Enantioselective Synthesis of 1,2,4-Triazolines by Chiral Iron(II)-Complex Catalyzed Cyclization of α-Isocyano Esters and Azodicarboxylates

Min Wang, Xiaohua Liu,* Peng He, Lili Lin and Xiaoming Feng*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University,

Chengdu 610064, P. R. China

xmfeng@scu.edu.cn

Supporting Information

(A)	General		.1
(B)	General procedure for the chiral ligands preparation		1
(C)	General procedure for the synthesis of the α -isocyano esters		.1
(D)	Optimization of the reaction conditions		3
(E)	General procedure for the asymmetric cyclization of α -isocyano e	sters a	nd
	azodicarboxylates		.8
(F)	General procedure for the mono-deprotection of the 1,2,4-triazoline and the s	ynthesis	of
	1,2,4-triazoline derivatives		8
(G)	Substrate scope for the catalytic asymmetric cyclization of isocyano e	sters w	ith
	azodicarboxylates		.9
(H)	The analytical and spectral characterization data of the reaction products	1	0
(I)	Copies of NMR spectra for isocyano esters	2	26
(J)	Copies of NMR spectra for the products	2	29
(K)	References	4	48

A. General

¹H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, $\delta = 7.26$). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sept = septet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR spectra were collected on commercial instruments (100 MHz) with complete proton decoupling. Chemical shifts were reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, $\delta = 77.0$). The enantiomeric excesses were determined by HPLC analysis on chiral DAICEL CHIRALCEL AD-H, IB, OD-H column. Optical rotations were measured on a commercial polarimeter and reported as follows: [α]^T_D (c = g/100 mL, solvent). DEAD and dibenzyl azodicarboxylate (DBAD) were used after a single purification by column chromatography on silica gel. The other reagents obtained from commercial sources were used without further purification. CH₂Cl₂ were distilled over CaH₂ before use. THF, toluene, Et₂O were distilled over metal solution before use, the other solvents were used without further purification.

B. General procedure for the chiral ligands preparation

The N,N-dioxides were prepared according to the methods reported in the literature.¹

C. General procedure for the synthesis of the α -isocyano esters

Isocyano esters 1 were synthesized according to literature procedures.²

General procedure: To a solution of amino acid (10 mmol) in CH₃OH (20 mL) at room temperature was added dropwise SOCl₂ (2 mL). The reaction was stirred over night at room temperature, quenched with H_2O (20 mL) and then washed with K_2CO_3 (sat.) till no CO₂ released. The mixture was extracted with DCM, dried with Na₂SO₄ and concentrated in vacuum to give the corresponding product, which was used without any further purification.

$$\begin{array}{c|c} \mathsf{NH}_2 \\ \mathsf{R} \\ \hline \mathsf{COOH} \\ \end{array} \xrightarrow{\mathsf{EtOH, SOCI}_2} \\ \hline \mathsf{Over night, r.t.} \\ \mathsf{R} \\ \hline \mathsf{COOEt} \\ \end{array}$$

General procedure: To a solution of amino acid (10 mmol) in EtOH (20 mL) at room temperature was added dropwise SOCl₂ (2 mL). The reaction was stirred over night at room temperature, quenched with H_2O (20 mL) and then washed with K_2CO_3 (sat.) till no CO_2 released. The mixture was extracted with DCM, dried with Na_2SO_4 and concentrated in vacuum to give the corresponding product, which was used without further purification.

General procedure: To a solution of amino acid (10 mmol) in AcO₇-Bu (40 mL) at room temperature was added dropwise HClO₄·2H₂O (2 mL). The reaction was stirred for 2 days at room temperature, and quenched with H₂O (20 mL) and then washed with K₂CO₃ (sat.) till no CO₂ released. The mixture was extracted with DCM, dried with Na₂SO₄ and concentrated in vacuum to give the corresponding product, which was used without further purification.

$$\begin{array}{c} \mathsf{NH}_2 \\ \mathsf{R} \\ \mathsf{COOH} \end{array} \xrightarrow{\mathsf{PhCH}_2\mathsf{O}\,\mathsf{H}, \mathsf{TsOH}} \\ \hline \mathsf{toluene, reflux, 5h} \\ \mathsf{R} \\ \mathsf{COOBn} \end{array}$$

General procedure: To a solution of amino acids (10 mmol) in toluene (20 mL) was added PhCH₂OH (4 mL) and TsOH (2.1 g, 12 mmol), then the mixture was heated to reflux for 5 hours. 15 mL Et₂O/petroleum ether (v/v = 1:1) was added when the reaction was cooled to room temperature. Until no precipitates precipitated, the mixture was filtered to provide the solid which was treated with NaOH (1N) till the pH > 7. The mixture was extracted with DCM, dried with Na₂SO₄ and concentrated in vacuum to give the corresponding product, which was used without further purification.

$$R^{1} \xrightarrow{\text{NH}_{2}} COOR \xrightarrow{\text{Ac}_{2}O, \text{HCOOH}} R^{1} \xrightarrow{\text{NHCHO}} COOR \xrightarrow{\text{POCl}_{3}, \text{Et}_{3}N} R^{1} \xrightarrow{\text{NC}} COOR \xrightarrow{\text{NC}} R^{1} \xrightarrow{\text{COOR}} R^{1} \xrightarrow{\text{COO$$

General procedure: To a solution of amino ester (17 mmol) in formic acid (32 mL) at 0 °C was added dropwise acetic anhydride (10.8 mL, 107 mmol). The reaction was stirred at rt for 5 hours, quenched with H_2O (40 mL) and then extracted with CH_2Cl_2 (5 x 70 mL). The combined organic layers were washed with NaHCO₃ (sat.) (5 x 70 mL), brine, dried (Na₂SO₄) and concentrated in vacuum to give the corresponding *N*-formamide ester.

To a stirred solution of *N*-formamide ester (17 mmol) in dry THF (50 mL) at -78 °C under N₂ atmosphere was added Et₃N (12 mL, 85 mmol). A solution of POCl₃ (2 mL, 20 mmol) in dry THF (5 mL) was added dropwise and after that, the reaction mixture was allowed to warm to 0 °C. After stirring for another 2 hours, ice-cold water (60 mL) was added and the mixture was extracted with Et₂O (4 x 50 mL). The combined organic layers were washed with brine, dried with Na₂SO₄ and concentrated in vacuum. Purification by FC on silica gel afforded the corresponding isocyano ester **1**.

1d: ¹H NMR (300 MHz, CDCl₃) δ 7.37 (m, 5H), 5.22 (s, 2H), 4.36 (q, *J* = 7.1 Hz, 1H), 1.61 (t, *J*= 16.8 Hz, 3H) ppm.

1e: ¹H NMR (300 MHz, CDCl₃) δ 7.37 (m, 5H), 5.23 (s, 2H), 4.20 (d, *J* = 4.2 Hz, 1H), 1.08 (d, *J* = 6.8 Hz, 3H), 0.96 (d, *J* = 6.7 Hz, 3H) ppm.

1f: ¹H NMR (300 MHz, CDCl₃) δ 7.38 (m, 5H), 5.23 (s, 2H), 4.31 (dd, J = 9.7, 4.6 Hz, 1H), 3.71 (q, J = 7.0 Hz, 1H), 1.97 – 1.78 (m, 2H), 0.96 (t, J = 6.4 Hz, 6H) ppm.

1g: ¹H NMR (300 MHz, CDCl₃) δ 7.38 (m, 5H), 5.23 (d, J = 2.7 Hz, 2H), 4.35 (d, J = 3.6 Hz, 1H), 4.22 (d, J = 4.5 Hz, 1H), 2.07 (d, J = 4.0 Hz, 1H), 1.57 – 1.32 (m, 2H), 0.96 (ddd, J = 20.4, 16.4, 8.2 Hz, 6H) ppm.

1h: ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.27 (m, 10H), 5.26 – 5.09 (m, 4H), 4.70 (dd, *J* = 6.8, 5.8 Hz, 1H), 3.04 (qd, *J* = 16.9, 6.3 Hz, 2H) ppm.

1i: ¹H NMR (300 MHz, CDCl₃) δ 7.37 (d, *J* = 2.9 Hz, 10H), 5.23 (s, 2H), 5.13 (s, 2H), 4.49 (dd, *J* = 8.3, 4.9 Hz, 1H), 2.70 – 2.49 (m, 2H), 2.27 (dtd, *J* = 20.7, 14.1, 6.4 Hz, 2H) ppm.

1j: ¹H NMR (300 MHz, CDCl₃) δ 7.48 – 7.23 (m, 6H), 7.14 (dd, J = 7.4, 1.3 Hz, 1H), 6.89 (dd, J = 14.2, 7.7 Hz, 2H), 5.52 – 5.07 (m, 2H), 4.66 (dd, J = 8.8, 5.8 Hz, 1H), 3.82 (s, 3H), 3.37 (dd, J = 13.4, 5.7 Hz, 1H), 3.08 (dd, J = 13.4, 8.8 Hz, 1H) ppm.

D. Optimization of the reaction conditions

Table 1 The effects central metals on catalytic asymmetric addition of α -isocyano ester **1a** and DEAD.

$Bn - CO_2R +$	N ^{-CO2Et} N _{CO2} Et 2a	Ligand/metal solvent	RO_2C Bn CO_2Et R = Bn	ON H R	O, N, O H-N, R
	-			L1 : R = F	Ph, n = 2
Entry ^a	Ligand	Metal	Solvent	Yield (%) ^{<i>b</i>}	ee (%) ^c
1	L1	Yb(OTf) ₃	THF	nr ^d	-
2	L1	Sm(OTf) ₃	THF	nr ^d	-
3	L1	Mg(OTf) ₂	THF	53	19
4	L1	Zn(OTf) ₂	THF	nr ^d	-
5	L1	Sc(OTf) ₃	THF	nr ^d	-
6	L1	Cu(OTf) ₂	THF	91	2
7	L1	$Ni(acac)_2$	THF	66	21
8	L1	$Co(acac)_2$	THF	44	28

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

9	L1	Fe(acac) ₃	THF	61	31
10	L1	Fe(acac) ₂	THF	81	33
11	L1	Fe(BF ₄) ₂ 6H ₂ O	THF	nr ^d	-
12	L1	Fe(OMe) ₂	THF	28	5
13	L1	Fe(OAc) ₂	THF	68	28
14	L1	Fe(ClO ₄) ₂ 6H ₂ O	THF	nr ^d	-
^a Unless otherw	vise noted, all r	eactions were carried	d out with 10 mo	ol% of L1 /metal	(1:1), 1a (0.05

mmol), **2a** (0.075 mmol) in 0.5 mL THF at 25 °C for 24 h. ⁶ Isolated yield of **3aa**. ^c Determined by HPLC analysis using AD-H column. ^d No reaction.

Table 2 The effects of ligands on catalytic asymmetric addition of α -isocyano ester **1a** and DEAD.

Determined by HPLC analysis using AD-H column. ^d No reaction. ^e Not determined.

	Bn CO ₂ Bn +	N ^{-CO2EI} II EtO2C ^{-N}	t L6 /Fe(acac) ₂ (1:1) solvent, 25 °C, 24h	BnO ₂ C Bn CO ₂ Et	D₂Et
	1a	2a		3aa	
Entry ^a	Ligand	Metal	Solvent	Yie ld (%) ^{<i>b</i>}	ee (%) ^c
1	L6	Fe(acac) ₂	THF	88	57
2	L6	Fe(acac) ₂	CH_2Cl_2	96	13
3	L6	$Fe(acac)_2$	Et ₂ O	54	61
4	L6	$Fe(acac)_2$	toluene	89	39
5	L6	Fe(acac) ₂	MTBE d	94	65
6	L6	Fe(acac) ₂	<i>n</i> -Bu ₂ O	88	37
7	L6	Fe(acac) ₂	<i>i</i> -Pr ₂ O	77	51
^a Unless c	otherwise noted, all	reactions were	carried out with	10 mol% of L6 /F	e(acac) ₂ (1:1), 1a
(0.05 mm	ol), 2a (0.075 mm	ol) in 0.5 mL sc	olvent at 25 °C	for 24 h. ^b Isolate	ed yield of 3aa . c

Table 3 The effects of solvents on catalytic asymmetric cyclization of α -isocyano ester **1a** and DEAD.

Table 4 The effects of the ligand/metal ratio on the catalytic asymmetric cyclization of α -isocyano ester **1a** and DEAD.

Determined by HPLC analysis. ^d MTBE = methyl *tert*-butyl ester.

	Bn CO ₂ Bn +	N N II EtO ₂ C ^N	L 6 /Fe(acac) ₂ MTB E, 25 ℃, 24h	BnO ₂ C N N Bn N	$-CO_2Et$
	1a	2a		3aa	
Entry ^a	Ligand	Metal	L6/Fe(acac) ₂	Yield (%) ^b	ee % °
1	L6	Fe(acac) ₂	1:1	94	65
2	L6	Fe(acac) ₂	1.2:1	99	59
3	L6	Fe(acac) ₂	1.5:1	99	61
4	L6	Fe(acac) ₂	1:1.2	93	62
5	L6	$Fe(acac)_2$	1.5:1	95	65

^{*a*} Unless otherwise noted, all reactions were carried out with 10 mol% of **L6**/Fe(acac)₂, **1a** (0.05 mmol), **2a** (0.075 mmol) in 0.5 mL MTBE at 25 °C for 24 h. ^{*b*} Isolated yield of **3aa**. ^{*c*} Determined by HPLC analysis.

Table 5 The effects of concentration on the catalytic asymmetric cyclization of α -isocyano ester **1a** and DEAD.

1	L6	Fe(acac) ₂	1.0 mL	70	73	
2	L6	Fe(acac) ₂	0.8 mL	91	69	
3	L6	Fe(acac) ₂	0.5 mL	94	65	
4	L6	$Fe(acac)_2$	0.3 mL	95	65	
5	L6	Fe(acac) ₂	0.2 mL	99	58	
<i>a</i> I I1	41	- 11			$(\Gamma_{2}(2,2,2))$ (1.1)	1.

^{*a*} Unless otherwise noted, all reactions were carried out with 10 mol% of **L6**/Fe(acac)₂ (1:1), **1a** (0.05 mmol), **2a** (0.075 mmol) in MTBE at 25 °C for 24 h. ^{*b*} Isolated yield of **3aa**. ^{*c*} Determined by HPLC analysis.

Table 6 The effects of additives on catalytic asymmetric cyclization of α -isocyano ester **1a** and DEAD.

Entry <i>a</i>	Ligand	Metal	Additive	Yield (%) ^b	ee (%) ^c
1	L6	Fe(acac) ₂	4Å MS(5.0 mg)	nd ^d	51
2	L6	$Fe(acac)_2$	NaBAr ^F 4 ^e	99	88
3	L6	Fe(acac) ₂	CsCO ₃	33	53
4	L6	Fe(acac) ₂	Na_2SO_4 (5.0 mg)	nd ^d	73
5	L6	Fe(acac) ₂	NaBAr ^F 4, DMAP	95	88
6	L6	Fe(acac) ₂	NaBAr ^F 4, DIPEA	97	87
7	L6	Fe(acac) ₂	NaBArF4, Diphenol	99	87
8	L6	Fe(acac) ₂	NaBAr ^F 4, H ₂ O	99	85
9	L6	Fe(acac) ₂	NaBAr ^F 4, CaSO4	93	85

^{*a*} Unless otherwise noted, all reactions were carried out with 10 mol% of **L6**/Fe(acac)₂ (1:1), additive (10 mol%), **1a** (0.05 mmol), **2a** (0.075 mmol) in 1.0 mL of MTBE at 25 °C for 24 h. ^{*b*} Isolated yield of **3aa**. ^{*c*} Determined by HPLC analysis. ^{*d*} Not determined. ^{*e*} NaBArF₄ = NaB[3,5-(CF₃)₂C₆H₃]₄.

Table 7 The effect of 1a/2a ratio on catalytic asymmetric cyclization of α -isocyano ester 1a and DEAD

	+ CO ₂ Bn EtO ₂ C [^]	N CO ₂ Et L6 , II	/Fe(acac) ₂ , NaBAr ^F 4 MTB E, 25 ℃, 24 h	BnO ₂ C Bn	N-CO ₂ Et
1a		2a		3aa	
Entry ^a	L /Metal	1a (mmol)	2a (mmol)	Yield (%) ^b	ee (%) ^c
1	L6/Fe(acac) ₂	0.05	0.05	84	88
2	$L6/Fe(acac)_2$	0.05	0.075	99	88
2	$L6/Fe(acac)_2$	0.05	0.10	99	85
3	$L6/Fe(acac)_2$	0.05	0.15	96	84
4	$L6/Fe(acac)_2$	0.075	0.05	92	87

5	$L6/Fe(acac)_2$	0.10	0.05	82	88
6	$L6/Fe(acac)_2$	0.15	0.05	96	87
^a Unless	otherwise noted, all re	eactions v	were carried out with	10 mol%	of L6/ Fe(acac) ₂ (1:1),
NaBArF ₄	(10 mol%), 1a , 2a in	1.0 mL c	of MTBE at 25 °C for	· 24 h. ^b	Isolated yield of 3aa . c
Determin	ed by HPLC analysis.				

Table 8 Effect of reaction temperature on catalytic asymmetric cyclization of α -isocyano ester **1a** and DEAD

NC 	+	N N	L6 /Fe(acac) ₂ , NaBAr $^{F}_{4}$	BnO ₂ C	N-CO ₂ Et			
Bn	CO ₂ Bn EtO ₂	C´ ^Ň	MTBE, 24h	Bn N				
	2	•		C	CO ₂ Et			
1a	I	2 a		3aa				
Entry ^a	L /Metal	Temperatu	re (° C)	Yield (%) ^b	ee (%) ^{<i>c</i>}			
1	$L6/Fe(acac)_2$	35		93	85			
2	$L6/Fe(acac)_2$	30		91	87			
3	$L6/Fe(acac)_2$	25		99	88			
4	$L6/Fe(acac)_2$	0		39	79			
^{<i>a</i>} Unless otherwise noted, all reactions were carried out with $L6/Fe(acac)_2$ (1:1), NaBArF ₄ , 1a								
(0.05 mmol), 2a (0.075 mmol) in 1.0 mL of MTBE for 24 h. ^b Isolated yield of 3aa. ^c Determined								
by HPLC analy	ysis.							

Table 9 The effect of catalyst and additive loading on catalytic asymmetric cyclization of α -isocyano ester **1a** and DEAD

Bn CO ₂	+ Bn N	.CO ₂ Et - CO ₂ Et	L6 /Fe(acac) ₂ (1:1, x mol%) NaBArF ₄ (y mol%) MTBE	BnO ₂ C Bn	N-CO ₂ Et
1a		2a		3a	a
Entry ^a	L /Metal	X (mol%)	Y (mol%)	Yield (%) ^b	ee (%) ^c
1	$L6/Fe(acac)_2$	15	15	96	85
2	$L6/Fe(acac)_2$	10	10	99	89
3	$L6/Fe(acac)_2$	5	5	99	89
4	$L6/Fe(acac)_2$	2.5	2.5	92	88
5	$L6/Fe(acac)_2$	5	10	99	89
6	$L6/Fe(acac)_2$	5	2.5	98	87
7 ^d	$L6/Fe(acac)_2$	5	5	97	89

^{*a*} Unless otherwise noted, all reactions were carried out with **L6**/Fe(acac)₂ (1:1), NaBAr^F₄, **1a** (0.05 mmol), **2a** (0.075 mmol) in 1.0 mL of MTBE at 25 °C for 24 h. ^{*b*} Isolated yield of **3aa**. ^{*c*} Determined by HPLC analysis. ^{*d*} 0.1 mmol **1a**, 0.15 mmol **2a** and 2.0 mL of MTBE were used in the reaction.

E. General procedure for the asymmetric cyclization of α -isocyano esters and azodicarboxylates

General procedure **A**: MTBE (2.0 mL) was added to a dry reaction tube containing a mixture of **L6** (3.0 mg, 0.005 mmol), Fe(acac)₂ (1.3 mg, 0.005 mmol), NaBAr^F₄ (4.4 mg, 0.005 mmol) and azodicarboxylate (0.15 mmol). The mixture was stirred at 25 °C for 1 hour, then isocyano ester **1** (0.1 mmol) was added. After being stirred for another 24 hours at 25 °C, the reaction mixture was directly purified by column chromatography on silica gel to afford the corresponding compound.

General procedure **B** for **3ea** and **3ga**: MTBE (1.0 mL) was added to a dry reaction tube containing a mixture of **L6** (3.0 mg, 0.005 mmol), Fe(acac)₂ (1.3 mg, 0.005 mmol), NaBAr^F₄ (4.4 mg, 0.005 mmol) and azodicarboxylate (0.075 mmol). The mixture was stirred at 25 °C for 1 h, then isocyano ester **1** (0.05 mmol) was added. After being stirred for 24 hours at 25 °C, the reaction mixture was directly purified by column chromatography on silica gel to afford the corresponding compound.

Typical procedure **C** for **3kb**, **3ab**, **3ac** and **3ad**: MTBE (2.0 mL) was added to a dry reaction tube containing a mixture of **L6** (3.0 mg, 0.005 mmol), Fe(acac)₂ (1.3 mg, 0.005 mmol), NaBAr^F₄ (4.4 mg, 0.005 mmol) and azodicarboxylate (0.20 mmol). The mixture was stirred at 25 °C for 1 hour, then isocyano ester **1** (0.10 mmol) was added. After being stirred for 24 hours at 25 °C, the reaction mixture was directly purified by column chromatography on silica gel to afford the corresponding compound.

Typical procedure for gram-scale preparation: MTBE (60 mL) was added to a dry reaction flask containing a mixture of **L6** (90 mg, 1.5 mmol), Fe(acac)₂ (39 mg, 1.5 mmol), NaBAr^F₄ (132 mg, 1.5 mmol) and DIAD (6.0 mmol). The mixture was stirred at 25 °C for 1 hour, then isocyano ester **1k** (0.1 mmol) was added. After being stirred for 3d at 25 °C, the solvent was removed in vacuum, then the reaction mixture was purified by column chromatography on silica gel to afford the corresponding compound **3kb** in 71% yield with 93% ee.

F. Typical procedure for the mono-deprotection of the 1,2,4-triazoline (3ka, 3kb) and synthesis of 1,2,4-triazoline derivatives

To a solution of **3** (0.035 mmol) in CH₃OH/EtOH (0.3 mL) (v/v = 1:2) was added NaOEt (3.0 mg, 0.042 mmol). Then the mixture was stirred for 3 days at 25 °C. The reaction was quenched with H₂O (1.0 ml), extracted with DCM (3 x 10 mL). The organic phase was dried with Na₂SO₄ and concentrated to give the crude product which was purified by column chromatography on silica gel to provide the corresponding compound **4**.

To a mixture of **4b** (10 mg, 0.029 mmol), 4-(bromomethyl)phenyl 4-chlorobenzoate (13.9 mg, 1.5 eq) and Cs_2CO_3 (12 mg, 1.2 eq) was added THF (1.0 mL), and the solution was stirred at 25 °C for 24 h, then was directly purified by column chromatography on silica gel to afford the corresponding compound **5a**.

To a mixture of **4b** (10 mg, 0.029 mmol), TsCl (11 mg, 2 eq) and Cs₂CO₃ (12 mg, 1.2 eq) was added THF (0.5 mL), and the solution was stirred at 25 $^{\circ}$ C for 36 h, then was directly purified by column chromatography on silica gel to afford the corresponding compound **5b**.

G. Substrate scope for the catalytic asymmetric cyclization of isocyano esters with azodicarboxylates "

$$\begin{array}{c} NC \\ R^{1} \\ CO_{2}R^{2} \\ R^{3}O_{2}C \\ \end{array} + \\ R^{3}O_{2}C \\ N \\ R^{3}O_{2}C \\ N \\ R^{3}O_{2}C \\ N \\ NaB Ar^{F_{4}} (5 \text{ mol}\%), \text{ MTBE}, 25 \ ^{\circ}C \\ R^{2}O_{2}C \\ R^{2} \\ R^{2}O_{2}C \\ R^{3} \\ CO_{2}R^{3} \\ R^{3} \\ CO_{2}R^{3} \\ R^{3} \\ R^{3}$$

Entry	R ¹	R ²	2	Yield $(\%)^b$	ee (%) ^c
1	Me	Bn (1d)	2a	86 (3da)	82
2 <i>d</i>	<i>i</i> -Pr	Bn (1e)	2a	91 (3ea)	89
3	<i>i</i> -Bu	Bn (1f)	2a	91 (3fa)	88
4 <i>d</i>	(S)-sec-Bu	Bn (1g)	2a	83 (3ga)	80
5	CbzCH ₂	Bn (1h)	2a	91 (3ha)	83
6	CbzCH ₂ CH ₂	Bn (1i)	2a	98 (3ia)	83
7	o-MeOC ₆ H ₄ CH ₂	Bn (1j)	2a	82 (3ja)	81
8	Bn	Me (1b)	2a	88 (3ba)	80
9	Bn	Et (1c)	2a	80 (3ca)	81
10	Bn	Bn (1a)	2a	97 (3aa)	89
11 ^d	Bn	<i>t</i> -Bu (1k)	2a	91 (3ka)	94
12 e	Bn	<i>t</i> -Bu (1k)	2b	86 (3kb)	93
13 ^e	Bn	Bn (1a)	2 b	87 (3ab)	87
14 e	Bn	Bn (1a)	2 c	72 (3ac)	81
15 ^e	Bn	Bn (1a)	2d	94 (3ad)	84

^{*a*} Unless otherwise noted, all reactions were carried out with 5 mol% **L6**/Fe(acac)₂ (1:1), NaBAr^F₄ (5 mol%), **1** (0.1 mmol), **2** (0.15 mmol) in MTBE (2.0 mL) at 25 °C for 24 h. ^{*b*} isolated yield. ^{*c*} Determined by HPLC analysis. ^{*d*} 10 mol% catalyst and additive were used in 1.0 mL of MTBE. ^{*e*} 0.2 mmol of **2** was used in the reaction.

H. The analytical and spectral characterization data of the reaction products

3-benzyl 1,2-diethyl 3-methyl-3H-1,2,4-triazole-1,2,3-tricarboxylate (3da)

BnO₂C N CO₂Et Synthesized according to procedure **A**. The crude product was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 8:1 - 4:1) as yellow oil in 86% yield with 82% ee. $[\alpha]^{23}_{D} = 7.5$ (c = 0.556, CH₂Cl₂); The ee value was determined by

HPLC analysis using a chiralcel AD-H column. Eluent: Hexane/Isopropanol = 90/10; Flow rate: 1.0 mL/min; $\lambda = 254$ nm; t_r(major) = 13.75 min, t_r(minor) = 16.43 min.

¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.30 – 7.23 (m, 5H), 5.10 (s, 2H), 4.27 (dd, J = 14.4, 7.3 Hz, 2H), 4.00 (ddd, J = 14.3, 8.9, 5.3 Hz, 1H), 3.81 (dd, J = 10.3, 7.2 Hz, 1H), 1.74 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H), 1.06 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 167.56, 154.76, 150.65, 146.52, 134.82, 128.60, 128.51, 128.33, 93.46, 76.70, 68.00, 64.12, 62.93, 24.09, 14.25, 14.04 ppm; ES-HRMS Calcd for C₁₇H₂₁N₃O₆ [M + Na]⁺ 386.1328, Found: 386.1324.

	Retention Time	% Area
1	13.788	50.01
2	16.386	49.99

	Retention Time	% Area
1	13.753	90.96
2	16.439	9.04

3-benzyl 1,2-diethyl 3-isopropyl-3H-1,2,4-triazole-1,2,3-tricarboxylate (3ea)

Synthesized according to procedure **B**. The crude product was purified by flash chromatography on silica gel (petroleum ether : ethyl acetate = 8 : 1 - 4 : 1) as yellow oil in 91% yield with 89% ee. $[\alpha]^{23}_{D} = 12.6$ (c = 0.308, CH₂Cl₂); The ee was determined by

HPLC analysis using a chiralcel AD-H column. Eluent: Hexane/Isopropanol = 90/10; Flow rate: 1.0 mL/min; $\lambda = 254$ nm; t_r(major) = 10.46 min, t_r(minor) = 14.46 min.

¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.36–7.24 (m, 5H), 5.08 (s, 2H), 4.37–4.20 (m, 2H), 3.97 (ddd, J= 14.3, 8.9, 5.3 Hz, 1H), 3.81 (dd, J= 10.3, 7.2 Hz, 1H), 2.54 (dt, J= 13.5, 6.7 Hz, 1H), 1.27 (t, J= 7.1 Hz, 4H), 1.05 (t, J= 7.1 Hz, 3H), 0.98 (d, J= 6.8 Hz, 3H), 0.83 (d, J= 6.7 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 155.45, 150.56, 146.08, 134.89, 128.56, 128.42, 128.29, 98.89, 67.71, 63.93, 62.95, 33.35, 16.98, 16.19, 14.30, 14.01 ppm; ES-HRMS Calcd for C₁₉H₂₅N₃O₆ [M + Na]⁺ 414.1641, Found: 414.1640.

3-benzyl 1,2-diethyl 3-isobutyl-3H-1,2,4-triazole-1,2,3-tricarboxylate (3fa)

Prepared according to procedure **A**. The crude product was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 8:1 – 4:1) as yellow oil in 91% yield with 88% ee. $[\alpha]^{23}_{D} = 18.8$ (c = 0.516, CH₂Cl₂); The ee value was determined by HPLC analysis using

a chiralcel AD-H column. Eluent: Hexane/Isopropanol = 90/10; Flow rate: 1.0 mL/min; λ = 254 nm; t_r(major) = 8.91 min, t_r(minor) = 11.29 min.

¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.36 – 7.24 (m, 5H), 5.08 (s, 2H), 4.37 – 4.20 (m, 2H),

3.97 (ddd, J = 14.3, 8.9, 5.3 Hz, 1H), 3.81 (dd, J = 10.3, 7.2 Hz, 1H), 2.16 (dt, J = 13.5, 6.7 Hz, 1H), 2.06 (dt, J = 13.5, 6.7 Hz, 1H), 1.57 (m, 1H), 1.27 (t, J = 7.1 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.83 (d, J = 6.7 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 155.45, 150.56, 146.08, 134.89, 128.56, 128.42, 128.29, 98.89, 67.71, 63.93, 62.95, 33.35, 16.98, 16.19, 14.30, 14.01 ppm; ES-HRMS Calcd for C₂₀H₂₇N₃O₆ [M + Na]⁺ 428.1798, Found: 428.1795.

	Retention Time	% Area
1	8.916	50.53
2	11.279	49.47

	Retention Time	% Area
1	8.915	93.93
2	11.291	6.07

3-benzyl 1,2-diethyl 3-sec-butyl-3H-1,2,4-triazole-1,2,3-tricarboxylate (3ga)

Prepared according to procedure **B**. The crude product was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 8:1 – 4:1) as yellow oil in 83% yield with 80% ee. $[\alpha]^{23}_{D}$ = 12.9 (c = 0.692, CH₂Cl₂); The ee was determined by HPLC analysis using a chiralcel AD-H column. Eluent: Hexane/Isopropanol =

90/10; Flow rate: 1.0 mL/min; $\lambda = 254$ nm; t_r (major) = 9.73 min, t_r (minor) = 12.79 min. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1H), 7.35 – 7.23 (m, 5H), 5.17 – 5.03 (m, 2H), 4.33 – 4.20 (m, 2H), 4.03 – 3.93 (m, 1H), 3.87 – 3.73 (m, 1H), 2.14 (dd, J = 14.9, 5.7 Hz, 1H), 2.03 (dd, J = 14.9, 5.8 Hz, 1H), 1.60 – 1.51 (m, 1H), 1.28 (dd, J = 14.8, 7.6 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H), 0.86 (dd, J = 15.3, 6.7 Hz, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 167.74, 154.89, 150.75, 146.77, 134.88, 128.58, 128.47, 128.36, 96.24, 67.91, 64.03, 62.8, 43.12, 24.19, 23.95, 23.29, 14.23, 14.06 ppm; ES-HRMS Calcd for C₂₀H₂₇N₃O₆ [M + H]⁺ 406.1978, Found: 406.1985.

3-benzyl 1,2-diethyl 3-(2-(benzyloxy)-2-oxoethyl)-3H-1,2,4-triazole-1,2,3-tricarboxylate (3ha)

Prepared according to procedure **A**. The crude product was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 3:1) as yellow oil in 91% yield with 83% ee. $[\alpha]^{23}_{D} = 15.0$ (c = 0.602, CH₂Cl₂); The ee was determined by HPLC analysis using a chiralcel AD-H column. Eluent: Hexane/Isopropanol = 80/20; Flow rate: 1.0 mL/min; $\lambda = 254$ nm; t_r (major) = 16.98 min, t_r (minor) = 26.09 min.

¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.33 – 7.21 (m, 10H), 5.16 – 5.05 (m, 2H), 5.03 – 4.94 17.6 Hz, 1H), 3.27 (d, J=17.6 Hz, 1H), 1.25 (t, J=7.1 Hz, 3H), 1.05 (t, J=7.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 168.32, 166.54, 149.18, 135.47, 134.51, 128.64, 128.54, 128.43, 128.27, 128.20, 92.16, 68.33, 66.39, 63.80, 63.06, 39.45, 14.23, 14.06 ppm; ES-HRMS Calcd for $C_{25}H_{27}N_{3}O_{8}$ [M + Na]⁺ 520.1696, Found: 520.1697.

	Retention Time	% Area
1	16.838	50.14

3-benzyl 1,2-diethyl	
3-(3-(benzyloxy)-3-oxopropyl)-3H-1,2,4-triazole-1,2,3-tricarboxylate (3ia	I)

26.094

2

Prepared according to procedure **A**. The crude product was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate =3:1) as yellow oil in 98% yield with 83% ee. $[\alpha]^{23}_{D}$ = 12.4 (c = 0.618, CH₂Cl₂); The ee was determined by HPLC analysis using a chiralcel AD-H column. Eluent:

8.50

Hexane/Isopropanol = 80/20; Flow rate: 1.0 mL/min; λ = 254 nm; t_r (major) = 16.93 min, t_r (minor) = 21.51 min.

¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.39 – 7.20 (m, 10H), 5.12 – 4.97 (m, 4H), 4.29 – 4.20 (m, 2H), 3.95 (dq, J = 10.6, 7.1 Hz, 1H), 3.78 (s, 1H), 2.59 – 2.42 (m, 2H), 2.42 – 2.24 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H), 1.03 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 172.41, 166.96, 150.31, 147.34, 135.84, 134.65, 128.62, 128.58, 128.54, 128.41, 128.34, 128.24, 95.23, 68.12, 66.46, 64.24, 63.12, 30.79, 28.28, 14.24, 13.99 ppm; ES-HRMS Calcd for C₂₆H₂₉N₃O₈ [M + Na]⁺ 534.1852, Found: 534.1857.

	Retention Time	% Area
1	16.929	50.08
2	20.508	49.92

	Retention Time	% Area
1	16.930	91.59
2	21.511	8.41

3-benzyl 1,2-diethyl 3-(2-methoxybenzyl)-3H-1,2,4-triazole-1,2,3-tricarboxylate (3ja)

Prepared according to procedure **A**. The crude product was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 3:1) as yellow oil in 82% yield with 81% ee. $[\alpha]^{23}_{D} = 7.3$ (c = 0.670, CH₂Cl₂); The ee was determined by HPLC analysis using a chiralcel IA column. Eluent: Hexane/Isopropanol = 90/10;

Flow rate: 1.0 mL/min; $\lambda = 254$ nm; t_r (major) = 10.99 min, t_r (minor) = 11.69 min. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (s, 1H), 7.29 (d, J= 3.7 Hz, 5H), 7.06 (dd, J= 15.6, 7.7 Hz, 2H), 6.70 (dd, J= 16.9, 8.0 Hz, 2H), 5.14 (s, 2H), 4.03 – 3.88 (m, 3H), 3.80 (d, J= 9.6 Hz, 1H), 3.70 (s, 3H), 3.63 – 3.58 (m, 1H), 3.40 (d, J= 14.0 Hz, 1H), 1.09 (dd, J= 16.2, 7.3 Hz, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 167.37, 158.73, 147.04, 134.90, 132.38, 128.59, 128.46, 128.36, 128.14, 122.09, 119.40, 110.62, 95.36, 67.97, 63.47, 62.67, 55.2, 34.08, 14.21, 14.16 ppm; ES-HRMS Calcd for C₂₄H₂₇N₃O₇ [M + Na]⁺ 492.1747, Found: 492.1750.

	Retention Time	% Area
1	10.996	90.68

2	11.691	9.32	
---	--------	------	--

1,2-diethyl 3-methyl 3-benzyl-3H-1,2,4-triazole-1,2,3-tricarboxylate (3ba)

MeO₂C N Prepared according to procedure **A**. The crude product was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 8:1 - 4:1) as yellow oil in 88% yield with 80% ee. $[\alpha]^{23}_{D} = 5.5$ (c = 0.698, CH₂Cl₂); The ee was determined by HPLC analysis using a chiralcel AD-H column. Eluent: Hexane/Isopropanol =

90/10; Flow rate: 1.0 mL/min; $\lambda = 254$ nm; t_r (major) = 8.79 min, t_r (minor) = 12.71 min. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (s, 1H), 7.17 – 7.07 (m, 5H), 4.23 – 4.10 (m, 2H), 4.01 – 3.87 (m, 2H), 3.73 (s, 3H), 3.42 (d, J = 14.1 Hz, 1H), 3.32 (d, J = 14.1 Hz, 1H), 1.22 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H) ppm.; ¹³C NMR (101 MHz, CDCl₃) δ 167.89, 154.78, 149.93, 147.27, 133.48, 131.23, 127.65, 126.85, 95.44, 63.59, 63.05, 53.23, 41.16, 14.27, 14.11 ppm; ES-HRMS Calcd for C₁₇H₂₁N₃O₆ [M + Na]⁺ 386.1328, Found: 386.1327.

	Retention Time	% Area
1	8.962	49.58
2	12.898	50.42

	Retention Time	% Area
1	8.790	90.05
2	12.718	9.95

triethyl 3-benzyl-3H-1,2,4-triazole-1,2,3-tricarboxylate (3ca)

Prepared according to procedure **A**. The crude product was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 8:1 – 4:1) as yellow oil in 80% yield with 81% ee. $[\alpha]^{23}_{D} = 6.1$ (c = 0.830, CH₂Cl₂); The ee was determined by HPLC analysis using a chiralcel AD-H column. Eluent: Hexane/Isopropanol = 90/10; Flow

rate: 1.0 mL/min; $\lambda = 254$ nm; t_r(major) = 8.26 min, t_r(minor) = 13.45 min.

¹H NMR (400 MHz, CDCl₃) δ 7.31 (s, 1H), 7.17 – 7.06 (m, 5H), 4.24 – 4.09 (m, 4H), 3.95 (dddd, J = 22.0, 10.6, 7.2, 3.5 Hz, 2H), 3.42 (dd, J = 14.1, 4.5 Hz, 1H), 3.32 (d, J = 14.1 Hz, 1H), 1.23 (t, J = 7.1 Hz, 6H), 1.09 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 167.36, 154.76, 150.01, 147.19, 133.63, 131.22, 127.63, 126.81, 95.46, 63.56, 62.93, 62.62, 41.09, 14.34, 14.11, 13.81 ppm; ES-HRMS Calcd for C₁₈H₂₃N₃O₆ [M + Na]⁺ 400.1485, Found: 400.1488.

	Retention Time	% Area
1	8.287	90.68
2	13.453	9.32

3-benzyl 1,2-diethyl 3-benzyl-3H-1,2,4-triazole-1,2,3-tricarboxylate (3aa)

Prepared according to procedure **A**. The crude product was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 8:1 – 4:1) as yellow oil in 97% yield with 89% ee. $[\alpha]^{23}_{D} = 8.5$ (c = 0.426, CH₂Cl₂); The ee was determined by HPLC analysis using a chiralcel AD-H column. Eluent:

Hexane/Isopropanol = 90/10; Flow rate: 1.0 mL/min; λ = 254 nm; t_r (major) = 7.65 min, t_r (minor) = 9.57 min.

¹H NMR (400 MHz, CDCl₃) δ 7.31 (s, 1H), 7.28 (d, J= 3.6 Hz, 5H), 7.15 – 7.04 (m, 5H), 5.15 (s, 2H), 3.94 (dddd, J= 20.7, 17.0, 12.1, 7.0 Hz, 4H), 3.45 (d, J= 14.1 Hz, 1H, 3.34 (d, J= 14.1 Hz, 1H), 1.08 (td, J= 7.1, 3.9 Hz, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 167.24, 154.60, 149.99, 147.38, 134.80, 133.53, 131.23, 128.62, 128.54, 128.34, 127.65, 126.85, 95.45, 68.07, 63.55, 62.91, 41.14, 14.13, 14.11 ppm; ES-HRMS Calcd C₂₃H₂₅N₃O₆ [M + Na]⁺ 462.1641, Found: 462.1641.

	Retention Time	% Area
1	7.643	49.97
2	9.512	50.03

	Retention Time	% Area
1	7.654	94.84
2	9.575	5.16

3-tert-butyl 1,2-diethyl 3-benzyl-3H-1,2,4-triazole-1,2,3-tricarboxylate (3ka)

 $\begin{array}{c} {}^{\sharp}\mathsf{BuO_2C} & \mathsf{N}_{\mathsf{O}_2\mathsf{Et}} \\ \mathsf{Bn} & \mathsf{N}_{\mathsf{O}_2\mathsf{Et}} \\ \mathsf{CO_2\mathsf{Et}} \end{array} \right) \\ \begin{array}{c} \mathsf{Prepared according to procedure } \mathbf{B}. \\ \mathsf{Bn} & \mathsf{Bn} & \mathsf{N}_{\mathsf{O}_2\mathsf{Et}} \\ \mathsf{N}_{\mathsf{O}_2\mathsf{Et}} \\ \mathsf{CO_2\mathsf{Et}} \end{array} \\ \begin{array}{c} \mathsf{Prepared according to procedure } \mathbf{B}. \\ \mathsf{Bn} & \mathsf{Bn} & \mathsf{CO_2\mathsf{Et}} \\ \mathsf{acetate} = 10:1 - 4:1 \\ \mathsf{as yellow oil in 91\% yield with 94\% ee. } [\alpha]^{23} \\ \mathsf{acetate} = 10:1 - 4:1 \\ \mathsf{acetate} = 0.5 \\ \mathsf{C} = 0.428, \\ \mathsf{CH_2\mathsf{Cl}_2}; \\ \mathsf{The ee was determined by HPLC} \end{array}$

analysis using a chiralcel AD-H column. Eluent: Hexane/Isopropanol = 90/10; Flow rate: 1.0 mL/min; $\lambda = 254$ nm; t_r(major) = 5.96 min, t_r(minor) = 14.09 min.

¹H NMR (400 MHz, CDCl₃) δ 7.29 (s, 1H), 7.16 – 7.07 (m, 5H), 4.35 – 4.21 (m, 1H), 4.17 – 4.05 (m, 1H), 4.04 – 3.86 (m, 2H), 3.41 (d, *J* = 14.1 Hz, 1H), 3.28 (d, *J* = 14.1 Hz, 1H), 1.42 (s, 9H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.08 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 166.15, 154.78, 150.21, 146.89, 134.03, 131.16, 127.59, 126.69, 96.10, 83.51, 63.48, 62.77, 40.92, 27.69, 14.25, 14.10 ppm; ES-HRMS Calcd for C₂₀H₂₇N₃O₆ [M + Na]⁺ 428.1798, Found: 428.1795.

	Retention Time	% Area
1	6.116	48.27
2	14.003	51.73

3-tert-butyl 1,2-diisopropyl 3-benzyl-3H-1,2,4-triazole-1,2,3-tricarboxylate (3kb)

[≠]BuO₂C Bn N CO₂i-Pr

Prepared according to procedure **C**. The crude product was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 10:1 – 4:1) as yellow oil in 86% yield with 93% ee. $[\alpha]^{23}_{D}$ = 10.0 (c = 0.644, CH₂Cl₂); The ee was determined by HPLC

analysis using a chiralcel IB column. Eluent: Hexane/Isopropanol = 90/10; Flow rate: 1.0 mL/min; $\lambda = 254$ nm; t_r (minor) = 4.36 min, t_r (major) = 5.07 min.

¹H NMR (300 MHz, CDCl₃) δ 7.31 (s, 1H), 7.15 (d, J= 11.0 Hz, 5H), 4.98 (dt, J= 12.5, 6.2 Hz, 1H), 3.48 (d, J= 14.1 Hz, 1H), 3.34 (d, J= 14.1 Hz, 1H), 1.48 (s, 9H), 1.31 (dd, J= 11.2, 6.2 Hz, 6H), 1.17 (d, J= 6.3 Hz, 3H), 1.07 (d, J= 6.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.20, 154.39, 149.62, 146.85, 134.13, 131.08, 127.54, 126.58, 95.88, 83.34, 71.82, 71.04, 40.86, 27.67, 22.081, 21.61, 21.55, 21.51 ppm; ES-HRMS Calcd for C₂₂H₃₁N₃O₆ [M + Na]⁺ 456.2111, Found: 456.2122.

3-benzyl 1,2-diisopropyl 3-benzyl-3H-1,2,4-triazole-1,2,3-tricarboxylate (3ab)

Prepared according to procedure **C**. The crude product was purified
by flash chromatography on silica gel (petroleum ether: ethyl
acetate =
$$10:1 - 4:1$$
) as yellow oil in 87% yield with 87% ee. $[\alpha]^{23}_{D}$
= 7.5 (c = 0.770, CH₂Cl₂); The ee was determined by HPLC
analysis using a chiralcel OD-H column. eluent:

Hexane/Isopropanol = 95/5; Flow rate: 1.0 mL/min; λ = 254 nm; t_r (minor) = 9.05 min, t_r (minor) = 12.74 min.

¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.21 (m, 6H), 7.26 (dd, J= 12.2, 5.3 Hz, 5H), 7.15 – 7.05 (m, 5H), 5.20 (d, J= 12.7 Hz, 1H), 5.09 (d, J= 12.4 Hz, 1H), 4.85 – 4.75 (m, 1H), 4.73 – 4.62 (m, 1H), 3.46 (d, J= 14.1 Hz, 1H), 3.35 (d, J= 14.1 Hz, 1H), 1.15 (d, J= 6.3 Hz, 3H), 1.13 – 1.07 (m, 6H), 1.00 (t, J= 7.8 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 167.37, 147.41, 134.83, 133.69, 131.22, 128.60, 128.44, 128.09, 127.69, 126.83, 95.34, 72.05, 71.29, 67.96, 41.17, 21.91, 21.63, 21.60 ppm; ES-HRMS Calcd for C₂₅H₂₉N₃O₆ [M + Na]⁺ 490.1954, Found: 490.1957.

3-benzyl 1,2-di-tert-butyl 3-benzyl-3H-1,2,4-triazole-1,2,3-tricarboxylate (3ac)

Prepared according to procedure **C**. The crude product was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 8:1 – 4:1) as yellow oil in 72% yield with 81% ee. $[\alpha]^{23}_{D} = 8.1$ (c = 0.472, CH₂Cl₂); The ee was determined by HPLC analysis using a chiralcel IB column. Eluent: Hexane/Isopropanol

= 95/5; Flow rate: 1.0 mL/min; λ = 254 nm; t_r (minor) = 5.36 min, t_r (major) = 5.73 min.

¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.30 (m, 6H), 7.23 – 7.15 (m, 5H), 5.37 (d, *J* = 12.5 Hz, 1H), 5.08 (d, *J* = 12.5 Hz, 1H), 3.52 (d, *J* = 14.1 Hz, 1H), 3.41 (d, *J* = 14.1 Hz, 1H), 1.44 (s, 9H), 1.32 (s, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 167.70, 147.74, 134.88, 133.92, 131.17, 131.17, 128.50, 128.27, 127.90, 127.64, 127.64, 126.71, 83.91, 82.98, 67.74, 41.14, 27.93, 27.68 ppm; ES-HRMS Calcd for C₂₇H₃₃N₃O₆ [M + H]⁺ 496.2448, Found: 496.2438.

Tribenzyl 3-benzyl-3H-1,2,4-triazole-1,2,3-tricarboxylate (3ad)

Prepared according to procedure **C**. The crude product was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 8:1) as yellow oil in 94% yield with 84% ee. $[\alpha]^{23}_{D} = 4.4$ (c = 0.594, CH₂Cl₂); The ee was determined by HPLC analysis using a chiralcel IB column. Eluent:

Hexane/Isopropanol = 95/5; Flow rate: 1.0 mL/min; λ = 254 nm; t_r (minor) = 8.43 min, t_r (major) = 12.76 min.

¹H NMR (400 MHz, CDCl₃) δ 7.34 (dt, J = 32.5, 10.6 Hz, 13H), 7.19 – 7.08 (m, 7H), 5.12 – 4.82 (m, 6H), 3.51 (d, J = 14.2 Hz, 1H), 3.40 (d, J = 14.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.04, 154.50, 149.93, 147.16, 134.98, 134.76, 134.37, 133.31, 131.16, 128.70, 128.64, 128.61, 128.51, 128.48, 128.31, 128.26, 127.69, 127.01, 126.91, 95.61, 69.07, 68.44, 67.97, 41.07 ppm; ES-HRMS Calcd for C₃₃H₂₉N₃O₆ [M + Na]⁺ 586.1954, Found: 586.1948.

5-tert-butyl 1-ethyl 5-benzyl-2H-1,2,4-triazole-1,5(5H)-dicarboxylate (4a)

t-BuO₂C N Bn NH CO₂Et

The crude product was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 2:1) as white solid in 70% yield with 94% ee. $[\alpha]^{23}_{D} = -2.2$ (c = 0.172, CH₂Cl₂); The ee was determined by tHPLC analysis using a chiralcel OD-H column. Eluent: Hexane/Isopropanol = 90/10; Flow rate: 1.0 mL/min; $\lambda = 254$ nm; t_r

 $(minor) = 5.66 min, t_r (major) = 6.37 min.$

¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.15 (m, 3H), 7.11 (d, *J* = 7.6 Hz, 2H), 6.42 (s, 1H), 5.21 (s, 1H), 4.39 – 4.16 (m, 2H), 3.57 (dd, *J* = 28.6, 22.4 Hz, 1H), 3.30 (d, *J* = 14.6 Hz, 1H), 1.44 – 1.38 (m, 9H), 1.33 – 1.25 (m, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 168.36, 140.23, 134.48, 130.71, 128.26, 127.09, 83.18, 81.36, 62.07, 39.06, 27.80, 14.73 ppm; ES-HRMS Calcd for C₁₇H₂₃N₃O₄ [M + Na]⁺ 356.1586, Found: 356.1584.

5-tert-butyl 1-isopropyl 5-benzyl-2H-1,2,4-triazole-1,5(5H)-dicarboxylate (4b)

The crude product was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 2:1) as white solid in 73% yield with 91% ee. $[\alpha]^{23}_{D} = -4.1$ (c = 0.302, CH₂Cl₂); The ee was determined by HPLC analysis using a chiralcel OD-H column. Eluent: Hexane/Isopropanol = 90/10; Flow rate: 1.0 mL/min; $\lambda = 254$ nm; t_r (minor) = 5.42 min, t_r (major)

= 6.17 min.

¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 7.14 (dd, J = 18.6, 6.9 Hz, 5H), 6.41 (s, 1H), 5.39 – 4.91 (m, 2H), 3.57 (d, J = 21.7 Hz, 1H), 3.36 – 3.18 (m, 1H), 1.40 (s, J = 12.3 Hz, 9H), 1.30 (d, J = 6.1 Hz, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 168.40, 140.09, 134.55, 130.71, 128.28, 127.09, 83.13, 81.31, 76.73, 69.81, 38.97, 27.82, 22.22, 22.10, 21.97 ppm; ES-HRMS Calcd for C₁₈H₂₅N₃O₄ [M + H]⁺ 348.1923, Found: 348.1927.

5-tert-butyl 1-isopropyl 2-(4-(4-chlorobenzoyloxy)benzyl)-5-benzyl-2H-pyrazole-1,5(5H)-dicarboxylate (5a)

The crude product was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 5:1) as yellow oil in 65% yield with 91% ee. $[\alpha]^{23}_{D} = 8.4$ (c = 0.256, CH₂Cl₂); The ee was determined by HPLC analysis using a chiralcel AD-H column. Eluent: Hexane/Isopropanol = 80/20; Flow rate: 1.0 mL/min; $\lambda = 254$ nm; tr (minor) = 16.23 min, tr (major) = 24.54 min.

¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 7.9 Hz, 2H), 7.49 (d, *J* = 7.9 Hz, 2H), 7.31 (dd, *J* = 13.7, 6.9 Hz, 3H), 7.14 (d, *J* = 15.2 Hz, 6H), 6.50 (s, *J* = 25.3 Hz, 1H), 5.30 (s, 1H), 5.06 (dt, *J* = 12.5, 6.3 Hz, 1H), 4.33 (s, 1H), 4.12

(dd, J= 14.2, 7.1 Hz, 1H), 3.52 (d, J= 13.9 Hz, 1H), 3.36 (s, 1H), 1.51 (s, 9H), 1.40 (s, 3H), 1.33 (d, J = 6.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 167.50, 164.20, 154.28, 150.61, 140.29, 131.56, 131.48, 130.611, 129.01, 127.78, 127.72, 126.90, 121.85, 95.47, 82.88, 70.26, 40.78, 27.85, 22.34, 21.98 ppm; ES-HRMS Calcd for C₃₂H₃₄N₃O₆Cl [M + H]⁺ 592.2214, Found: 502.2209.

5-tert-butyl 1-isopropyl 5-benzyl-2-tosyl-2H-pyrazole-1,5(5H)-dicarboxylate (5b)

The crude product was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 5:1) as yellow oil in 95% yield with 91% ee. [α]²³_D = 10.1 (c = 0.298, CH₂Cl₂); The ee was determined by HPLC analysis using a chiralcel IA column. Eluent: Hexane/Isopropanol = 85/15; Flow rate: 1.0 mL/min; λ = 254 nm; t_r (major) = 8.05 min, t_r

(minor) = 10.19 min. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, J = 10.1 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 7.21–7.06 (m, 5H), 6.75 (s, 1H), 5.09 – 4.97 (m, 1H), 3.79 (d, J= 15.1 Hz, 1H), 3.53 (dd, J= 15.0, 7.2 Hz, 1H), 2.45 (s, 3H), 1.43 – 1.39 (m, 9H), 1.35 (d, J= 6.2 Hz, 3H), 1.30 (d, J= 6.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 164.58, 150.57, 145.45, 136.02, 134.73, 133.86, 130.52, 130.02, 128.19, 127.65, 127.19, 85.48, 84.38, 70.64, 38.35, 27.61, 21.99, 21.65 ppm; ES-HRMS Calcd for C₂₅H₃₁N₃O₆S [M + H]⁺ 502.2012, Found: 502.2014.

4.41

2

11.193

J. Copies of NMR Spectra for the compounds

NMR for 3ja

NMR for 3aa

K. Reference

(a) Y. H. Wen, X. Huang, J. L. Huang, Y. Xiong, B. Qin, X. M. Feng, *Synlett*, 2005, 2445; (b) J.
L. Huang, X. H. Liu, Y. H. Wen, B. Qin, X. M. Feng, *J. Org. Chem.*, 2007, **72**, 204; (c) J. L.
Huang, J. Wang, X. H. Chen, Y. H. Wen, X. H. Liu, X. M. Feng, *Adv. Synth. Catal.*, 2008, **350**, 287; (d) X. Yang, X. Zhou, L. L. Lin, L. Chang, X. H. Liu, X. M. Feng, *Angew. Chem., Int. Ed.*, 2008, **47**, 7079; (e) D. J. Shang, J. G. Xin, Y. L. Liu, X. Zhou, X. H. Liu, X. M. Feng, *J. Org. Chem.*, 2008, **73**, 630; (f) D. J. Shang, Y. L. Liu, X. Zhou, X. H. Liu, X. M. Feng, *Chem. Eur. J.*, 2009, **15**, 3678; (g) Y. L. Liu, D. J. Shang, X. Zhou, X. H. Liu, X. M. Feng, *Chem. Eur. J.*, 2009, **15**, 2055.

2. (*a*) R. S. Hong, M. J. Bouma, R. F. Schmitz, F. Kanter, M. Lutz, A. L. Spek, R. Orru, *Org. Lett.*, 2003, **5**, 3759; (*b*) D. Monge, K. L. Jensen, I. Marı'n and K. A. Jørgensen, *Org. Lett.*, 2011, **32**, 328.