Supporting Information

Shape Assisted Fabrication of Fluorescent Cages of Squarate based Metal-Organic Coordination Frameworks

Kolleboyina Jayaramulu,^a Katla Sai Krishna,^a Subi J. George,^b Muthuswamy Eswaramoorthy*^{ab} and Tapas Kumar Maji *^{ab}

^a Chemistry and Physics of Materials Unit, ^bNew Chemistsry Unit Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India Ph.: +91 80 2208 2826, FAX: +91 80 2208 2766 Email: <u>tmaji@jncasr.ac.in</u>

Experimental Section

Materials

All the reagents and solvents employed were commercially available and used as supplied without further purification. Co(OH)₂, Squaric acid and polyvinylpyrrolidine were obtained from Aldrich chemical company.

Synthetic procedure for $[M(C_4O_4)(H_2O)_2]_n$ cages: In a typical synthesis M(OH)₂ (0.75 mmol) (where M = Co, Zn and Cd) is dissolved in water (8 ml) and mixed with polyvinylpyrrolidine (0.122 g, M_w = 25,000). To this solution, squaric acid (0.5 mmol) dissolved in deionized water (5 ml) is added in a quick succession. The mixture is then transferred to a teflon container (23 ml capacity) and stirred for 30 min. The container is then put inside a steel autoclave and heated at 180°C for 96 h in a temperature-controlled oven (Additionally, the reaction time is varied to 1 h, 5h, 24 h, 48 h, and 72 h for arresting the intermediate structures during formation). After 96 h of reaction time, the solid obtained is washed thoroughly with water and ethanol and dried at room temperature for further analysis.

Sample characterization: The morphologies of the samples obtained in all the experiments were examined with field emission scanning electron microscope (FESEM, FEI Nova-Nano SEM-600, The Netherlands) and TEM (JEOL JEM-3010 with an accelerating voltage at 300 KV). Powder X-ray diffraction (XRD) patterns were measured by using BRUKER Discover D8 diffractometer employing Cu-K_{α} radiation. Thermogravimetric analysis (TGA) was performed using Mettler Toledo TGA 850 instrument. N₂ adsorption-desorption isotherms were measured using QUANTACHROME QUDRASORBTM surface area analyzer at liquid N₂ temperature (77 K) and BELSORB aqua III adsorption instrument (JAPAN) for solvent adsorption measurements. The IR spectra were recorded using Fourier-transform infrared instrument (FT-IR, Bruker, IFS 66 V/s) in the range of 400 - 4000 cm⁻¹. Confocal Microscopy imaging was taken at room temperature using a Zeiss LSM 510META laser scanning confocal microscope. The microscope objective of 40X (NA 0.75) and 100X (NA 1.3) were employed. To excite CSP, a 514 nm line (Argon laser) with a band pass filter of 525-670 nm was used and emission spectra were recorded using a META PMT detector array.

Fig. S1. FT-IR spectra of $[Co(C_4O_4)(H_2O_2)]$ (1), $[Zn(C_4O_4)(H_2O_2)]$ (2) and $[Cd(C_4O_4)(H_2O_2)]$ (3) cage.

Fig. S2a. Thermogravimetric analysis (TGA) of cage of $[Co(C_4O_4)(H_2O)_2]$ (1).

Fig. S2b. Thermogravimetric analysis (TGA) of cage of $[Zn(C_4O_4)(H_2O_2)]$ (2).

	$Co(C_4O_4).2H_2O(1)$		$Zn(C_4O_4).2H_2O(2)$		$Cd(C_4O_4).2H_2O(3)$	
	Carbon (%)	Hydrogen (%)	Carbon (%)	Hydrogen (%)	Carbon (%)	Hydrogen (%)
Experimental	23.17	1.89	22.36	1.91	18.54	1.62
Calculated	23.12	1.93	22.49	1.87	18.43	1.53

Table S1. Elemental analyses data for the cages.

Fig. S3. Powder X-ray diffraction (PXRD) pattern of the nanocages. (a) simulated pattern of $[Co(C_4O_4)(H_2O)_2]_n$; (b) assynthesized nanocage of $[Zn(C_4O_4)(H_2O)_2]_n$; (c) assynthesized cage of $[Cd(C_4O_4)(H_2O)_2]_n$.

Table S2. Indexing result from the powder data of cage $[Co(C_4O_4)(H_2O)_2]_n$ (1).

```
From TREOR programme
  a = 16.248(1) \ b = 16.248(1) \ c = 16.248(1) \text{ Å}, \ \alpha = \beta = \gamma = 90.00^{\circ}
                           \texttt{4290.12}~\texttt{\AA}^3
  UNIT CELL VOLUME =
                          SST-CALC
   Η
        Κ
             L SST-OBS
                                       DELTA
                                                 2TH-OBS 2TH-CALC D-OBS
                                       .00007
   2
        0
             0
                 .008997
                            .008989
                                                  10.886
                                                           10.881
                                                                     8.1211
   2
        2
                                                           15.411
                                                                     5.7435
             0
                 .017987
                            .017979
                                        .000008
                                                  15.415
   2
        2
             2
                 .026998
                            .026968
                                       .000030
                                                  18.914
                                                           18.904
                                                                     4.6881
   6
        2
                                                                     2.5683
             0
                 .089959
                            .089895
                                        .000064
                                                  34.907
                                                            34.894
   5
        4
             0
                 .092151
                            .092142
                                        .000009
                                                  35.343
                                                           35.342
                                                                     2.5375
        2
   6
             2
                 .098908
                           .098884
                                       .000024
                                                  36.661
                                                            36.656
                                                                     2.4493
   7
        0
             0
                 .110030
                           .110121
                                      -.000091
                                                  38.745
                                                           38.762
                                                                     2.3222
NUMBER OF OBS. LINES =
                               7
                                7
NUMBER OF CALC. LINES =
```


Fig. S4. (a) View of the coordination environment of Co(II) and binding of the squarate dianion in $[Co(C_4O_4)(H_2O)_2]_n$ (1); (b) View of the hexagonal channels along [110] direction.

Fig. S5a. (a) Cubes of $[Co(C_4O_4)(H_2O)_2]$ (1) obtained in good yield after 24 h of reaction time. (b) Cages of $[Co(C_4O_4)(H_2O)_2]$ (1) obtained in good yield after 96 h of reaction time.

Fig. S5b. TEM images of (a) $[Zn(C_4O_4)(H_2O_2)]$ (2); (b) $[Cd(C_4O_4)(H_2O_2)]$ (3) showing micronic cages throughout the sample.

Fig. S6. Dandelion-like nanostructures obtained after 24 h reaction time while using lower amount of PVP.

Table S3. Details of the different experiments performed.

Change of Morphology with PVP

Template	PVP	PVP	PVP
	(M. Wt. 25,000)	(M. Wt. 1,00,000)	(M. Wt. 5,000)
Morphology	Cubes/cages	Flaky particles	Flaky particles

<u>Conditions</u>: [Temperature =180 °C, Time = 72 h, PVP =(polyvinylpyrrolidine, PVA= poly vinyl alcohol), $Co(OH)_2 = (0.069g, 0.75mmol,)$ and squaric acid = (0.5 mmol, 0.057g)]

Temperature

Temperature	Room Temp	100 °C	120 °C	180 °C	200 °C
Morphology	Flakes	Flakes	Rods	Cube/cage	flakes

<u>Conditions</u>: Time = 72 h, PVP = (1.09 mmol, 0.122 g, M. Wt. 25000), $Co(OH)_2 = (0.75 \text{ mmol } 0.069 \text{ g})$ and squaric acid = (0.5 mmol, 0.057 g)

Metal Anions

Anion (X)	Hydroxyl	Chloride	Acetate	Nitrate	perchlorate
Morphology	Cubes/cages	No cube/cages	No cube/cages	No cube/cages	No cube/cages

<u>Conditions</u>: Time = 72 h, PVP = (1.09 mmol, 0.122 g), Temperature = 180 °C and squaric acid (0.5 mmol, 0.057g)

Metal precursor to PVP ratio:

M(OH) ₂ (X)	5 h	24 h	48 h	72 h	96 h	120 h
PVP (Y)						
X: Y/5	Cubes/ partly cages	Dandelion- like / cubes	Flaky particles	Flaky particles	Flaky particles	Broken cages
X: Y	flakes	cubes	Partially etched cubes	Cubes/ cages	Cages	Broken cages
X: 2Y	Cubes/facet ed cages	Cubes/faceted cages	Broken cages	Broken cages	Broken cages	Broken cages

Conditions:

 $X = M(OH)_2$ [Co(OH)₂ (0.75 mmol 0.069 g]Y = PVP [1.09 mmol, 0.122 g], (monomeric unit's molecular weight has been considered as 1 mol) All experiment at temperature = 180 °C; and squaric acid (0.5 mmol, 0.057g)

Fig. S7. Nitrogen adsorption isotherm for the dehydrated cage structure of $[Co(C_4O_4)(H_2O)_2]_n$ at 77 K

Fig. S8. Water sorption isotherms of dehydrated cage $[Co(C_4O_4)(H_2O)_2]$ (1) H₂O at 298 K (P_o is the saturated vapor pressure of the adsorbates at the corresponding temperature, blue curve for adsorption and red curve for desorption).

Fig. S9. [a] UV-vis spectra and [b] emission spectra of squaric acid and $[Zn(C_4O_4)(H_2O)_2]_n$ (2) cages. [black line for squaric acid and blue line for $[Zn(C_4O_4)(H_2O)_2]_n$ nanocages)

Fig. S10. (a) UV-vis and (b) emission spectra of OPV-NH₂ in solid state.

Post-synthetic modifications of metal-organic nanostructures (cage/cubes):

2 mg of $[M(C_4O_4)(H_2O)_2]_n$ nanocubes or nanocages were immersed in 2 ml of ethanol solution containing OPV-NH₂ (0.00914g, 0.01mmol) for 48 h. After this, the resulting nanocubes or nanocages were separated by decantation and then washed with ethanol several times and then dried at room temperature for 6 h. Confocal laser scanning microscopy (CLSM) measurements were performed on a glass slide by drop casting one drop of above solution containing cubes and cages.

Fig. S11. Confocal laser scanning microscopic images (CLSM) of $[Zn(C_4O_4)(H_2O)_2]$ cubes after functionalization with OPV-NH₂. cubes (a) without excitation (b) with excitation at 421 nm showing green fluorescent cubes and (c) corresponding emission spectra of the cubes obtained under the confocal microscope.