Organocatalytic asymmetric domino Michael- Henry reaction for the synthesis of substituted bicyclo[3.2.1]octan-2-ones

Michail Tsakos,^a Mark R. J. Elsegood^b and Christoforos G. Kokotos*^a

 ^a Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis 15771, Athens, Greece
 ^b Loughborough University, Loughborough, LE11 3TU, UK. Fax: +44 1509 223925; Tel: +44 1509 228751

Supporting Information

M. Tsakos, Mark R. J.	Elsegood & C. G.	<i>Kokotos</i> Supporting Information	S1

Table of Contents	Page
General Remarks	S2
Optimization Studies	S3
General Procedure for the Domino Michael-Henry Reaction of 1,4-Cyclohexanedione with Nitroalkenes	85
Proposed Mechanistic Pathway of the Reaction	S6
Characterization of the Products	S7
1D and 2D NMR Data	S15
HPLC Data	S32
X-Ray Analysis Data and Additional Figures	S46

General Remarks

Chromatographic purification of products was accomplished using forced-flow chromatography on Merck Kieselgel 60 F₂₅₄ 230-400 mesh. Thin-layer chromatography (TLC) was performed on aluminum backed silica plates (0.2 mm, 60 F₂₅₄). Visualization of the developed chromatogram was performed by fluorescence quenching using phosphomolybdic acid stains. Optical rotations were measured on a Perkin Elmer 343 polarimeter. Melting points were determined on a Buchi 530 hot stage apparatus and are uncorrected. IR spectra were recorded on a Nicolet 6700 FT-IR spectrometer and are reported in terms of frequency of absorption (cm⁻¹). ¹H spectra were recorded on Varian Mercury (600 MHz, 300 MHz or 200 MHz) and are internally referenced to residual protio solvent signals (acetone- d_6). Data for ¹H NMR are reported as follows: chemical shift (δ ppm), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet, bs = broad signal, bs m = broad signal multiplet), coupling constant and assignment. ¹³C NMR spectra were recorded on Varian Mercury (75 MHz or 50 MHz) and are internally referenced to residual protio solvent signals (acetone- d_6). Data for ¹³C NMR are reported in terms of chemical shift (δ ppm). Mass spectra were recorded on a Finnigan Surveyor MSO Plus, with only molecular ions and major peaks being reported with intensities quoted as percentages of the base peak. Chiral High Performance Liquid Chromatography (HPLC) analyses were performed using an Agilent 1100 Series apparatus and Chiralpak[®] AD-H and OD-H columns.

Optimization studies

Table 1. Screening of bifunctional catalysts used in the model reaction^a

Entry	Catalyst	Solvent	Additives (10 mol%)	Yield (%) ^b	<i>ee</i> (%) ^c
1	L-Proline	DMSO	-	94	19
2	Ι	THF	4-NBA, H_2O^d	91	96
3	II	THF	4-NBA, H_2O^d	22	90
4	III	THF	-	92	75
5	IV	THF	-	Traces	-
6	V	THF	-	-	-
8	VI	THF	Na ₂ CO ₃	10	-52
9	VII	THF	Benzoic acid	-	-

^a Reactions were performed using **1** (0.2) mmol, **2a** (0.1 mmol), catalyst (10 mol%) and additive (10 mol%) in solvent (0.25 ml) at room temperature for 24 hours. ^b Isolated yield. ^c The enantiomeric excess (*ee*) was determined by chiral HPLC. ^d 50 μ L of H₂O were used. 4-NBA: 4-Nitrobenzoic acid.

	+ Ph					
	Ŭ	но	NO ₂			
	1	2a 3a	L			
Entry	Solvent	Additives (10 mol%)	Yield (%) ^b	$ee(\%)^{c}$		
1	THF	4-NBA, H_2O^d	95 (91)	96		
2	Toluene	4-NBA, H_2O^d	48	90		
3	CHCl ₃	4-NBA, H_2O^d	50	92		
4	CH_2Cl_2	4-NBA, H_2O^d	58	90		
5	CH ₃ CN	4-NBA, H_2O^d	62	93		
6	Et ₂ O	4-NBA, H_2O^d	72	94		
7	Dioxane	4-NBA, H_2O^d	65	90		
8	МеОН	4-NBA, H_2O^d	-	-		
9	THF	4-CBA, H_2O^d	58	89		
10	THF	Acetic acid, H ₂ O ^d	34	87		
11	THF	Benzoic acid, H_2O^d	Traces	-		
12	THF	4-NBA	Traces	-		
13 ^e	THF	4-NBA, H_2O^d	74(72)	96		
14^{f}	THF	4-NBA, H_2O^d	76(75)	96		

Cat I (10 mol%)

Table 2. Optimization of the reaction conditions using catalyst I^a

^a Reactions were performed using **1** (0.2) mmol, **2a** (0.1 mmol), catalyst **I** (10 mol%) and additive (10 mol%) in solvent (0.25 ml) at room temperature for 24 hours. ^b Yields were determined by ¹H NMR analysis of the crude reaction mixture, isolated yield in parenthesis. ^c The enantiomeric excess (*ee*) was determined by chiral HPLC. ^d 50 μ L of H₂O were used. ^e 5 mol% of catalyst **I** was used. ^f 1.1 equiv. of **1** was used. 4-NBA: 4-Nitrobenzoic acid, 4-CBA: 4-Cyanobenzoic acid.

General procedure for the domino Michael-Henry reaction between 1,4cyclohexanedione and nitrodienes

A solution of catalyst I (3 mg, 0.01 mmol), nitrodiene (0.1 mmol), diketone 1 (22 mg, 0.2 mmol), 4-NBA (1.7 mg, 0.01 mmol) and H₂O (50 μ L) in dry THF (0.25 mL) was stirred for 24 hours. The solvent was evaporated and the crude product was purified using flash column chromatography eluting with 1:1 mixture of petroleum ether (40-60 °C)/ethyl acetate to afford the desired bicyclic product.

Racemic compounds were prepared following the general procedure using racemic proline (10 mol%) as catalyst, no additives and DMSO as the reaction solvent.

General procedure for the domino Michael-Henry reaction between 1,4cyclohexanedione and nitrostyrenes

A solution of catalyst I (6 mg, 0.02 mmol), nitrostyrene (0.1 mmol), diketone 1 (22 mg, 0.2 mmol), 4-NBA (3.4 mg, 0.02 mmol) and H₂O (50 μ L) in dry THF (0.25 mL) was stirred for 24 hours. The solvent was evaporated and the crude product was purified using flash column chromatography eluting with 1:1 mixture of petroleum ether (40-60 °C)/ethyl acetate to afford the desired bicyclic product.

Racemic compounds were prepared following the general procedure using racemic proline (20 mol%) as catalyst, no additives and DMSO as the reaction solvent.

Figure 1 Proposed mechanistic pathway for the organocatalytic domino Michael- Henry reaction between 1,4-cyclohexanedione and nitroalkenes.

White solid (91%); $[\alpha]_D^{20} = -18.4$ (*c* 0.25, CH₃OH); mp 142-144 °C; ¹H NMR (200 MHz, acetone-*d*₆) δ 7.42-7.23 (5H, m, Ph), 6.66 (1H, d, *J* = 16.1 Hz, =CHPh), 6.32 (1H, d, *J* = 16.1 and 6.8 Hz, =CH), 5.30 (1H, d, *J* = 5.9 Hz, CHNO₂), 5.19 (1H, s, OH), 4.15-4.01 (1H, m, CHCHNO₂), 3.04-2.93 (1H, m, COCH), 2.65-2.42 (3H, m, 3 x CHH), 2.37-2.15 (3H, m, 3 x CHH); ¹³C NMR (75 MHz, acetone-*d*₆) δ 208.4, 137.3, 133.9, 129.3, 128.6, 127.2, 125.7, 95.5, 79.0, 54.7, 50.3, 41.0, 38.1, 35.3; IR 3437, 2067, 1637, 1555, 1494, 1449, 1134, 968, 747 (film) cm⁻¹; MS (ESI) *m/z* (%): 286 [M-H, (100)]⁻; HRMS exact mass calculated for [M-H]⁻ (C₁₆H₁₆NO₄) requires *m/z* 286.1085, found *m/z* 286.1082; HPLC analysis: 96% ee, Daicel Chiralpak AD-H, hexane/*i*-PrOH (90/10), 0.7 mL/min, *t*_R = 24.58 min (major), 29.60 min (minor).

(1*S*, 5*S*, 6*R*, 7*S*, *E*)-7-(4-Methoxystyryl)-5-hydroxy-6-nitrobicyclo[3.2.1]octan-2-one (3b)

White solid (56%); $[\alpha]_D^{20} = +18.2$ (*c* 0.5, acetone); mp 143-145 °C; ¹H NMR (200 MHz, acetone-*d*₆) δ 7.33 (2H, d, *J* = 8.8 Hz, Ar), 6.86 (2H, d, *J* = 8.8 Hz, Ar), 6.58 (1H, d, *J* = 16.2 Hz, =CHAr), 6.15 (1H, dd, *J* = 16.2 and 7.0 Hz, =CH), 5.26 (1H, d, *J* = 5.9 Hz, CHNO₂), 5.21 (1H, s, OH), 4.08-3.98 (1H, m, CHCHNO₂), 3.77 (3H, s, OCH₃), 2.99-2.84 (1H, m, COCH), 2.67-2.57 (1H, m, CHH), 2.55-2.48 (1H, m, CHH), 2.46-2.39 (1H, m, CHH), 2.34-2.24 (1H, m, CHH), 2.22-2.08 (2H, m, CH₂); ¹³C NMR (50 MHz, acetone-*d*₆) δ 208.5, 160.5, 133.5, 130.0, 128.5, 123.2, 114.8, 95.7, 79.0, 55.5, 54.9, 50.6, 41.1, 38.2, 35.4; **IR** (film) 3381, 2962, 2358, 1708, 1554, 1511, 1368, 1293, 1248, 1175, 1030, 806, 778 cm⁻¹; **MS** (ESI) *m/z* (%): 316 [M-H, (15)]⁻; **HRMS** exact mass calculated

for [M-H]⁻ (C₁₇H₁₈NO₅) requires m/z 316.1190, found m/z 316.1184; HPLC analysis: 94% ee, Daicel Chiralpak AD-H, hexane/*i*-PrOH (90/10), 1.0 mL/min, $t_R = 25.71$ min (major), 34.35 min (minor).

(1S, 5S, 6R, 7S, E)-7-(4-Chlorostyryl)-5-hydroxy-6-nitrobicyclo[3.2.1]octan-2-one (3c)

White solid (72%); $[\alpha]_D^{20} = +10.3$ (*c* 1.0, acetone); mp 151-154 °C; ¹**H** NMR (600 MHz, acetone-*d*₆) δ 7.41 (2H, d, *J* = 8.4 Hz, ArH), 7.32 (2H, d, *J* = 8.4 Hz, ArH), 6.64 (1H, d, *J* = 16.2 Hz, =CHAr), 6.35 (1H, dd, *J* = 16.2 and 6.9 Hz, =CH), 5.28 (1H, d, *J* = 5.8 Hz, CHNO₂), 5.20 (1H, s, OH), 4.07 (1H, *pseudo* q, *J* = 5.8 Hz, CHCHNO₂), 2.97 (1H, t, *J* = 5.8 Hz, COCH), 2.61-2.56 (1H, m, CHH), 2.52-2.46 (1H, m, CHH), 2.40 (1H, dd, *J* = 17.6 and 7.7 Hz, CHH), 2.30 (1H, ddd, *J* = 12.6, 8.9 and 3.8 Hz, CHH), 2.21-2.14 (1H, m, CHH), 2.10-2.05 (1H, m, CHH); ¹³C NMR (50 MHz, acetone-*d*₆) δ 208.4, 136.2, 133.7, 132.6, 129.4, 128.8, 126.8, 95.3, 79.0, 54.7, 50.3, 41.0, 38.1, 35.4; **IR** (film) 3416, 2964, 1709, 1555, 1491, 1369, 1090, 971, 804, 775 cm⁻¹; **MS** (ESI) *m/z* (%): 320 [M-H, (75)]⁻; **HRMS** exact mass calculated for [M-H]⁻ (C₁₆H₁₅NO₄Cl) requires *m/z* 320.0695, found *m/z* 320.0687; HPLC analysis: 91% ee, Daicel Chiralpak AD-H, hexane/*i*-PrOH (90/10), 1.0 mL/min, *t*_R = 27.63 min (major), 33.82 min (minor).

(1S, 5S, 6R, 7S, E)-7-(2-Nitrostyryl)-5-hydroxy-6-nitrobicyclo[3.2.1]octan-2-one (3d)

White solid (89%); $[\alpha]_D^{20} = -6.6$ (*c* 0.5, CH₃OH); mp 126-129 °C; ¹H NMR (200 MHz, acetone-*d*₆) δ 7.99-7.91 (1H, m, ArH), 7.74-7.62 (2H, m, ArH), 7.60-7.47 (1H, m, ArH), 7.04 (1H, d, *J* = 16.0 Hz, =CHAr), 6.37 (1H, dd, *J* = 16.0 and 6.6 Hz, =CH), 5.35 (1H, d, *J* = 5.9 Hz, CHNO₂), 5.29 (1H, s, OH), 4.25-4.11 (1H, m, CHCHNO₂), 3.09-2.99 (1H, m, COCH), 2.68-2.50 (2H, m, 2 x CHH), 2.49-2.40 (1H, m, CHH), 2.35-2.17 (2H, m, 2 x

CHH), 2.14-2.07 (1H, m, CHH); ¹³C NMR (50 MHz, acetone- d_6) δ 208.3, 148.9, 134.2, 132.5, 131.3, 129.7, 129.6, 128.9, 125.2, 95.0, 79.1, 54.6, 50.2, 41.0, 38.1, 35.4; **IR** (film) 3402, 2966, 2360, 2337, 1711, 1553, 1522, 1345, 1056, 669 cm⁻¹; **MS** (ESI) *m/z* (%): 331 [M-H, (30)]⁻; **HRMS** exact mass calculated for [M-H]⁻ (C₁₆H₁₅N₂O₆) requires *m/z* 331.0936, found *m/z* 331.0930; HPLC analysis: 86% ee, Daicel Chiralpak AD-H, hexane/*i*-PrOH (80/20), 1.0 mL/min, t_R = 16.75 min (major), 32.66 min (minor).

Yellow solid (73%); $[\alpha]_D^{20} = +9.5$ (*c* 1.0, acetone); mp 138-140 °C; ¹H NMR (200 MHz, acetone-*d*₆) δ 8.19 (2H, d, *J* = 8.5 Hz, ArH), 7.69 (2H, d, *J* = 8.5 Hz, ArH), 6.83 (1H, d, *J* = 16.1 Hz, =CHAr), 6.65 (1H, dd, *J* = 16.1 and 6.6 Hz, =CH), 5.36 (1H, d, *J* = 5.9 Hz, CHNO₂), 5.31 (1H, s, OH), 4.23-4.11 (1H, m, CHCHNO₂), 3.09-2.99 (1H, m, COCH), 2.65-2.50 (2H, m, 2 x CHH), 2.47-2.43 (1H, m, CHH), 2.40-2.27 (1H, m, CHH), 2.25-2.11 (2H, m, 2 x CHH); ¹³C NMR (75 MHz, acetone-*d*₆) δ 208.3, 148.0, 144.0, 132.0, 131.2, 128.1, 124.7, 95.1, 79.1, 54.6, 50.3, 41.1, 38.1, 35.4; **IR** (film) 3408, 2968, 2357, 1711, 1596, 1555, 1515, 1343, 1137, 1110, 975, 863, 777, 745 cm⁻¹; **MS** (ESI) *m/z* (%): 331 [M-H, (85)]⁻; **HRMS** exact mass calculated for [M-H]⁻ (C₁₆H₁₅N₂O₆) requires *m/z* 331.0936, found *m/z* 331.0926; HPLC analysis: 97% ee, Daicel Chiralpak AD-H, hexane/*i*-PrOH (80/20), 1.0 mL/min, *t*_R = 31.62 min (major), 40.42 min (minor).

(1*S*, 5*S*, 6*R*, 7*R*, *E*)-5-Hydroxy-6-nitro-7-(1-phenylprop-1-en-2-yl) bicyclo[3.2.1]octan-2-one (3f)

White solid (70%); $[\alpha]_D^{20} = +4.6$ (*c* 0.5, acetone); mp 111-114 °C; ¹H NMR (200 MHz, acetone-*d*₆) δ 7.40-7.15 (5H, m, Ph), 6.59 (1H, s, =CHPh), 5.58 (1H, d, *J* = 6.5 Hz, CHNO₂), 5.26 (1H, s, OH), 4.13-4.00 (1H, m, CHCHNO₂), 3.21 (1H, t, *J* = 5.7 Hz,

COCH), 2.70-2.54 (1H, m, CHH), 2.45-2.27 (3H, m, 3 x CHH), 2.24-2.10 (2H, m, 2 x CHH), 1.85 (3H, s, CH₃); ¹³C NMR (50 MHz, acetone- d_6) δ 209.1, 138.1, 134.6, 129.8, 127.4, 126.1, 125.4, 92.8, 78.6, 55.2, 53.2, 41.3, 38.3, 35.3, 17.8; **IR** (film) 3406, 2970, 1710, 1556, 1447, 1369, 1132, 1086, 979, 778, 750, 702 cm⁻¹; **MS** (ESI) *m/z* (%): 300 [M-H, (75)]⁻; **HRMS** exact mass calculated for [M-H]⁻ (C₁₇H₁₈NO₄) requires *m/z* 300.1241, found *m/z* 300.1235; HPLC analysis: 95% ee, Daicel Chiralpak AD-H, hexane/*i*-PrOH (90/10), 1.0 mL/min, $t_{\rm R}$ = 10.83 min (major), 15.23 min (minor).

(1S, 5S, 6R, 7R)5-Hydroxy-6-nitro-7-phenylbicyclo[3.2.1]octan-2-one (5a)

White solid (86%); $[\alpha]_D^{20} = +3.6$ (*c* 0.5, acetone); mp 117-120 °C; ¹H NMR (200 MHz, acetone-*d*₆) δ 7.42-7.19 (5H, m, Ph), 5.62 (1H, d, *J* = 6.2 Hz, CHNO₂), 5.31 (1H, s, OH), 4.61 (1H, *pseudo* t, *J* = 6.2 Hz, CHCHNO₂), 3.40 (1H, *pseudo* t, *J* = 6.2 Hz, COCH), 2.77-2.65 (1H, m, CHH), 2.41-2.30 (1H, m, CHH), 2.27-2.14 (3H, m, 3 x CHH), 2.10-2.05 (1H, m, CHH); ¹³C NMR (50 MHz, acetone-*d*₆) δ 208.7, 138.0, 129.7, 128.1, 127.5, 95.4, 79.0, 54.0, 51.6, 41.6, 38.5, 35.7; IR (film) 3396, 2916, 1702, 1550, 1446, 1372, 1335, 1131, 1080, 779, 745, 698 cm⁻¹; MS (ESI) *m/z* (%): 260 [M-H, (100)]⁻; HRMS exact mass calculated for [M-H]⁻ (C₁₄H₁₄NO₄) requires *m/z* 260.0928, found *m/z* 260.0926; HPLC analysis: 93% ee, Daicel Chiralpak AD-H, hexane/*i*-PrOH (90/10), 1.0 mL/min, *t*_R = 16.02 min (major), 20.13 min (minor).

(1S, 5S, 6R, 7R)7-(4-Chlorophenyl)-5-hydroxy-6-nitrobicyclo[3.2.1]octan-2-one (5b)

Colourless oil (81%); $[\alpha]_D^{20} = -23.8$ (*c* 1.0, acetone); ¹H NMR (300 MHz, acetone-*d*₆) δ 7.44-7.27 (4H, m, ArH), 5.63 (1H, d, *J* = 6.2 Hz, CHNO₂), 5.35 (1H, s, OH), 4.62 (1H, *pseudo* t, *J* = 6.2 Hz, CHCHNO₂), 3.40 (1H, *pseudo* t, *J* = 6.2 Hz, COCH), 2.76-2.66 (1H, m, CHH), 2.41-2.23 (2H, m, 2 x CHH), 2.21-2.07 (3H, m, 3 x CHH); ¹³C NMR (75)

MHz, acetone- d_6) δ 208.5, 136.7, 133.4, 129.6, 129.3, 95.0, 79.0, 54.0, 51.0, 41.4, 38.3, 35.5; **IR** (film) 3413, 2965, 1713, 1556, 1495, 1370, 1229, 1133, 1094, 1013, 981, 813, 776, 507 cm⁻¹; **MS** (ESI) *m/z* (%): 294 [M-H, (65)]⁻; **HRMS** exact mass calculated for [M-H]⁻ (C₁₄H₁₃NO₄Cl) requires *m/z* 294.0539, found *m/z* 294.0536; HPLC analysis: 95% ee, Daicel Chiralpak AD-H, hexane/*i*-PrOH (90/10), 1.0 mL/min, *t*_R = 18.06 min (minor), 21.97 min (major).

(1S, 5S, 6R, 7R)7-(4-Fluorophenyl)-5-hydroxy-6-nitrobicyclo[3.2.1]octan-2-one (5c)

Colourless oil (75%); $[\alpha]_D^{20} = -35.2$ (*c* 1.0, acetone); ¹**H** NMR (300 MHz, acetone-*d*₆) δ 7.39-7.27 (2H, m, ArH), 7.20-7.06 (2H, m, ArH), 5.62 (1H, d, *J* = 6.3 Hz, CHNO₂), 5.34 (1H, s, OH), 4.60 (1H, *pseudo* t, *J* = 6.3 Hz, CHCHNO₂), 3.39 (1H, *pseudo* t, *J* = 6.3 Hz, COCH), 2.76-2.65 (1H, m, CHH), 2.41-2.31 (1H, m, CHH), 2.28-2.11 (3H, m, 3 x CHH), 2.09-1.96 (1H, m, CHH); ¹⁹**F** NMR (186 MHz, acetone-*d*₆) δ -117.1 (m, ArF); ¹³**C** NMR (75 MHz, acetone-*d*₆) δ 208.5, 162.6 (d, *J* = 244 Hz, Ar), 133.8 (d, *J* = 3 Hz, Ar), 129.5 (d, *J* = 8 Hz, Ar), 116.3 (d, *J* = 22 Hz, Ar), 95.2, 79.0, 54.1, 51.0, 41.4, 38.3, 35.5; **IR** (film) 3405, 2966, 1711, 1556, 1513, 1370, 1231, 1165, 1131, 981, 833, 801, 772, 568, 522 cm⁻¹; **MS** (ESI) *m/z* (%): 278 [M-H, (30)]⁻; **HRMS** exact mass calculated for [M-H]⁻ (C₁₄H₁₃FNO₄) requires *m/z* 278.0834, found *m/z* 278.0829; HPLC analysis: 93% ee, Daicel Chiralpak OD-H, hexane/*i*-PrOH (90/10), 1.0 mL/min, *t*_R = 25.55 min (minor), 30.50 min (major).

(1S, 5S, 6R, 7R)-5-Hydroxy-6-nitro-7-(3-nitrophenyl)bicyclo[3.2.1]octan-2-one (5d)

Light yellow oil (80%); $[\alpha]_D^{20} = -5.4$ (*c* 1.0, acetone); ¹**H** NMR (200 MHz, acetone-*d*₆) δ 8.24-8.10 (2H, m, ArH), 7.83-7.61 (2H, m, ArH), 5.82 (1H, d, *J* = 6.2 Hz, CHNO₂), 5.43 (1H, s, OH), 4.80 (1H, *pseudo* t, *J* = 6.2 Hz, CHCHNO₂), 3.53 (1H, *pseudo* t, *J* = 6.2 Hz,

COCH), 2.81-2.71 (1H, m, CHH), 2.45-2.10 (5H, m, 5 x CHH); ¹³C NMR (75 MHz, acetone- d_6) δ 208.9, 139.9, 136.1, 134.1, 130.9, 122.9, 122.4, 94.3, 79.0, 53.9, 51.0, 41.1, 38.0, 35.4; **IR** (film) 3417, 2914, 1711, 1555, 1530, 1416, 1350, 1311, 1138, 963, 808, 736, 692 cm⁻¹; **MS** (ESI) m/z (%): 305 [M-H, (35)]⁻; **HRMS** exact mass calculated for [M-H]⁻ (C₁₄H₁₃N₂O₆) requires m/z 305.0779, found m/z 305.0775; HPLC analysis: 96% ee, Daicel Chiralpak AD-H, hexane/*i*-PrOH (85/15), 1.0 mL/min, t_R = 31.45 min (major), 52.48 min (minor).

(1S, 5S, 6R, 7R)5-Hydroxy-6-nitro-7-(4-nitrophenyl)bicyclo[3.2.1]octan-2-one (5e)

Colourless oil (70%); $[\alpha]_D^{20} = -3.1$ (*c* 1.0, acetone); ¹**H** NMR (200 MHz, acetone- d_6) δ 8.23 (2H, d, J = 8.8 Hz, ArH), 7.60 (2H, d, J = 8.8 Hz, ArH), 5.76 (1H, d, J = 6.2 Hz, CHNO₂), 5.40 (1H, s, OH), 4.80 (1H, *pseudo* t, J = 6.2 Hz, CHCHNO₂), 3.50 (1H, *pseudo* t, J = 6.2 Hz, CCH), 2.79-2.64 (1H, m, CHH), 2.43-2.11 (5H, m, 5 x CHH); ¹³C NMR (75 MHz, acetone- d_6) δ 209.2, 146.4, 132.0, 130.0, 125.6, 95.5, 80.0, 55.1, 52.5, 42.3, 39.1, 36.5; **IR** (film) 3448, 2918, 1713, 1602, 1555, 1520, 1348, 1133, 853, 777, 700 cm⁻¹; **MS** (ESI) *m/z* (%): 305 [M-H, (20)]⁻; **HRMS** exact mass calculated for [M-H]⁻ (C₁₄H₁₃N₂O₆) requires *m/z* 305.0779, found *m/z* 305.0771; HPLC analysis: 93% ee, Daicel Chiralpak AD-H, hexane/*i*-PrOH (85/15), 1.0 mL/min, $t_R = 35.47$ min (minor), 42.98 min (major).

(1*S*, 5*S*, 6*R*, 7*R*)5-Hydroxy-7-(4-methoxyphenyl)-6-nitrobicyclo[3.2.1]octan-2-one (5f)

Colourless oil (83%); $[\alpha]_D^{20} = -8.6$ (*c* 1.0, acetone); ¹H NMR (200 MHz, acetone-*d*₆) δ 7.20 (2H, d, *J* = 8.8 Hz, ArH), 6.89 (2H, d, *J* = 8.8 Hz, ArH), 5.56 (1H, d, *J* = 6.3 Hz, CHNO₂), 5.25 (1H, s, OH), 4.53 (1H, *pseudo* t, *J* = 6.3 Hz, CHCHNO₂), 3.76 (3H, s,

OCH₃), 3.34 (1H, *pseudo* t, J = 6.3 Hz, COCH), 2.80-2.63 (1H, m, CHH), 2.39-2.02 (5H, m, 5 x CHH); ¹³C NMR (50 MHz, acetone- d_6) δ 208.8, 159.8, 129.6, 128.7, 115.0, 95.7, 79.1, 55.6, 54.2, 51.2, 41.6, 38.5, 35.7; IR (film) 3409, 2964, 1712, 1613, 1555, 1516, 1446, 1370, 1255, 1185, 1131, 1032, 981, 830, 788 cm⁻¹; MS (ESI) *m/z* (%): 290 [M-H, (75)]⁻; HRMS exact mass calculated for [M-H]⁻ (C₁₅H₁₆NO₅) requires *m/z* 290.1034, found *m/z* 290.1026; HPLC analysis: 94% ee, Daicel Chiralpak OD-H, hexane/*i*-PrOH (90/10), 1.0 mL/min, $t_R = 35.59$ min (minor), 41.06 min (major).

(1S, 5S, 6R, 7S)-7-(Furan-2-yl)-5-hydroxy-6-nitrobicyclo[3.2.1]octan-2-one (5g)

Colourless oil (82%); $[\alpha]_D^{20} = -21.2$ (*c* 1.0, acetone); ¹H NMR (200 MHz, acetone-*d*₆) δ 7.52-7.47 (1H, m, ArH), 6.40-6.18 (2H, m, ArH), 5.46 (1H, d, *J* = 6.2 Hz, CHNO₂), 5.33 (1H, s, OH), 4.55 (1H, *pseudo* t, *J* = 6.2 Hz, CHCHNO₂), 3.16 (1H, *pseudo* t, *J* = 6.2 Hz, COCH), 2.68-2.56 (1H, m, CHH), 2.44-2.11 (5H, m, 5 x CHH); ¹³C NMR (75 MHz, acetone-*d*₆) δ 208.1, 151.3, 143.5, 111.1, 107.3, 94.1, 78.7, 53.0, 46.3, 41.2, 37.9, 35.0; **IR** (film) 2921, 2359, 1711, 1556, 1370, 1251, 1132, 980, 747 cm⁻¹; **MS** (ESI) *m/z* (%): 250 [M-H, (100)]⁻; **HRMS** exact mass calculated for [M-H]⁻ (C₁₂H₁₂NO₅) requires *m/z* 250.0721, found *m/z* 250.0719; HPLC analysis: 91% ee, Daicel Chiralpak AD-H, hexane/*i*-PrOH (90/10), 1.0 mL/min, *t*_R = 15.51 min (major), 22.56 min (minor).

(1S, 5S, 6R, 7R)-5-Hydroxy-7-(napthalen-2-yl)-6-nitrobicyclo[3.2.1]octan-2-one (5h)

Colourless oil (78%); $[\alpha]_D^{20} = +10.2$ (*c* 0.5, acetone); ¹H NMR (300 MHz, acetone-*d*₆) δ 7.93-7.82 (4H, m, ArH), 7.56-7.46 (2H, m, ArH), 7.44-7.38 (1H, m, ArH), 5.82 (1H, d, *J* = 6.2 Hz, CHNO₂), 5.53-5.46 (1H, br s, OH), 4.80 (1H, *pseudo* t, *J* = 6.2 Hz, CHCHNO₂), 3.58-3.49 (1H, m, COCH), 2.84-2.73 (1H, m, CHH), 2.44-2.34 (1H, m, CHH), 2.28-2.10 (4H, m, 4 x CHH); ¹³C NMR (75 MHz, acetone-*d*₆) δ 208.6, 135.3,

134.2, 133.4, 129.4, 128.7, 128.4, 127.3, 127.0, 126.2, 125.6, 94.9, 79.1, 54.2, 51.8, 41.9, 38.5, 35.7; **IR** (film) 3384, 3058, 2962, 1704, 1555, 1369, 1340, 1250, 1130, 1040, 820, 757, 478 cm⁻¹; **MS** (ESI) *m/z* (%): 310 [M-H, (100)]⁻; **HRMS** exact mass calculated for [M-H]⁻ (C₁₈H₁₆NO₄) requires *m/z* 310.1085, found *m/z* 310.1079; HPLC analysis: 90% ee, Daicel Chiralpak OD-H, hexane/*i*-PrOH (90/10), 1.0 mL/min, $t_{\rm R}$ = 33.28 min (minor), 46.18 min (major).

S16

M. Tsakos, Mark R. J. Elsegood & C. G. Kokotos Supporting Information

M. Tsakos, Mark R. J. Elsegood & C. G. Kokotos Supporting Information

M. Tsakos, Mark R. J. Elsegood & C. G. Kokotos Supporting Information

M. Tsakos, Mark R. J. Elsegood & C. G. Kokotos Supporting Information

M. Tsakos, Mark R. J. Elsegood & C. G. Kokotos Supporting Information

COSY (600 MHz, CDCl₃)

M. Tsakos, Mark R. J. Elsegood & C. G. Kokotos Supporting Information

HMQC (600 MHz, CDCl₃)

M. Tsakos, Mark R. J. Elsegood & C. G. Kokotos Supporting Information

Selective 1D NOESY (600 MHz, CDCl₃)

H H H H H HHO H H H

		Time	Área	Height	Width	Area 2	Symmetry
[1	25.137	7108.5	142	0.8342	47.787	0.602
[2	29.979	7766.8	155.8	0.8309	52.213	0.639

_	Time	Juca	rreignc	widen	Juea.	Symmetry
1	24.582	20082.6	389.2	0.78	97.706	0.69
2	29.6	471.5	9.1	0.7309	2.294	0.677

M. Tsakos, Mark R. J. Elsegood & C. G. Kokotos Supporting Information

-	Time	Area	Height	Width	Area	Symmetry
1	25.711	24049.6	491	0.7515	96.981	0.749
2	34.352	748.6	12	1.0405	3.019	0.723

<u>S33</u>

M. Tsakos, Mark R. J. Elsegood & C. G. Kokotos Supporting Information

	Time	Area	Height	Width	Årea 🎗	Symmetry
1	28.257	8663.5	109.7	1.1955	49.800	0.602
2	34.666	8733	88.8	1.4254	50.200	0.592

_	۲.	Time	Area	Height	Width	Årea%	Symmetry
C	1	27.628	30209.7	348.7	1.444	95.408	0.637
C	2	33.821	1453.9	13.3	1.8243	4.592	0.673

10

M. Tsakos, Mark R. J. Elsegood & C. G. Kokotos Supporting Information

HO NO₂ O2Ń 087 807 35 20 25 30 40 15 Width 0.9105 1.9908 Area2: Symmetry 51.772 0.519 48.228 0.414 Height 212 71.8 Área 12218.5 11382.1 Time 16.687 33.867 1

_	Т	me	Area	Height	Width	Area 2	Symmetry
1	16	749	31088.8	563.1	0.9202	92.721	0.468
2	32	661	2440.5	28.7	1.165	7.279	0.452

<u>S35</u>

M. Tsakos, Mark R. J. Elsegood & C. G. Kokotos Supporting Information

	Time	Área	Height	Width	Area 2	Symmetry
1	34.302	8201	74.9	1.5335	51.746	0.619
2	43.099	7647.4	56.1	1.7726	48.254	0.536

_	=	Time	Area	Height	Width	Area 2	Symmetry
	1	31.62	12766.5	100.8	2.1113	98.472	0.35
	2	40.418	198.1	2	1.6183	1.528	0.488

<u>S36</u>

M. Tsakos, Mark R. J. Elsegood & C. G. Kokotos Supporting Information

	Time	Area	Height	Width	Årea%	Symmetry
1	11.164	7743.9	234.1	0.5079	50.674	0.5
2	15.697	7537.8	157.2	0.7393	49.326	0.55

	#	Time	Area	Height	Width	Årea%	Symmetry
ĺ	1	10.83	5978.8	288.4	0.3139	97.380	0.609
l	2	15.226	160.9	6.7	0.4024	2.620	0.842

	Time	Area	Height	Width	Area 2	Symmetry
1	15.981	17596.7	426.5	0.6054	49.978	0.48
2	19.987	17611.9	353	0.7241	50.022	0.485

_		Time	Area	Height	Width	Årea Z	Symmetry
	1	16.02	3960.6	111.2	0.5334	96.330	0.556
	2	20.125	150.9	4.8	0.5269	3.670	0.919

M. Tsakos, Mark R. J. Elsegood & C. G. Kokotos Supporting Information

CI HO NO₂ 7.880 552 5 10 15 20 25 30 Time 17.88 21.857 Height 30.3 19.3 Width 0.7236 1.1184 Ärea 1507.3 1536 Area Symmetry 49.528 0.497 50.472 0.461 1

_		Time	Area	Height	Width	AreaZ	Symmetry
Г	1	18.056	1400.1	22.1	1.0575	2.593	0.885
E	2	21.971	52598.4	533.2	1.644	97.407	0.546

<u>S39</u>

M. Tsakos, Mark R. J. Elsegood & C. G. Kokotos Supporting Information

Time	Area	Height	Width	Area	Symmetry
25.549	883	12.5	0.9178	3.485	0.778
30.5	24454.9	232.3	1.4961	96.515	0.385
	Time 25.549 30.5	Time Area 25.549 883 30.5 24454.9	Time Area Height 25.549 883 12.5 30.5 24454.9 232.3	Time Area Height Width 25.549 883 12.5 0.9178 30.5 24454.9 232.3 1.4961	Time Area Height Width Area2 25.549 883 12.5 0.9178 3.485 30.5 24454.9 232.3 1.4961 96.515

M. Tsakos, Mark R	I. Elsegood & C. (G. Kokotos Supporting Information	

	Time	Area	Height	Width	AreaZ	Symmetry
1	31.448	10216.9	55.3	3.08	98.066	0.227
2	52.481	201.5	21	1.5651	1.934	0.812

M. Tsakos, Mark R. J. Elsegood & C. G. Kokotos Supporting Information

<u>S42</u>

	Time	Área	Height	Width	Årea Z	Symmetry
1	35.47	416.4	4.6	1.5008	3.527	0.892
2	42.983	11389	78.8	2.4102	96.473	0.475

	Time	Area	Height	Width	Årea 🎗	Symmetry
1	35.707	7583.9	51.2	2.4663	52.602	0.313
2	45.265	6833.5	20.2	5.6348	47.398	0.343

	Time	Area	Height	Width	Area 2	Symmetry
1	35.594	643	6.2	1.2162	2.811	0.864
2	41.059	22233.7	138.5	2.6757	97.189	0.311

	Time	Area	Height	Width	Area 2	Symmetry
1	15.609	2989.6	84.3	0.5195	51.611	0.46
2	23.814	2803	21.8	1.5189	48.389	0

	Time	Area	Height	Width	Area 2	Symmetry
1	15.507	586.8	15.6	0.6259	95.357	0.481
2	22.551	28.6	6E-1	0.8002	4.643	0.554

M. Tsakos, Mark R. J. Elsegood & C. G. Kokotos Supporting Information

25	30		35		40		45	50
		Time	Area	Height	Width	Ārea 🎗	Symmetry	
	1	32.043	15864.1	155.3	1.2619	50.885	0.543	
	2	45,799	15312.3	97.2	2.6249	49.115	0.447	

#	Time	Area	Height	Width	Area%	Symmetry
1	33.277	935.3	9.5	1.16	5.041	0.736
2	46.175	17616.9	104.9	2.7985	94.959	0.342

$C_{16}H_{17}NO_4$	$D_{\rm x} = 1.311 {\rm Mg m}^{-3}$
$M_r = 287.30$	Mo K α radiation, $\lambda = 0.71073$ Å
Orthorhombic, $P2_12_12$	Cell parameters from 4795 reflections
a = 10.3329 (10) Å	$\theta = 2.2 - 27.6^{\circ}$
b = 19.6202 (19) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 7.1804 (7) Å	T = 150 K
$V = 1455.7(2) \text{ Å}^3$	Block, colourless
<i>Z</i> = 4	$0.70 \times 0.21 \times 0.17 \text{ mm}$
F(000) = 608	

Crystal data

Data collection

Bruker APEX 2 CCD diffractometer	4410 independent reflections
Radiation source: fine-focus sealed X-ray tube	3804 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.033$
ω rotation with narrow frames scans	$\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan SADABS v2009/1, Sheldrick, G.M., (2009)	$h = -14 \rightarrow 14$
$T_{\min} = 0.937, T_{\max} = 0.984$	$k = -27 \rightarrow 27$
17114 measured reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: all non-H atoms found by direct methods
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Only H-atom coordinates refined
$wR(F^2) = 0.107$	$w = 1/[\sigma^2(F_o^2) + (0.0675P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
4410 reflections	Δ _{max} = 0.30 e Å ⁻³
238 parameters	Δ _{min} = -0.15 e Å ⁻³
0 restraints	Absolute structure: Flack x determined using 1476 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack (2004), Acta Cryst. A60, s61).
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.6 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement

parameters (Å²)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.68101 (16)	0.69495 (8)	0.3963 (2)	0.0245 (3)
H1	0.591 (2)	0.6966 (11)	0.437 (3)	0.029*
C2	0.70054 (16)	0.66993 (8)	0.1957 (2)	0.0231 (3)
H2A	0.7675 (19)	0.6372 (11)	0.191 (3)	0.028*
C3	0.75866 (15)	0.73238 (9)	0.0906 (2)	0.0243 (3)
Н3	0.805 (2)	0.7188 (10)	-0.018 (3)	0.029*
C4	0.65653 (15)	0.78368 (8)	0.0352 (2)	0.0253 (3)
01	0.64093 (13)	0.80169 (7)	-0.12638 (17)	0.0331 (3)
C5	0.57270 (18)	0.81037 (10)	0.1909 (3)	0.0294 (4)
H5A	0.534 (2)	0.8523 (12)	0.151 (3)	0.035*
H5B	0.503 (2)	0.7765 (11)	0.209 (3)	0.035*
C6	0.64812 (17)	0.82148 (9)	0.3739 (2)	0.0270 (3)
H6A	0.689 (2)	0.8670 (11)	0.369 (3)	0.032*
H6B	0.591 (2)	0.8227 (11)	0.483 (3)	0.032*
C7	0.74992 (15)	0.76609 (8)	0.4082 (2)	0.0234 (3)
02	0.81770 (13)	0.77705 (7)	0.57636 (17)	0.0308 (3)
H2	0.763 (2)	0.7844 (13)	0.661 (4)	0.046*
C8	0.84433 (16)	0.76412 (9)	0.2437 (2)	0.0262 (3)
H8A	0.922 (2)	0.7340 (11)	0.270 (3)	0.031*
H8B	0.876 (2)	0.8118 (12)	0.211 (3)	0.031*
N1	0.74299 (18)	0.64776 (8)	0.5359 (2)	0.0374 (4)
O3	0.6862 (3)	0.64078 (9)	0.6833 (2)	0.0676 (6)
O4	0.84749 (16)	0.62182 (8)	0.5007 (2)	0.0484 (4)
С9	0.58685 (17)	0.63541 (8)	0.1059 (3)	0.0263 (3)
Н9	0.593 (2)	0.6295 (10)	-0.018 (3)	0.032*
C10	0.48719 (17)	0.60781 (9)	0.1943 (3)	0.0283 (4)
H10	0.482 (2)	0.6118 (11)	0.321 (4)	0.034*
C11	0.38010 (16)	0.56865 (8)	0.1112 (3)	0.0321 (4)
C12	0.3751 (2)	0.55292 (9)	-0.0796 (3)	0.0380 (5)
H12	0.448 (3)	0.5686 (13)	-0.161 (4)	0.046*
C13	0.2727 (2)	0.51428 (10)	-0.1501 (4)	0.0533 (7)
H13A	0.2697	0.5039	-0.2793	0.064*
C14	0.1760 (2)	0.49101 (11)	-0.0342 (5)	0.0622 (8)
H14	0.106 (3)	0.4647 (16)	-0.089 (5)	0.075*

· · · ·	<u>M. Tsakos, Mark</u>	<u>k R. J. Elsegood & C.</u>	G. Kokotos Su	pporting	Information
		0			

C15	0.1798 (2)	0.50631 (11)	0.1536 (5)	0.0598 (8)
H15	0.120 (3)	0.493 (2)	0.236 (5)	0.072*
C16	0.2814 (2)	0.54497 (10)	0.2264 (4)	0.0448 (6)
H16	0.281 (3)	0.5595 (14)	0.361 (4)	0.054*

Geometric parameters (Å, °)

C1—N1	1.507 (2)	O2—H2	0.84 (3)
C1—C2	1.535 (2)	C8—H8A	1.01 (2)
C1—C7	1.569 (2)	С8—Н8В	1.02 (2)
С1—Н1	0.98 (2)	N103	1.218 (2)
С2—С9	1.501 (2)	N104	1.220 (2)
C2—C3	1.559 (2)	C9—C10	1.325 (3)
C2—H2A	0.95 (2)	С9—Н9	0.90 (2)
C3—C4	1.512 (2)	C10—C11	1.473 (2)
C3—C8	1.543 (2)	С10—Н10	0.92 (2)
С3—Н3	0.95 (2)	C11—C16	1.392 (3)
C4—O1	1.223 (2)	C11—C12	1.405 (3)
C4—C5	1.508 (3)	C12—C13	1.396 (3)
C5—C6	1.543 (2)	С12—Н12	1.00 (3)
С5—Н5А	0.96 (2)	C13—C14	1.379 (4)
С5—Н5В	0.99 (2)	С13—Н13А	0.9500
С6—С7	1.532 (2)	C14—C15	1.382 (5)
С6—Н6А	0.99 (2)	С14—Н14	0.97 (3)
С6—Н6В	0.98 (2)	C15—C16	1.397 (3)
С7—О2	1.4126 (19)	С15—Н15	0.89 (4)
С7—С8	1.532 (2)	С16—Н16	1.01 (3)
N1—C1—C2	111.82 (14)	C8—C7—C1	102.98 (13)
N1—C1—C7	108.51 (13)	C6—C7—C1	108.10 (13)
C2—C1—C7	106.01 (13)	С7—О2—Н2	108.2 (18)
N1—C1—H1	103.0 (13)	С7—С8—С3	101.18 (12)
C2—C1—H1	114.7 (13)	С7—С8—Н8А	112.1 (12)
C7—C1—H1	112.7 (12)	С3—С8—Н8А	110.5 (12)
C9—C2—C1	116.37 (14)	С7—С8—Н8В	111.0 (12)
C9—C2—C3	116.64 (14)	С3—С8—Н8В	113.2 (13)
C1—C2—C3	104.66 (13)	H8A—C8—H8B	108.7 (17)

С9—С2—Н2А	104.4 (12)	03—N1—04	124.01 (19)
C1—C2—H2A	110.5 (13)	03—N1—C1	116.25 (18)
С3—С2—Н2А	103.5 (13)	04—N1—C1	119.64 (16)
C4—C3—C8	108.64 (14)	С10—С9—С2	125.94 (17)
C4—C3—C2	112.44 (13)	С10—С9—Н9	118.2 (14)
C8—C3—C2	101.17 (12)	С2—С9—Н9	115.6 (14)
С4—С3—Н3	108.7 (12)	C9—C10—C11	127.08 (18)
С8—С3—Н3	114.1 (13)	С9—С10—Н10	119.1 (14)
С2—С3—Н3	111.7 (12)	С11—С10—Н10	113.8 (14)
O1—C4—C5	121.81 (16)	C16-C11-C12	118.6 (2)
O1—C4—C3	122.28 (15)	C16-C11-C10	118.9 (2)
C5—C4—C3	115.91 (14)	C12—C11—C10	122.47 (18)
C4—C5—C6	112.96 (14)	C13-C12-C11	120.1 (2)
С4—С5—Н5А	108.3 (14)	С13—С12—Н12	121.5 (15)
С6—С5—Н5А	110.2 (14)	С11—С12—Н12	118.4 (15)
С4—С5—Н5В	106.4 (13)	C14—C13—C12	120.6 (3)
С6—С5—Н5В	110.4 (13)	С14—С13—Н13А	119.7
Н5А—С5—Н5В	108.5 (19)	С12—С13—Н13А	119.7
C7—C6—C5	112.55 (14)	C13-C14-C15	119.8 (2)
С7—С6—Н6А	110.4 (13)	C13-C14-H14	118 (2)
С5—С6—Н6А	108.2 (13)	C15-C14-H14	122 (2)
С7—С6—Н6В	107.5 (13)	C14—C15—C16	120.3 (3)
С5—С6—Н6В	112.4 (12)	С14—С15—Н15	124 (2)
Н6А—С6—Н6В	105.6 (18)	С16—С15—Н15	115 (2)
O2—C7—C8	110.31 (13)	C11-C16-C15	120.6 (3)
O2—C7—C6	111.71 (13)	C11-C16-H16	118.7 (17)
C8—C7—C6	109.34 (13)	С15—С16—Н16	120.5 (17)
O2—C7—C1	114.00 (13)		
N1—C1—C2—C9	102.20 (17)	C2—C1—C7—C6	95.05 (15)
C7—C1—C2—C9	-139.73 (15)	O2—C7—C8—C3	164.81 (14)
N1—C1—C2—C3	-127.49 (14)	C6—C7—C8—C3	-71.97 (15)
C7—C1—C2—C3	-9.42 (16)	C1—C7—C8—C3	42.78 (15)
C9—C2—C3—C4	50.08 (19)	C4—C3—C8—C7	69.84 (15)
C1—C2—C3—C4	-80.07 (16)	C2—C3—C8—C7	-48.67 (15)
C9—C2—C3—C8	165.80 (14)	C2-C1-N1-O3	-144.57 (18)
C1—C2—C3—C8	35.64 (16)	C7—C1—N1—O3	98.9 (2)

C8—C3—C4—O1	125.41 (16)	C2—C1—N1—O4	38.9 (2)
C2—C3—C4—O1	-123.46 (17)	C7—C1—N1—O4	-77.66 (19)
C8—C3—C4—C5	-55.86 (18)	C1—C2—C9—C10	-20.1 (2)
C2—C3—C4—C5	55.27 (18)	C3—C2—C9—C10	-144.45 (18)
O1—C4—C5—C6	-143.33 (16)	C2—C9—C10—C11	-174.41 (16)
C3—C4—C5—C6	37.9 (2)	C9—C10—C11—C16	-178.31 (18)
C4—C5—C6—C7	-37.9 (2)	C9—C10—C11—C12	3.1 (3)
C5—C6—C7—O2	-179.87 (14)	C16—C11—C12—C13	0.0 (3)
C5—C6—C7—C8	57.74 (17)	C10-C11-C12-C13	178.52 (17)
C5—C6—C7—C1	-53.67 (17)	C11—C12—C13—C14	-0.2 (3)
N1—C1—C7—O2	-19.84 (19)	C12-C13-C14-C15	0.3 (3)
C2-C1-C7-O2	-140.09 (14)	C13—C14—C15—C16	-0.3 (3)
N1—C1—C7—C8	99.66 (15)	C12-C11-C16-C15	0.1 (3)
C2—C1—C7—C8	-20.59 (16)	C10-C11-C16-C15	-178.50 (18)
N1—C1—C7—C6	-144.69 (14)	C14—C15—C16—C11	0.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
$O2$ — $H2$ ··· $O1^{i}$	0.84 (3)	2.01 (3)	2.8506 (19)	177 (2)

Symmetry code: (i) x, y, z+1.

Computing details

Data collection: Bruker *APEX* 2; cell refinement: Bruker *SAINT*; data reduction: Bruker *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2012); molecular graphics: Bruker *SHELXTL*; software used to prepare material for publication: Bruker *SHELXTL*.

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s.

planes.

Additional figures of 3a showing H-bonding between pairs of molecules and hence chains of H-bonded molecules parallel to c.

