Supplementary Information for

Bespoke Synthesis of Unsymmetrical Diaminoboranes by Alkaline Earth Catalysis

Peter Bellham, Michael S. Hill,* Gabriele Kociok-Köhn and David J. Liptrot

General experimental procedures

All reactions were carried out using standard Schlenk line and glovebox techniques under an inert nitrogen atmosphere. NMR experiments were conducted in Youngs tap NMR tubes prepared and sealed in a glovebox. NMR spectra were collected on a Bruker AV300 spectrometer operating at 75.5 MHz (13 C), 96.3 MHz (11 B). Solvents (toluene, THF, hexane) were dried by a commercially available solvent purification system (Innovative Technologies), under nitrogen before storage in ampoules over molecular sieves. C₆D₆ and d₈-toluene were purchased from Goss Scientific Instruments Ltd., dried over molten potassium before distillation under nitrogen and storage over molecular sieves. Me₂NH.BH₃, and (CH₃)₃CNH₂.BH₃ were purchased from Sigma-Aldrich Ltd. and used without further purification. Pyrrolidine borane, C₄H₈NH.BH₃,¹ and the magnesium and calcium diamides [M{N(SiMe₃)₂}₂(THF)₂] were synthesised by literature procedures.² Pyrrolidine and t-butylamine were purchased from Sigma-Aldrich Ltd. and dried over sodium and calcium hydride respectively. GCMS data was obtained on an Agilent Technologies 5975C GCMS using 0.5 mg/ml samples in toluene. CHN microanalysis was conducted by Mr. Stephen Boyer of London Metropolitan University.

Catalytic NMR-Scale Synthesis of [{Me₂N}BH{NMe₂}] and [{Me₂N}BH{NC₄H₈}], 1

(i) Using $[Ca{N(SiMe_3)_2}_2]_2$

 C_6D_6 (ca. 0.5 ml) was added to a solid mixture of Me₂NH.BH₃ (59 mg, 1 mmol), one molar equivalent of C₄H₈NH (71 mg, 1 mmol) and [Ca{N(SiMe₃)₂}₂]₂ (18 mg, 2.5 mol%) and the solution sealed in a Youngs tap NMR tube before heating to 70°C for 24 hours. Approx. yields using ¹¹B NMR: [{Me₂N}BH{NMe₂}] 44%, **1** 54%.

(ii) Using $[Mg{N(SiMe_3)_2}_2]_2$

 C_6D_6 (ca. 0.5 ml) was added to a solid mixture of Me₂NH.BH₃ (59 mg, 1 mmol), one molar equivalent of C₄H₈NH (71 mg, 1 mmol) and [Mg{N(SiMe₃)₂}₂]₂ (17 mg, 2.5 mol%) and the

solution sealed in a Youngs tap NMR tube before heating to 70°C for 24 hours. Approx. yields using ¹¹B NMR: [$\{Me_2N\}BH\{NMe_2\}$] 40%, **1** 40%.

(iii) Data

[{Me₂N}BH{NMe₂}] and **1** proved unstable to concentration under vacuum or by evaporation in a glovebox. Complete molecular ions of could not observed by GCMS for either compound. ¹H NMR (C₆D₆, 298 K) δ = ca. 1.48 (m, (N(CH₂)₂(CH₂)₂)), ca. 1.52 (m, (N(CH₂)₂(CH₂)₂)), 2.54 (s, N-CH₃), 2.57 (s, N-CH₃), 2.62 (s, N-CH₃), 2.70 (s, N-CH₃), 3.04 (t, (N(CH₂)₂(CH₂)₂), *J*_{HH} = 6.78 Hz), 3.08 (t, (N(CH₂)₂(CH₂)₂), *J*_{HH} = 6.78 Hz), 3.20 (t, (N(CH₂)₂(CH₂)₂), *J*_{HH} = 6.60 Hz), 3.28 (t, (N(CH₂)₂(CH₂)₂), *J*_{HH} = 6.60 Hz). ¹³C{¹H} NMR (C₆D₆, 298 K) δ = 26.60 (N(CH₂)₂(CH₂)₂), 26.90 (N(CH₂)₂(CH₂)₂), 39.91 (N-CH₃), 40.01 (N-CH₃), 40.18 (N-CH₃), 41.33 (N-CH₃), 48.18 (N(CH₂)₂(CH₂)₂), 49.99 (br, N(CH₂)₂(CH₂)₂). ¹¹B NMR (C₆D₆, 298 K) δ = 29.9 (d, [{Me₂N}BH{NMe₂}], *B*H, ¹*J*_{BH} = 128 Hz), 32.2 (d, **1**, *B*H, ¹*J*_{BH} = 106 Hz).

Catalytic NMR-Scale Synthesis of [{Me₂N}BH{NH^tBu}], 2

(i) Using $[Ca{N(SiMe_3)_2}_2]_2$

 C_6D_6 (ca. 0.5 ml) was added to a solid mixture of Me₂NH.BH₃ (59 mg, 1 mmol), one molar equivalent of (CH₃)₃CNH₂ (73 mg, 1 mmol) and [Ca{N(SiMe₃)₂}₂]₂ (18 mg, 2.5 mol%) and the solution sealed in a Youngs tap NMR tube before heating to 70°C for 48 hours. Approx. yields using ¹¹B NMR: [{Me₂N}BH{NMe₂}] 8%, **2** 75%.

(ii) Using $[Mg{N(SiMe_3)_2}_2]_2$

 C_6D_6 (ca. 0.5 ml) was added to a solid mixture of Me₂NH.BH₃ (59 mg, 1 mmol), one molar equivalent of (CH₃)₃CNH₂ (73 mg, 1 mmol) and [Mg{N(SiMe₃)₂}₂]₂ (17 mg, 2.5 mol%) and the solution sealed in a Youngs tap NMR tube before allowing to react at RT for 92 hours. Approx. yields using ¹¹B NMR: [{Me₂N}BH{NMe₂}] 0%, **2** 79%.

(iii) Data

2 proved unstable to concentration under vacuum or by evaporation in a glovebox. Although the complete molecular ion could not be observed by GCMS analysis, an ion with m/z 113.0 corresponding to M⁺ - CH₃ was clearly identified. ¹H NMR (C₆D₆, 298 K) $\delta = 1.16$ (s, C(CH₃)₃), 2.48 (broad s, N-CH₃), 2.53 (s, N-CH₃), 2.62 (s, N-CH₃). ¹³C{¹H} NMR (C₆D₆, 298 K) $\delta = 33.88$ (C(CH₃)₃), 39.93 (N-CH₃), 41.34 (N-CH₃), 48.84 (C(CH₃)₃). ¹¹B NMR (C₆D₆, 298 K) $\delta = 30.2$ (d, [{Me₂N}BH{NMe₂}], BH, ¹J_{BH} = 128 Hz), ca. 32.2 (d, **2**, BH, ¹J_{BH} = 120 Hz).

Catalytic NMR-Scale Synthesis of [{Me₂N}BH{NⁱPr₂}], 3

(i) Using $[Ca{N(SiMe_3)_2}_2]_2$

D₈-toluene (ca. 0.5 ml) was added to a solid mixture of Me₂NH.BH₃ (29 mg, 0.5 mmol), one molar equivalent of ⁱPr₂NH (51 mg, 0.5 mmol) and $[Ca{N(SiMe_3)_2}_2]_2$ (9 mg, 2.5 mol%) and the solution sealed in a Youngs tap NMR tube before heating to 90°C for ca. 101 hours. Approx. yield of **3** using ¹¹B NMR: 67%.

(ii) Using $[Mg{N(SiMe_3)_2}_2]_2$

 C_6D_6 (ca. 0.5 ml) was added to a solid mixture of Me₂NH.BH₃ (29 mg, 0.5 mmol), one molar equivalent of ⁱPr₂NH (51 mg, 0.5 mmol) and [Mg{N(SiMe₃)₂}₂]₂ (9 mg, 2.5 mol%) and the solution sealed in a Youngs tap NMR tube before heating to 60°C for ca. 44 hours. Approx. yield of **3** using ¹¹B NMR: 69%.

(iii) Data

3 proved unstable to concentration under vacuum or by evaporation in a glovebox. Although the complete molecular ion could not be observed by GCMS analysis, an ion with m/z 139.0 corresponding to **3** with the loss of 2H and CH₃ was observed. ¹H NMR (d₈-tol, 298 K) $\delta = 0.92$ (d, ⁱPr CH₃, $J_{\text{HH}} = 6.0$ Hz), 1.11 (d, ⁱPr CH₃, $J_{\text{HH}} = 6.8$ Hz), 2.67 (s, N-CH₃), 2.74 (spt, ⁱPr CH, $J_{\text{HH}} = 6.0$ Hz), 3.42 (spt, ⁱPr CH, $J_{\text{HH}} = 6.8$ Hz). ¹³C{¹H} NMR (d₈-tol, 298 K) $\delta = 23.91$ (ⁱPr CH₃), 25.33 (ⁱPr CH₃), 42.44 (N-CH₃), 45.69 (ⁱPr CH), 46.04 (ⁱPr CH). ¹¹B NMR (d₈-tol, 298 K) $\delta = 29.7$ (d, BH, ¹ $J_{\text{BH}} = 118.6$ Hz).

Catalytic NMR-Scale Synthesis of [{Me₂N}BH{NPh₂}], 4

(i) Using $[Ca{N(SiMe_3)_2}_2]_2$

D₈-toluene (ca. 0.5 ml) was added to a solid mixture of Me₂NH.BH₃ (29 mg, 0.5 mmol), one molar equivalent of Ph₂NH (84 mg, 0.5 mmol) and $[Ca{N(SiMe_3)_2}_2]_2$ (9 mg, 2.5 mol%) and the solution sealed in a Youngs tap NMR tube before heating to 90°C for ca. 101 hours. Approx yield of **4** using ¹¹B NMR: 83%.

(ii) Using $[Mg{N(SiMe_3)_2}_2]_2$

 C_6D_6 (ca. 0.5 ml) was added to a solid mixture of Me₂NH.BH₃ (29 mg, 0.5 mmol), one molar equivalent of Ph₂NH (84 mg, 0.5 mmol) and [Mg{N(SiMe₃)₂}₂]₂ (9 mg, 2.5 mol%) and the solution sealed in a Youngs tap NMR tube before heating to 50°C for ca. 26 hours. Approx yield of **4** using ¹¹B NMR: 95%.

(iii) Data

4 proved unstable to concentration under vacuum or by evaporation in a glovebox. Although the complete molecular ion could not be observed by GCMS analysis, an ion with m/z 207.00

corresponding to **4** with the loss of 2H and CH₃ was observed. ¹H NMR (d₈-tol, 298 K) $\delta = 1.95$ (s, N-CH₃), 2.61 (s, N-CH₃), 6.67-7.01 (Ar). ¹³C{¹H} NMR (d₈-tol, 298 K) $\delta = 38.81$ (N-CH₃), 43.99 (N-CH₃), 118.52 (Ar), 121.46 (Ar), 123.74 (Ar). 126.04 (Ar), 129.27 (Ar), 129.84 (Ar), 143.98 (Ar), 149.87 (Ar). ¹¹B NMR (d₈-tol, 298 K) $\delta = 32.1$ (d, *B*H, ¹*J*_{BH} = 122 Hz).

Catalytic NMR-Scale Synthesis of [{C₄H₈N}BH{NH^tBu}], 5

D₈-toluene (ca. 0.5 ml) was added to a solid mixture of C₄H₈NH.BH₃ (85 mg, 1 mmol), one molar equivalent of (CH₃)₃CNH₂ (73 mg, 1 mmol) and [Ca{N(SiMe₃)₂}₂]₂ (18 mg, 2.5 mol%) and the solution sealed in a Youngs tap NMR tube before heating to 90°C for ca. 44 hours. Approx. yield of **5** using ¹¹B NMR: 87%. **5** proved unstable to concentration under vacuum or by evaporation in a glovebox. Although the complete molecular ion could not be observed by GCMS analysis, an ion with m/z 152.0 corresponding to **5** with the loss of 2H was observed. ¹H NMR (d₈-tol, 298 K) δ = 1.18 (s, C(CH₃)₃), 1.54 (s br., (N(CH₂)₂(CH₂)₂)), 2.61 (s broad, 1H, (N(CH₂)₂(CH₂)₂)), 2.80 (s broad, 1H, (N(CH₂)₂(CH₂)₂)), ca. 3.14 (s broad, 1H, (N(CH₂)₂(CH₂)₂)), 3.25 (t, (N(CH₂)₂(CH₂)₂)), *J*_{HH} = 6.6 Hz). ¹³C{¹H} NMR (C₆D₆, 298 K) δ = 26.90 (br., (N(CH₂)₂(CH₂)₂)), ¹¹B NMR (d₈-tol, 298 K) δ = 28.9 (d, *B*H, ¹*J*_{BH} = 126 Hz).

C₆D₆ (ca. 0.5 ml) was added to a solid mixture of ¹BuNH₂.BH₃ (87 mg, 1 mmol), one molar equivalent of C₄H₈NH (71 mg, 1 mmol) and [Ca{N(SiMe₃)₂}₂]₂ (18 mg, 2.5 mol%) and the solution sealed in a Youngs tap NMR tube before heating to 70°C for ca. 24 hours. Approx. yield using ¹¹B NMR: 100%. Compound **5** proved unstable to concentration under vacuum or by evaporation in a glovebox. GCMS results identified ion with *m/z* of 154.2 corresponding to the complete molecule. ¹H NMR (C₆D₆, 298 K) δ = 1.20 (s, 9H, C(CH₃)₃), 1.51 (s broad, 4H, (N(CH₂)₂(CH₂)₂)), 2.65 (s broad, 1H, (N(CH₂)₂(CH₂)₂)), 2.80 (s broad, 1H, (N(CH₂)₂(CH₂)₂)), ca. 3.09 (s broad, 1H, (N(CH₂)₂(CH₂)₂)), 3.27 (t, 1H, (N(CH₂)₂(CH₂)₂), *J*_{HH} = 6.8 Hz). ¹³C{¹H} NMR (C₆D₆, 298 K) δ = 26.92 (br., N(CH₂)₂(CH₂)₂)), 33.94 (C(CH₃)₃), 44.80 (br. N(CH₂)₂(CH₂)₂)), 48.94 (C(CH₃)₃), 51.08 (br., N(CH₂)₂(CH₂)₂)). ¹¹B NMR (C₆D₆, 298 K) δ = 29.0 (d, *B*H, ¹*J*_{BH} = 127 Hz).

Catalytic NMR-Scale Synthesis of [{C₄H₈N}BH{NⁱPr₂}], 6

D₈-toluene (ca. 0.5 ml) was added to a solid mixture of C₄H₈NH.BH₃ (43 mg, 0.5 mmol), one molar equivalent of ⁱPr₂NH (51 mg, 0.5 mmol) and [Ca{N(SiMe₃)₂}₂]₂ (9 mg, 2.5 mol%) and the solution sealed in a Youngs tap NMR tube before heating to 90°C for ca. 96 hours. Approx yield using ¹¹B NMR: 79%. 20 proved unstable to concentration under vacuum or by evaporation in a glovebox. GCMS results identified a M⁺ ion with *m*/*z* of 182.1, corresponding to **6**. ¹H NMR (d₈-tol, 298 K) $\delta = 0.93$ (d, ⁱPr CH₃, *J*_{HH} = 6.4 Hz), 1.14 (d, ⁱPr CH₃, *J*_{HH} = 6.8 Hz), ca. 1.53 (quint., (N(CH₂)₂(CH₂)₂), *J*_{HH} = 6.6 Hz), ca. 1.54 (quint., (N(CH₂)₂(CH₂)₂), *J*_{HH} = 6.6 Hz), 3.22 (t, (N(CH₂)₂(CH₂)₂), *J*_{HH} = 6.8 Hz), 3.26 (t, (N(CH₂)₂(CH₂)₂), *J*_{HH} = 6.8 Hz), 3.53 (spt, ⁱPr CH, *J*_{HH} = 6.3 Hz). ¹³C{¹H} NMR (d₈-tol, 298 K) $\delta = 24.04$ (ⁱPr CH₃), 25.51 (ⁱPr CH₃), 25.56 (N(CH₂)₂(CH₂)₂), 27.08 (N(CH₂)₂(CH₂)₂), 45.78 (ⁱPr CH), 45.94 (ⁱPr CH), 50.92 (br, N(CH₂)₂(CH₂)₂). ¹¹B NMR (d₈-tol, 298 K) $\delta = 29.8$ (d, *B*H, ¹*J*_{BH} = 123 Hz).

Catalytic NMR-Scale Synthesis of [{C₄H₈N}BH{NPh₂}], 7

D₈-toluene (ca. 0.5 ml) was added to a solid mixture of C₄H₈NH.BH₃ (43 mg, 0.5 mmol), one molar equivalent of Ph₂NH (84 mg, 0.5 mmol) and [Ca{N(SiMe₃)₂}₂]₂ (9 mg, 2.5 mol%) and the solution sealed in a Youngs tap NMR tube before heating to 90°C for ca. 96 hours. Approx yield using ¹¹B NMR: 97%. The product proved unstable to concentration under vacuum or by evaporation in a glovebox. GCMS results did not identify the complete molecule, but did show pyrrolidine and NPh₂ fragments, consistent with compound **7**. ¹H NMR (d₈-tol, 298 K) δ = 1.28 (quint., (N(CH₂)₂(CH₂)₂), *J*_{HH} = 6.4 Hz), 1.41 (quint., (N(CH₂)₂(CH₂)₂), *J*_{HH} = 6.8 Hz), 2.40 (t, (N(CH₂)₂(CH₂)₂), *J*_{HH} = 6.8 Hz), 3.31 (t, (N(CH₂)₂(CH₂)₂), *J*_{HH} = 6.0 Hz), 6.76 (d, Ar, *J*_{HH} = 6.8 Hz), 6.81 (d, Ar, *J*_{HH} = 7.5 Hz), 6.88 (t, Ar, *J*_{HH} = 6.8 Hz), 7.02 (t, Ar, *J*_{HH} = 7.5 Hz), 7.07 (t, Ar, *J*_{HH} = 7.2 Hz). ¹³C{¹H} NMR (d₈-tol, 298 K) δ = 26.11 (N(CH₂)₂(CH₂)₂), 26.79 (N(CH₂)₂(CH₂)₂), 47.69 (N(CH₂)₂(CH₂)₂), 52.52 (N(CH₂)₂(CH₂)₂), 118.53 (Ar), 121.47 (Ar), 123.76 (Ar), 126.27 (Ar), 129.38 (Ar), 143.98 (Ar), 150.03 (Ar). ¹¹B NMR (d₈-tol, 298 K) δ = 30.5 (br. s, *B*H).

Catalytic NMR-Scale Synthesis of [{^tBuHN}BH{NⁱPr₂}], 8

 C_6D_6 (ca. 0.5 ml) was added to a solid mixture of ^tBuNH₂.BH₃ (43 mg, 0.5 mmol), one molar equivalent of ⁱPr₂NH (51 mg, 0.5 mmol) and [Ca{N(SiMe₃)₂}₂]₂ (9 mg, 2.5 mol%) and the solution sealed in a Youngs tap NMR tube before heating to 70°C for ca. 96 hours. Compound **8** proved unstable to concentration under vacuum. Approx. yield using ¹¹B NMR:

81%. Although the complete molecular ion of **8** was not observed by GCMS analysis, ions with *m*/*z* of 167.1 (**8** - CH₃ - 2H), 140.9 (**8** - 2(CH₃) - 2H) and 128.0 (**8** - iPr) could be be identified. ¹H NMR (C₆D₆, 298 K) $\delta = 0.95$ (d, ⁱPr CH₃, J_{HH} = 6.4 Hz), 1.09 (d, ⁱPr CH₃, J_{HH} = 6.8 Hz), 1.20 (s, C(CH₃)₃), 2.78 (spt, ⁱPr CH, J_{HH} = 6.4 Hz), 3.20 (spt, ⁱPr CH, J_{HH} = 6.7 Hz). ¹³C{¹H} NMR (C₆D₆, 298 K) $\delta = 24.15$ (ⁱPr CH₃), 24.72 (ⁱPr CH₃), 33.87 C(CH₃)₃, 45.72 (s, ⁱPr CH), 46.08 (s, ⁱPr CH), 49.12 (s, C(CH₃)₃). ¹¹B NMR (C₆D₆, 298 K) $\delta = 29.2$ (d, *B*H, ¹J_{BH} = 124 Hz).

Catalytic NMR-Scale Synthesis of [{^tBuHN}BH{NPh₂}], 9

(i) Using $[Ca{N(SiMe_3)_2}_2]_2$

 C_6D_6 (ca. 0.5 ml) was added to a solid mixture of ^tBuNH₂.BH₃ (43 mg, 0.5 mmol), one molar equivalent of Ph₂NH (84 mg, 0.5 mmol) and [Ca{N(SiMe₃)₂}₂]₂ (9 mg, 2.5 mol%) and the solution sealed in a Youngs tap NMR tube before heating to 70°C for ca. 72 hours. Approx yield using ¹¹B NMR: 100%.

(ii) Using $[Mg{N(SiMe_3)_2}_2]_2$

 C_6D_6 (ca. 0.5 ml) was added to a solid mixture of ^tBuNH₂.BH₃ (87 mg, 1 mmol), one molar equivalent of Ph₂NH (169 mg, 1 mmol) and [Mg{N(SiMe₃)₂}₂]₂ (17 mg, 2.5 mol%) and the solution sealed in a Youngs tap NMR tube before allowing the contents to react at room temperature for ca. 24 hours. Approx yield using ¹¹B NMR: 100%.

(iii) Data

GCMS results identified an ion with m/z of 207.1, corresponding to **9** - 3(CH₃). ¹H NMR (C₆D₆, 298 K) $\delta = 0.97$ (s, 9H, C(CH₃)₃), 3.19 (d, 1H, NH, $J_{\text{HH}} = 9.0$ Hz), 6.70 (d, Ar, $J_{\text{HH}} = 7.2$ Hz), 6.72 (d, Ar, $J_{\text{HH}} = 6.8$ Hz), 6.82 (t, Ar, $J_{\text{HH}} = 6.4$ Hz), 6.99 (t, Ar, $J_{\text{HH}} = 6.9$ Hz), 7.01 (t, Ar, $J_{\text{HH}} = 8.3$ Hz). ¹³C{¹H} NMR (C₆D₆, 298 K) $\delta = 33.69$ (C(CH₃)₃), 49.44 (C(CH₃)₃), 118.54 (Ar), 121.50 (Ar), 124.10 (Ar), 125.90 (Ar), 129.80 (Ar), 129.88 (Ar), 143.93 (Ar), 149.13 (Ar). ¹¹B NMR (C₆D₆, 298 K) $\delta = 29.8$ (br. s, *B*H).

Catalytic Synthesis of [{^tBuHN}BH{NPh₂}], 9

Toluene (ca. 10ml) was added to a solid mixture of ${}^{t}BuNH_{2}.BH_{3}$ (173 mg, 2 mmol), one molar equivalent of Ph₂NH (338 mg, 2 mmol) and [Ca{N(SiMe_3)_2}_2]_2 (36 mg, 2.5 mol%) and the solution sealed in a Youngs tap ampoule before heating to 80°C for ca. 96 hours. A single crystal suitable for X-ray diffraction analysis was isolated from concentrated toluene. Compound **9** was isolated as a white powder in effectively stoichiometric yield after

complete removal of solvent. Anal. Calc. for $C_{16}H_{21}BN_2$: C, 76.21; H, 8.39; N, 11.11 %. Found: C, 76.08; H, 8.29; N, 11.02 %.

Uncatalysed NMR-Scale Reaction of $Me_2NH.BH_3$ and C_4H_8NH to Synthesise $[{Me_2N}BH{NMe_2}]$ and $[{Me_2N}BH{NC_4H_8}]$, 1

 C_6D_6 (ca. 0.5 ml) was added to a solid mixture of Me₂NH.BH₃ (59 mg, 1 mmol) and one molar equivalent of C₄H₈NH (71 mg, 1 mmol) and the solution sealed in a Youngs tap NMR tube before heating to 70°C for 207 hours. Approx. yields using ¹¹B NMR: 12% [{Me₂N}BH{NMe₂}], 15% **1**.

¹H NMR (C₆D₆, 298 K) δ = ca. 1.48 (m, (N(CH₂)₂(CH₂)₂)), ca. 1.52 (m, (N(CH₂)₂(CH₂)₂)), ca. 2.54 (s, N-CH₃), 2.56 (s, N-CH₃), ca. 2.65 (s, N-CH₃), ca. 3.14 (t, (N(CH₂)₂(CH₂)₂), J_{HH} = 6.40 Hz), ca. 3.15 (t, (N(CH₂)₂(CH₂)₂), J_{HH} = 6.40 Hz). ¹¹B NMR (C₆D₆, 298 K) δ = 29.82 (d, [{Me₂N}BH{NMe₂}], BH, ¹J_{BH} = 112.7 Hz), 32.1 (d, **1**, BH, ¹J_{BH} = 103 Hz).

Uncatalysed NMR-Scale Reaction of Me₂NH.BH₃ and (CH₃)₃CNH₂ to Synthesise [{Me₂N}BH{NH^tBu}], 2

 C_6D_6 (ca. 0.5 ml) was added to a solid mixture of Me₂NH.BH₃ (59 mg, 1 mmol) and one molar equivalent of (CH₃)₃CNH₂ (73 mg, 1 mmol) and the solution sealed in a Youngs tap NMR tube before heating to 70°C for 207 hours. Approx. yields using ¹¹B NMR: 3%, **2**. ¹H NMR (C_6D_6 , 298 K) $\delta = 1.16$ (s, C(CH₃)₃), 2.46 (broad s, N-CH₃), 2.57 (s, N-CH₃). ¹¹B NMR (C_6D_6 , 298 K) $\delta = 30.3$ (d, BH, ¹J_{BH} = 130 Hz).

Uncatalysed NMR-Scale Reaction of $Me_2NH.BH_3$ and ${}^{i}Pr_2NH$ to Synthesise $[{Me_2N}BH{NMe_2}]$ and $[{Me_2N}BH{N^{i}Pr_2}]$, 3

 C_6D_6 (ca. 0.5 ml) was added to a solid mixture of Me₂NH.BH₃ (29 mg, 0.5 mmol) and one molar equivalent of ⁱPr₂NH (51 mg, 0.5 mmol) and the solution sealed in a Youngs tap NMR tube before heating to 70°C for ca. 119hours and 80°C for ca. 115 hours. Approx. yields using ¹¹B NMR: 7% [{Me₂N}BH{NMe₂}], 0% **3**.

¹H NMR (C₆D₆, 298 K) δ = 2.60 (s, N-CH₃). ¹¹B NMR (C₆D₆, 298 K) δ = 32.1 (d, BH, ¹J_{BH} = 130 Hz).

Uncatalysed NMR-Scale Reaction of Me₂NH.BH₃ and Ph₂NH to Synthesise [{Me₂N}BH{NPh₂}], 4

 C_6D_6 (ca. 0.5 ml) was added to a solid mixture of Me₂NH.BH₃ (29 mg, 0.5 mmol), one molar equivalent of Ph₂NH (84 mg, 0.5 mmol) and the solution sealed in a Youngs tap NMR tube before heating to 70°C for ca. 119 hours and 80°C for ca. 115 hours. Approx. yield using ¹¹B NMR: 34%.

¹H NMR (C₆D₆, 298 K) δ = 1.91 (s, N-CH₃), 2.77 (s, N-CH₃), 6.95-7.06 (Ar). ¹¹B NMR (C₆D₆, 298 K) δ = 32.1 (d, BH, ¹J_{BH} = 110 Hz).

Uncatalysed NMR-Scale Reaction of $C_4H_8NH.BH_3$ and $(CH_3)_3CNH_2$ to Synthesise $[{C_4H_8N}BH{NH^tBu}], 5$

D₈-toluene (ca. 0.5 ml) was added to a solid mixture of C₄H₈NH.BH₃ (85 mg, 1 mmol and one molar equivalent of (CH₃)₃CNH₂ (73 mg, 1 mmol) and the solution sealed in a Youngs tap NMR tube before heating to 90°C for ca. 144 hours. Approx. yield using ¹¹B NMR: 64%. ¹H NMR (d₈-tol, 298 K) $\delta = 1.18$ (s, C(CH₃)₃), 1.53 (s br., (N(CH₂)₂(CH₂)₂)), 2.63 (s broad, (N(CH₂)₂(CH₂)₂)), 2.81 (s broad, (N(CH₂)₂(CH₂)₂)), ca. 3.14 (s broad, (N(CH₂)₂(CH₂)₂)), 3.22 (t, (N(CH₂)₂(CH₂)₂), *J*_{HH} = 6.4 Hz). ¹¹B NMR (d₈-tol, 298 K) $\delta = 28.9$ (d, *B*H, ¹*J*_{BH} = 126 Hz).

Uncatalysed NMR-Scale Reaction of ${}^{t}BuNH_{2}$.BH₃ and C₄H₈NH to Synthesise [{ ${}^{t}BuHN$ }BH{NC₄H₈}], 5

 C_6D_6 (ca. 0.5 ml) was added to a solid mixture of ¹BuNH₂.BH₃ (87 mg, 1 mmol) and one molar equivalent of C₄H₈NH (71 mg, 1 mmol) and the solution sealed in a Youngs tap NMR tube before heating to 70°C for ca. 142 hours. Approx. yield using ¹¹B NMR: 19%. ¹H NMR (C₆D₆, 298 K) $\delta = 1.17$ (s, C(CH₃)₃), ca. 1.49 (m, (N(CH₂)₂(CH₂)₂)), ca. 2.51 (m, (N(CH₂)₂(CH₂)₂)), ca. 2.85 (m, (N(CH₂)₂(CH₂)₂)), ca. 2.89 (m, (N(CH₂)₂(CH₂)₂)). ¹¹B NMR (C₆D₆, 298 K) $\delta = 28.9$ (d, BH, ¹J_{BH} = 126 Hz).

Uncatalysed NMR-Scale Reaction of $C_4H_8NH.BH_3$ and iPr_2NH to Synthesise $[{C_4H_8N}BH{NC_4H_8}], 6$

D₈-toluene (ca. 0.5 ml) was added to a solid mixture of C₄H₈NH.BH₃ (43 mg, 0.5 mmol) and one molar equivalent of ⁱPr₂NH (51 mg, 0.5 mmol) and the solution sealed in a Youngs tap NMR tube before heating to 80°C for ca. 120 hours. Approx yield using ¹¹B NMR: 12%. ¹H NMR (d₈-tol, 298 K) $\delta = 0.95$ (d, ⁱPr CH₃, J_{HH} = 5.8 Hz), 1.14 (d, ⁱPr CH₃, J_{HH} = 7.3 Hz), ca.

1.51 (s br., (N(CH₂)₂(CH₂)₂)), ca. 1.55 (s br., (N(CH₂)₂(CH₂)₂)), 2.77 (s br., ⁱPr CH), ca. 3.22 (s br., (N(CH₂)₂(CH₂)₂)), 3.27 (s br., (N(CH₂)₂(CH₂)₂)), 3.55 (s br., ⁱPr CH). ¹¹B NMR (d₈-tol, 298 K) $\delta = 29.6$ (d, BH, ¹J_{BH} = 127 Hz).

Uncatalysed NMR-Scale Reaction of $C_4H_8NH.BH_3$ and Ph_2NH to Synthesise [{ C_4H_8N }BH{NPh_2}], 7

D₈-toluene (ca. 0.5 ml) was added to a solid mixture of C₄H₈NH.BH₃ (43 mg, 0.5 mmol) and one molar equivalent of Ph₂NH (84 mg, 0.5 mmol) and the solution sealed in a Youngs tap NMR tube before heating to 80°C for ca. 120 hours. Using ¹¹B NMR: 31% yield. ¹H NMR (d₈-tol, 298 K) δ = ca. 1.29 (m, (N(CH₂)₂(CH₂)₂)), ca. 1.39 (m, (N(CH₂)₂(CH₂)₂)), ca. 2.39 (m, (N(CH₂)₂(CH₂)₂)), 3.31 (t, (N(CH₂)₂(CH₂)₂), J_{HH} = 6.8 Hz), 6.76 – 7.11 (Ar). ¹¹B NMR (d₈-tol, 298 K) δ = 30.72 (br. s, *B*H).

Uncatalysed NMR-Scale Reaction of ^tBuNH₂.BH₃ and ⁱPr₂NH to Synthesise [{^tBuHN}BH{NⁱPr₂}], 8

D₈-toluene (ca. 0.5 ml) was added to a solid mixture of ^tBuNH₂.BH₃ (43 mg, 0.5 mmol) and one molar equivalent of ⁱPr₂NH (51 mg, 0.5 mmol) and the solution sealed in a Youngs tap NMR tube before heating to 80°C for ca. 157 hours. Approx. yield using ¹¹B NMR: 58%. ¹H NMR (d₈-tol, 298 K) $\delta = 0.94$ (d, ⁱPr CH₃, J_{HH} = 6.0 Hz), 1.07 (d, ⁱPr CH₃, J_{HH} = 6.8 Hz), 1.18 (s, C(CH₃)₃), 2.77 (spt, ⁱPr CH, J_{HH} = 6.8 Hz), 3.18 (spt, ⁱPr CH, J_{HH} = 6.8 Hz). ¹¹B NMR (d₈-tol, 298 K) $\delta = 29.0$ (d, BH, ¹J_{BH} = 125 Hz).

Uncatalysed NMR-Scale Reaction of ^tBuNH₂.BH₃ and Ph₂NH to Synthesise [{^tBuHN}BH{NPh₂}], 9

D₈-toluene (ca. 0.5 ml) was added to a solid mixture of ^tBuNH₂.BH₃ (43 mg, 0.5 mmol) and one molar equivalent of Ph₂NH (84 mg, 0.5 mmol) and the solution sealed in a Youngs tap NMR tube before heating to 80°C for ca. 67 hours. Approx yield using ¹¹B NMR: 96%. ¹H NMR (d₈-tol, 298 K) $\delta = 0.97$ (s, C(CH₃)₃), 3.19 (d, 1H, NH, J_{HH} = 9.4 Hz), 6.73 - 7.06 (Ar). ¹¹B NMR (d₈-tol, 298 K) $\delta = 30.5$ (br. s, *B*H).

Crystallographic analysis

Data for compound **9** were collected at 150 K on a Nonius KappaCCD diffractometer equipped with an Oxford Cryostream, using graphite monochromated MoK_{α} radiation (λ = 0.71073 Å). Data were processed using the Nonius Software.³ Structure solution, followed by full-matrix least squares refinement was performed using the WinGX-1.80 suite of programs throughout.⁴

References

- C. A. Jaska, K. Temple, A. J. Lough, and I. Manners, J. Am. Chem. Soc. 2003, 125, 9424.
- (a) J. M. Boncella, C. J. Coston, J. K. Cammack, *Polyhedron* 1991, **10**, 769. (b) P. S. Tanner, D. J. Burkey, T. P. Hanusa, *Polyhedron* 1995, **14**, 331.
- DENZO-SCALEPACK Z. Otwinowski and W. Minor, "Processing of X-ray Diffraction Data Collected in Oscillation Mode", Methods in Enzymology, Volume 276: Macromolecular Crystallography, part A, p.307-326, 1997, C.W. Carter, Jr. & R. M. Sweet, Eds., Academic Press.
- 4. L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837.