ComputeVOA (BioTools Inc.). A conformational search was carried out with ComputeVOA for R configuration at the molecular mechanics level to give 1373 low energy conformers. Geometry, frequency, and IR and VCD intensity calculations of the 107 lowest-energy conformers resulted from the conformational search were carried out at the DFT level (B3LYP functional/ 6-31G(d) basis set) with Gaussian 09 (Gaussian Inc., Wallingford, CT). The calculated frequencies were scaled by 0.97 and the IR and VCD intensities were converted to Lorentzian bands with 6-cm⁻¹ half-width for comparison to experiment.

For the *R* configuration Gaussian calculations resulted in two low energy conformers, and all the other conformers are more than 2.2 kcal/mol higher than the lowest energy conformer. The optimized geometries, the relative energies of the two lowest-energy conformers of the *R* configuration are shown in **Figure 2**. The IR and VCD spectrum of the two conformers are plotted against the observed spectra of **5a** in **Figure 3**. The comparison of the observed VCD and IR spectra with those of the Boltzmann-weighted sum of the two calculated lowest-energy conformers of the R configuration is shown in **Figure 4**. Therefore the absolute configuration of **5a** is assigned as (*R*). The assignment was also evaluated by Compare*VOA* program (**Figure 5** and **6**). The confidence level of the assignment of *R* is 100% based on current database that includes 106 previous correct assignments for different chiral structures, which confirms the assignment of the absolute configuration of **5a** is *R*.

Figure 1. IR (lower frame) and VCD (upper frame) spectra of **5a** in $CDCl_3$ (5.2 mg/0.15 mL); 100-µm path-length cell with BaF₂ windows; 23 h collection for sample and solvent; instrument optimized at 1400 cm⁻¹. Solvent-subtracted spectra are shown. Uppermost trace is the VCD noise.

Figure 2. Optimized geometry, relative energies and Boltzmann population of the two calculated lowest-energy R conformer of **5a**.

Figure 3. IR (lower frame) and VCD (upper frame) spectra observed for 5a (right axes) compared with calculated spectra of the two calculated lowest-energy conformations for the *R*- configuration (left axes).

Figure 4. IR (lower frame) and VCD (upper frame) spectra observed for 5a (right axes) compared with the Boltzmann-population-weighted calculated spectra for the two lowest-energy conformations of the *R* configurations (left axes).

Figure 5. Compare VOA result for comparing the observed IR and VCD spectra with the calculated spectra of the *R* configuration.

The new ESI-value lies in the 48th percentile of the database for correct assignments

Figure 6. Compare VOA result for comparing the observed IR and VCD spectra with the calculated spectra of the *R* configuration.

Pk #	Retention Time	Area	Area %
1	12.876	25086650	48.358
2	16.279	26790460	51.642
Totals		51877111	100.000

Pk #	Retention Time	Area	Area %
1	15.167	19989709	48.455
2	16.304	21264822	51.545
Totals		41254530	100.000

Pk #	Retention Time	Area	Area %
1	14.991	23732660	87.977
2	16.071	3243364	12.023
Totals		26976023	100.000

Pk #	Retention Time	Area	Area %
1	16.243	33739401	48.012
2	18.951	36532898	51.988
Totals		70272298	100.000

Pk #	Retention Time	Area	Area %
1	16.013	13173672	84.869
2	18.813	2348753	15.131
Totals		15522426	100.000

Pk #	Retention Time	Area	Area %
1	19.304	26835872	48.878
2	24.226	28068218	51.122
Totals		54904090	100.000

Pk #	Retention Time	Area	Area %
1	20.158	29692049	86.536
2	25.524	4619890	13.464
Totals		34311939	100.000

Pk #	Retention Time	Area	Area %
1	19.674	12844083	49.385
2	25.961	13164018	50.615
Totals		26008101	100.000

Pk #	Retention Time	Area	Area %
1	19.788	27203578	85.929
2	26.294	4454442	14.071
Totals		31658020	100.000

Pk #	Retention Time	Area	Area %
1	15.029	39601088	48.589
2	17.007	41900595	51.411
Totals		81501684	100.000

Pk #	Retention Time	Area	Area %
1	16.155	3351380	9.188
2	17.985	33124137	90.812
Totals		36475517	100.000

1	11.624	3745119	12.207
2	13.129	26935843	87.793
Totals		30680961	100.000

Pk #	Retention Time	Area	Area %
1	22.944	26759053	49.096
2	27.898	27744031	50.904
Totals		54503084	100.000

Pk #	Retention Time	Area	Area %
1	22.825	41673910	85.050
2	27.980	7325456	14.950
Totals		48999367	100.000

Pk #	Retention Time	Area	Area %
1	30.786	16656765	49.967
2	36.167	16678712	50.033
Totals		33335476	100.000

Pk #	Retention Time	Area	Area %
1	32.229	2409294	9.887
2	38.584	21958922	90.113
Totals		24368216	100.000

Pk #	Retention Time	Area	Area %
1	15.507	26029004	48.689
2	17.103	27430271	51.311
Totals		53459275	100.000

Pk #	Retention Time	Area	Area %
1	15.055	17081619	87.917
2	16.657	2347724	12.083
Totals		19429343	100.000

677 650 442	472	468 426	047 005 924 806	
່ບ່ບ່ບ່ບ	4	e e e	MMMM	
VV]	$\backslash /$	M = 1	

-1.404

3.495 3.441 3.398 3.032 2.989 2.930 2.811 VI/I N/Z

- 1.405

- 4.470

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $@$ The Royal Society of Chemistry 2013				-90.21		
8 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	122	#24 381	5990 3590 3590	E	1 03	
	5.		M N N N	2	Ĩ.	
WWWWWWWWW	Ĩ	Ŭ/	X1/7	Ĩ	Ĩ	
	1	10.1	10.0	52 E	85	

	149.42 149.42 148.70 148.70 148.70 132.65 132.65 132.65 132.65 132.65 132.65 132.65 132.65 123.57 123.57 123.57 123.55 12		\ 88.33 }\			
--	--	--	------------------	--	--	--

-1.426

7.508 7.508 7.558 7.258 7.192 7.192 7.192 6.916 6.891 6.845 6.891 6.881 6.881 6.878 6.881 6.878 6.881 6.878 6.876 6.878 6.876 6.876 6.876 6.876 6.876 6.877 6.777 6.777 6.777 6.777 6.7777 6.7777 6.7777 6.77777 6.77777777	4.448	3.448 3.405	3.030 2.987 2.931 2.815	
---	-------	----------------	----------------------------------	--

-1.419

φ.	r- 00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
0	00 [7]	<u>~4008466~~~000000~0000</u>	5	000	C~ 10	000	-
(C)	ωœ	4002400202020400020000	Φ	ကယာက	00	0 7 0	5
2.54	201200		3	400	00	400	00
r-	~ Q	ႫႫჾႫჾჾჃ <i>Ⴒ</i> ჾჾჾჾჁゎჁႱ <i>๛</i> ჿႫ๛ぃჿ	- S.A.	Charles and State	10.000		5.00
F -	9 9	444400000000000000000000000000000000000	(C)	50 - 7 - 7	<u>ь</u>	400	F ~
-			00		N N	বিব্	01
100	Total Contraction			117	()	1.1.1	2010/02
				NZ	1		
4				MC .	<i>M</i>	L X	<u>.</u>

-3.618 -3.408 -3.364 2.932 2.948 2.926 2.826 V

— 1.409

		Ĩ	1		01 12	
in a bandan sa						

W

-43.73-40.61-40.56 -27.90

- 177.66	-157.90	~149.40 -149.18 ~148.65	- 140.79 131.27 131.27 131.27 129.25 - 123.13 - 112.98 - 112.98 - 112.91 - 112.91 - 112.91 - 112.06	- 83.13 - 77.48 - 77.06
de la constante de	3	V/		

4.384

176.55	148.36 147.64 147.64 131.59 134.55 134.55 134.55 134.55 134.55 128.74 128.74 128.19 128.19 128.51 128.55 12			— 43.08 39.54 39.48		— 19.85
--------	--	--	--	---------------------------	--	---------

o Boc

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Т

ppm

177.138	149.47 148.45 148.45 134.91 134.91 131.71 123.26 128.73 128.75 12	83.40 77.49 77.07	59.14 58.40	43.73 40.57 40.50	27.89
]	V/ VSSN/////////////////////////////////	T NZ	\mathbb{V}	11	

77.53	44444 4444 4644 4644 4644 464 464 464 4	.00.49	3.22 7.48 6.64	9.27	.4.15 0.58 0.52	7.88
Ī		Ī		٦̈́/	Į ∖̇́	Ĩ

- 6

ppm

	-	Ω.	E N	505-
00400004000000000000000000000000000000	2	2	0.0	0140
NNNHH000000000000000000000000000000000	N	ব	ň ň	0005
	1.			miniated
	2	4	0.0	00000
				111
and the second se			M	SUL 1
(•)() ((((((((((((((((((((((((((((((((25.53	

Electronic Supplementary Material (I	ESI) for Chemical Communications
This journal is © The Royal Society of	of Chemistry 2013

214.8140	169. 0247	149.0341 148.9843	130.6828 129.8161 129.4767 129.0012	112. 5658 112. 2292	77.4812 77.0580 76.6343	66.6721	61.5024	53.5838	40.7140 40.5192 38.8133	29.1894	19.9045	13.6879
		Y	\mathbb{V}	V	\mathbb{V}				V/	1	1	

										I		
I		Î			I				 f #			ŝ
 	**************************************		••••••••••••••••••••••••••••••••••••••	<u></u>	·····	·····	 ·····	 ••••••••••••••••••••••••••••••••••••••	·····	 	·····	

Ph EtOOC--CN

	αÐ		NO
4	8.6	2 4 8 8 9 8 9 8 4 8	4 0
22	165	114041006	40
167.	149. L49.	L28. L28. L28. L28. L28. L28. L18.	112.
Ĩ	Ϋ́		Ŵ

- 4	2 0	
0 4	ŕΟ	
0 0	1 0	
0 -	4 W	
m c	. in	
ΰũ	бĎ	
- 12 I	S 16	
	8 X	

< 40.554840.3988

77.4745 77.0512 76.6275