Supporting Information for

Visible-light-induced Synthesis of a Variety of Trifluoromethylated Alkenes from Potassium Vinyltrifluoroborates by Photoredox Catalysis

Yusuke Yasu, Takashi Koike,* and Munetaka Akita*

Contents

•Materials and methods • • • • • • • • • • • • • • • • • • •
•Reaction apparatus • • • • • • • • • • • • • • • • • • •
•Synthesis of potassium (<i>E</i>)-vinyltrifluoroborate • • • • • • • • • • • • • • • • • • •
•Typical NMR experimental procedure (reaction conditions in Table 1) and NMR spectra • • • \$18
•General procedure for the photocatalytic synthesis of (E)-trifluoromethylated alkenes (reaction
conditions in Table 2) • • • • • • • • • • • • • • • • • •
•Gram-scale synthesis of 3s (Scheme 2) • • • • • • • • • • • • • • • • • •
•Crystallographic data for (E)-3-(3,3,3-Trifluoroprop-1-enyl)-3-pyridinecarboxylic acid methy ester
$(3q) \cdot \cdot$
•Cyclic voltammograms • • • • • • • • • • • • • • • • • • •
•References • • • • • • • • • • • • • • • • • • •
• ¹ H and ¹³ C NMR spectra · · · · · · · · · · · · · · · · · · ·

Materials and methods

 $[Ru(bpy)_3](PF_6)_2^{[1a]}$ and $[fac-Ir(ppy)_3]^{[1b]}$ were prepared according to the literature procedures. Togni's reagent (1a) was purchased from TCI. Potassium (*E*)-vinyltrifluoroborate, 2b,^[2a] 2c,^[2b] 2d,^[2c] 2f^[2b] and $2v^{[2b]}$ were prepared according to the literature procedures. Trifluoromethylated alkene 3v was assigned by ¹H NMR spectroscopy based on the previous report.^[2d] Catalytic reactions were performed under an atmosphere of nitrogen using standard Schlenk techniques unless otherwise noted. Methanol (dehydrated solvent, KANTO CHEMICAL CO., INC.) was degassed with ultrasonic bath, and stored under N2 atmosphere. NMR solvents (CD3OD) was dried over molecular sieves 3Å, degassed and stored under N2. Thin-layer chromatography was performed on Merck TLC plate with 60 F254. Visible light irradiations were performed with a Relyon LED lamp (3 W x 2; $\lambda_{max} = 425$ nm). The ¹H NMR was acquired on Bruker AVANCE-400 (400 MHz). NMR chemical shifts were referenced to residual protio impurities in the deuterated solvent. HRMS (ESI-TOF Mass spectra) were obtained with a Bruker micrOTOF II. HRMS (EI Mass spectra) were recorded on a JEOL JMS-700 mass spectrometers at Center for Advanced Materials Analysis, Technical Department, Tokyo Institute of Technology. Single-crystal X-ray measurement was made on a Bruker SMART APEX II ULTRA. The crystallographic data for **3q** are summarized in Table S1-S5. The crystallographic data were deposited at the Cambridge Crystallographic Data Centre: CCDC 900630 (3q).

Reaction apparatus

Irradiation of visible light was performed with a Relyon LED lamp (3 W x 2; $\lambda_{max} = 425$ nm).

Synthesis of potassium (E)-vinyltrifluoroborate

Potassium (*E*)-2-(4-bromophenyl)ethenyltrifluoroborate (2e)

A 2-neck 100 mL round-bottom flask was charged with alkyne (1.15 g, 6.35 mmol), carbonylchlorohydridotris(triphenylphosphine)ruthenium (303 mg, 0.32 mmol) and dry toluene (26 mL), then 4,4,5,5-tetramethyl-1,3,2-dioxaborane (4.62 mL, 31.8 mmol, 5 eq.) was added to the mixture under N₂. The reaction mixture was stirred at 50 °C for 16 h. After cooling to room temperature, the solvent was removed under vaccum. Resulting reaction mixture was diluted with Et₂O, washed with sat. aq. NaHCO₃, dried (Na₂SO₄), and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel (hexane/AcOEt = 10/1) to afford the (*E*)-2-(4-bromostyryl)ethenylboronic acid pinacol ester as a white solid (1.69 g, 86% yield). The spectral data of the product were identical with those reported in the literature.

¹**H** NMR (400 MHz, CDCl₃, rt) δ 7.46 (dd, J = 6.8, 1.6 Hz, 2 H), 7.35-7.29 (m, 3 H), 6.14 (d, J = 18.4 Hz, 1 H), 1.30 (s, 12 H). ¹¹**B** NMR (125.7 MHz, CDCl₃, rt) δ 29.6.

Ref.: H. Jang, A. R. Zhugralin, Y. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2011, 133, 7859-7871.

To a solution of (E)-2-(4-bromophenyl)ethenylboronic acid pinacol ester (1.69 g, 5.47 mmol) in dry THF (30 mL) was added a solution of KHF₂ (2.56 g, 32.8 mmol) in water (10 mL). The raction mixture was stirred at room temperature for overnight. The mixture was concentrated *in vacuo*. The residue was dissolved in hot acetone, and filtered. The filtrate was reduced under vacuum to yield a mixture of potassium trifluoroborate and pinacol. The crude product was washed with ether and pentane for several times to afford the title compound as a white solid (1.3 g, 82% yield). The spectral data of the product were identical with those reported in the literature.

¹**H NMR** (400 MHz, DMSO, rt) δ 7.41 (d, J = 8.4 Hz, 2 H), 7.26 (d, J = 8.4 Hz, 2 H), 6.42 (d, J = 18.4 Hz, 1 H), 6.20 (dq, J = 18.0, 3.2 Hz, 1 H). ¹¹**B NMR** (128.4 MHz, DMSO, rt) δ 2.36. ¹⁹**F NMR** (376.5 MHz, DMSO, rt) δ -138.0.

Ref.: A. T. Parsons, T. D. Senecal, S. L. Buchwald, Angew. Chem. Int. Ed. 2012, 51, 2947-2950.

Potassium (E)-2-(4-trifluoromethoxyphenyl)ethenyltrifluoroborate (2g)

A 2-neck 100 mL round-bottom flask was charged with alkyne (1.0 g, 5.37 mmol), carbonylchlorohydridotris(triphenylphosphine)ruthenium (256 mg, 0.27 mmol) and dry toluene (21 mL), then 4,4,5,5-tetramethyl-1,3,2-dioxaborane (3.91 mL, 26.9 mmol, 5 eq.) was added to the mixture under N_2 . The reaction mixture was stirred at 50 °C for 16 h. After cooling to room

temperature, the solvent was removed under vaccum. Resulting reaction mixture was diluted with Et₂O, washed with sat. aq. NaHCO₃, dried (Na₂SO₄), and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel (hexane/AcOEt = $10/1 \rightarrow 4/1$) to afford the (*E*)-2-(4-trifluoromethoxyphenyl)ethenylboronic acid pinacol ester as a pale yellow oil (1.35 g, 80% yield).

¹**H NMR** (400 MHz, CDCl₃, rt) δ 7.49 (dd, J = 6.8, 2.0 Hz, 2 H), 7.35 (d, J = 18.4 Hz, 1 H), 7.17 (d, J = 8.8 Hz, 2 H), 6.13 (d, J = 18.4 Hz, 1 H), 1.31 (s, 12 H). ¹³**C NMR** (100 MHz, CDCl₃, rt) δ 149.6, 147.8, 136.4, 128.4, 121.0, 120.6 (q, J = 256 Hz), 83.6, 24.9. ¹¹**B NMR** (125.7 MHz, CDCl₃, rt) δ 30.0. **HRMS** (ESI-TOF): calculated for [C₁₅H₁₈BF₃O₃-H]⁻ requires 313.1231, found 313.1230.

To a solution of (E)-2-(4-trifluoromethoxyphenyl)ethenylboronic acid pinacol ester (1.1 g, 3.5 mmol) in dry THF (20 mL) was added a solution of KHF₂ (1.64 g, 21 mmol) in water (10 mL). The raction mixture was stirred at room temperature for overnight. The mixture was concentrated *in vacuo*. The residue was dissolved in hot acetone, and filtered. The filtrate was reduced under vacuum to yield a mixture of potassium trifluoroborate and pinacol. The crude product was diluted acetone, and excess amount of ether was added. The precipitate was filtered, washed with pentane for several times, and dried *in vacuo*. Resulting solid was wash with CH₂Cl₂ to afford the title compound as a white solid (0.82 g, 80% yield).

¹**H NMR** (400 MHz, acetone, rt) δ 7.41 (d, J = 8.0 Hz, 2 H), 7.17 (d, J = 8.0 Hz, 2 H), 6.68 (d, J = 18.4 Hz, 1 H), 6.20 (dq, J = 18.4, 3.6 Hz, 1 H). ¹³**C NMR** (100 MHz, acetone, rt) δ 148.1, 141.1, 133.5, 127.8, 121.6, 121.5 (q, J = 253 Hz). ¹¹**B NMR** (128.4 MHz, acetone, rt) δ 3.06. ¹⁹**F NMR** (376.5 MHz, acetone, rt) δ -58.6, -141.8. **HRMS** (ESI-TOF): calculated for [C₉H₆BF₆O]⁻ requires 255.0423, found 255.0442.

Potassium (E)-2-(4-cyanophenyl)ethenyltrifluoroborate (2h)

A 2-neck 100 mL round-bottom flask was charged with alkyne (1.0 g, 7.87 mmol), carbonylchlorohydridotris(triphenylphosphine)ruthenium (373 mg, 0.39 mmol) and dry toluene (31 mL), then 4,4,5,5-tetramethyl-1,3,2-dioxaborane (5.72 mL, 39.3 mmol, 5 eq.) was added to the mixture under N₂. The reaction mixture was stirred at 50 °C for 16 h. After cooling to room temperature, the solvent was removed under vaccum. Resulting reaction mixture was diluted with Et₂O, washed with sat. aq. NaHCO₃, dried (Na₂SO₄), and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel (hexane/AcOEt = 4/1) to afford the (*E*)-2-(4-cyanophenyl)ethenylboronic acid pinacol ester as a yellow solid (1.3 g, 65% yield).

¹**H NMR** (400 MHz, CDCl₃, rt) δ 7.62 (d, J = 8.4 Hz, 2 H), 7.54 (d, J = 8.4 Hz, 2 H), 7.36 (d, J = 18.4 Hz, 1 H), 6.27 (d, J = 18.4 Hz, 1 H), 1.31 (s, 12 H). ¹¹**B NMR** (125.7 MHz, CDCl₃, rt) δ 29.3.

To a solution of (E)-2-(4-cyanophenyl)ethenylboronic acid pinacol ester (1.3 g, 5.1 mmol) in

dry THF (20 mL) was added a solution of KHF_2 (2.39 g, 31 mmol) in water (10 mL). The raction mixture was stirred at room temperature for overnight. The mixture was concentrated *in vacuo*. The residue was dissolved in hot acetone, and filtered. The filtrate was reduced under vacuum to yield a mixture of potassium trifluoroborate and pinacol. The crude product was washed with ether, pentane and CH_2Cl_2 for several times to afford the title compound as a yellow solid (0.38 g, 32 % yield).

¹**H NMR** (400 MHz, DMSO, rt) δ 7.67 (d, J = 8.4 Hz, 2 H), 7.49 (d, J = 8.4 Hz, 2 H), 6.53 (d, J = 18.4 Hz, 1 H), 6.42 (dq, J = 18.4, 3.2 Hz, 1 H). ¹³**C NMR** (100 MHz, DMSO, rt) δ 144.9, 132.1, 131.8, 126.0, 119.2, 107.8. ¹¹**B NMR** (128.4 MHz, DMSO, rt) δ 2.42. ¹⁹**F NMR** (376.5 MHz, DMSO, rt) δ -138.4. **HRMS** (ESI-TOF): calculated for [C₉H₆BF₃N]⁻requires 196.0553, found 196.0560.

Potassium (E)-2-(3,5-difluorophenyl)ethenyltrifluoroborate (2i)

To a solution of (E)-2-(3,5-difluorophenyl)ethenylboronic acid pinacol ester (1.0 g, 3.75 mmol) in dry THF (20 mL) was added a solution of KHF₂ (1.76 g, 23 mmol) in water (10 mL). The raction mixture was stirred at room temperature for 5 h. The mixture was concentrated *in vacuo*. The residue was dissolved in hot acetone, and filtered. The filtrate was reduced under vacuum to yield a mixture of potassium trifluoroborate and pinacol. The crude product was washed with ether and pentane for several times to afford the title compound as a white solid (0.81 g, 88% yield).

¹**H NMR** (400 MHz, DMSO, rt) δ 7.00 (d, J = 7.6 Hz, 2 H), 6.90 (dd, J = 9.2, 2.0 Hz, 1 H), 6.46 (d, J = 18.4 Hz, 1 H), 6.32 (dq, J = 18.4, 3.6 Hz, 1 H). ¹³**C NMR** (100 MHz, DMSO, rt) δ 162.6 (d, J = 293 Hz), 162.5 (d, J = 293 Hz), 144.5, 131.1, 107.9 (d, J = 18.2 Hz), 107.8 (d, J = 18.2 Hz), 100.8 (d, J = 26.0 Hz), 100.5 (d, J = 26.0 Hz). ¹¹**B NMR** (128.4 MHz, DMSO, rt) δ 2.46. ¹⁹**F NMR** (376.5 MHz, DMSO, rt) δ -111.0 (d, J = 8.66 Hz), -138.2. **HRMS** (ESI-TOF): calculated for [C₈H₅BF₅]⁻ requires 207.0411, found 207.0453.

Potassium (E)-2-[3,5-bis(trifluoromethyl)phenyl]ethenyltrifluoroborate (2j)

To a solution of (*E*)-2-[3,5-bis(trifluoromethyl)phenyl)ethenylboronic acid pinacol ester (1.0 g, 2.73 mmol) in dry THF (20 mL) was added a solution of KHF₂ (1.3 g, 16 mmol) in water (10 mL). The raction mixture was stirred at room temperature for 5 h. The mixture was concentrated *in vacuo*. The residue was dissolved in hot acetone, and filtered. The filtrate was reduced under vacuum to yield a pale yellow oil. The crude oil was diluted ether, and excess amount of pentane was added. The precipitate was filtered and washed with pentane for several times. The resulting solid was dried *in vacuo* to afford the title compound as a white solid (0.80 g, 85% yield).

¹**H NMR** (400 MHz, DMSO, rt) δ 7.94 (s, 2 H), 7.76 (s, 1 H), 6.66 (d, J = 18.4 Hz, 1 H), 6.50 (dq, J = 18.4, 3.6 Hz, 1 H). ¹³**C NMR** (100 MHz, DMSO, rt) δ 142.9, 130.4, 130.3 (q, J = 32.2 Hz), 125.5, 123.5 (q, J = 271 Hz), 118.8. ¹¹**B NMR** (128.4 MHz, DMSO, rt) δ 2.16. ¹⁹**F NMR** (376.5 MHz, DMSO, rt) δ -61.4, -138.5. **HRMS** (ESI-TOF): calculated for [C₁₀H₅BF₉]⁻ requires 307.0348, found 307.0358.

Potassium (E)-2-(3-tert-butoxycarbonylaminophenyl)ethenyltrifluoroborate (2k)

A 2-neck 100 mL round-bottom flask was charged with Boc-protected alkyne^[3] (2.0 g, 9.2 mmol), carbonylchlorohydridotris(triphenylphosphine)ruthenium (447 mg, 0.47 mmol) and dry toluene (37 mL), then 4,4,5,5-tetramethyl-1,3,2-dioxaborane (6.8 mL, 46.8 mmol, 5 eq.) was added to the mixture under N₂. The reaction mixture was stirred at 50 °C for 16 h. After cooling to room temperature, the solvent was removed under vaccum. Resulting reaction mixture was diluted with Et₂O, washed with sat. aq. NaHCO₃, dried (Na₂SO₄), and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel (pentane/Et₂O = $10/1 \rightarrow 9/1 \rightarrow 4/1$) to afford the (*E*)-2-(3-*tert*-butoxycarbonylaminophenyl)ethenylboronic acid pinacol ester as a white solid (2.0 g, 63% yield).

¹**H NMR** (400 MHz, CDCl₃, rt) δ 7.45 (s, 1 H), 7.38-7.22 (m, 3 H), 7.16 (d, J = 7.6 Hz, 1 H), 6.46 (bs, 1 H), 6.15 (d, J = 18.4 Hz, 1 H), 1.51 (s, 9 H), 1.30 (s, 12 H). ¹³**C NMR** (100 MHz, CDCl₃, rt) δ 152.8, 149.3, 138.8, 138.6, 129.2, 121.9, 119.2, 117.2, 83.4, 80.7, 28.4, 24.9. ¹¹**B NMR** (125.7 MHz, CDCl₃, rt) δ 30.5. **HRMS** (ESI-TOF): calculated for [C₁₉H₂₈BNO₄+H]⁻ requires 344.2195, found 344.2196.

To a solution of (*E*)-2-(3-*tert*-butoxycarbonylaminophenyl)ethylenylboronic acid pinacol ester (1.2 g, 3.5 mmol) in dry THF (20 mL) was added a solution of KHF₂ (1.64 g, 21 mmol) in water (10 mL). The raction mixture was stirred at room temperature for overnight. The mixture was concentrated *in vacuo*. The residue was dissolved in hot acetone, and filtered. The filtrate was reduced under vacuum to yield a mixture of potassium trifluoroborate and pinacol. The crude product was washed with ether, pentane and CH₂Cl₂ for several times to afford the title compound as a white solid (0.82 g, 73 % yield).

¹**H NMR** (400 MHz, DMSO, rt) δ 7.37 (s, 1 H), 7.25 (d, J = 8.0 Hz, 1 H), 7.10 (dd, J = 8.0, 7.6 Hz, 1 H), 6.88 (d, J = 7.6 Hz, 1 H), 6.37 (d, J = 18.0 Hz, 1 H), 6.10 (dq, J = 18.0, 3.2 Hz, 1 H), 1.47 (s, 9 H). ¹³**C NMR** (100 MHz, DMSO, rt) δ 152.7, 140.7, 139.4, 133.1, 133.0, 128.2, 119.4, 115.8, 115.1, 78.7, 39.5, 28.1. ¹¹**B NMR** (128.4 MHz, DMSO, rt) δ 2.70. ¹⁹**F NMR** (376.5 MHz, DMSO, rt) δ -138.0. **HRMS** (ESI-TOF): calculated for [C₁₃H₁₆BF₃NO₂]⁻ requires 286.1234, found 286.1233.

Potassium (E)-2-(2-tolyl)ethenyltrifluoroborate (2l)

A 2-neck 100 mL round-bottom flask was charged with alkyne (1.0 g, 8.61 mmol), carbonylchlorohydridotris(triphenylphosphine)ruthenium (407 mg, 0.43 mmol) and dry toluene (35 mL), then 4,4,5,5-tetramethyl-1,3,2-dioxaborane (6.25 mL, 43 mmol, 5 eq.) was added to the mixture under N₂. The reaction mixture was stirred at 50 °C for 16 h. After cooling to room temperature, the solvent was removed under vaccum. Resulting reaction mixture was diluted with Et₂O, washed with sat. aq. NaHCO₃, dried (Na₂SO₄), and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel (hexane/AcOEt = $9/1 \rightarrow 4/1$) to afford the (*E*)-2-(2-tolyl)ethenylboronic acid pinacol ester as a pale yellow solid (1.8 g, 86% yield). The spectral data of the product were identical with those reported in the literature.

¹**H NMR** (400 MHz, CDCl₃, rt) δ 7.64 (d, J = 18.0 Hz, 1 H), 7.55 (d, J = 5.6 Hz, 1 H), 7.20-7.12 (m, 3 H), 6.08 (d, J = 18.0Hz, 1 H), 1.31 (s, 12 H). ¹¹**B NMR** (125.7 MHz, CDCl₃, rt) δ 29.8.

Ref.: H. Jang, A. R. Zhugralin, Y. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2011, 133, 7859-7871.

To a solution of (*E*)-2-(2-tolyl)ethenylboronic acid pinacol ester (1.80 g, 7.37 mmol) in dry THF (30 mL) was added a solution of KHF₂ (3.46 g, 44.2 mmol) in water (10 mL). The raction mixture was stirred at room temperature for overnight. The mixture was concentrated *in vacuo*. The residue was dissolved in hot acetone, and filtered. The filtrate was reduced under vacuum to yield a mixture of potassium trifluoroborate and pinacol. The crude product was washed with ether, pentane and CH_2Cl_2 for several times to afford the title compound as a white solid (1.3 g, 79% yield).

¹**H** NMR (400 MHz, DMSO, rt) δ 7.38 (d, J = 7.6 Hz, 1 H), 7.11-6.99 (m, 3 H), 6.68 (d, J = 18.0 Hz, 1 H), 6.06 (dq, J = 18.0, 3.2 Hz, 1 H), 2.25 (s, 3 H). ¹³C NMR (100 MHz, DMSO, rt) δ 139.2, 133.5, 130.2 (d, J = 4.0 Hz), 129.7, 125.6, 125.4, 124.4, 19.3. ¹¹B NMR (128.4 MHz, DMSO, rt) δ 2.55. ¹⁹F NMR (376.5 MHz, DMSO, rt) δ -137.7. HRMS (ESI-TOF): calculated for $[C_9H_9BF_3]^-$ requires 185.0757, found 185.0759.

Potassium (E)-2-(3-pyridine)ethenyltrifluoroborate (2n)

To a solution of (*E*)-3-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl]pyridine^[4] (2.2 g, 9.5 mmol) in dry THF (35 mL) was added a solution of KHF₂ (4.5 g, 57 mmol) in water (10 mL). The raction mixture was stirred at room temperature for 5 h. The mixture was concentrated *in vacuo*. The residue was dissolved in hot acetone, and filtered. The filtrate was reduced under vacuum to yield a mixture of potassium trifluoroborate and pinacol. The crude product was washed with ether, pentane

and CH₂Cl₂ for several times to afford the title compound as a pale yellow solid (1.3 g, 65 % yield). ¹**H** NMR (400 MHz, DMSO, rt) δ 8.47 (s, 1 H), 8.31 (dd, J = 4.8, 1.6 Hz, 1 H), 7.73 (dd, J = 8.0, 1.6 Hz, 1 H), 7.26 (dd, J = 8.0, 4.8 Hz, 1 H), 6.48 (d, J = 18.4 Hz, 1 H), 6.33 (dq, J = 18.0, 3.2 Hz, 1 H). ¹³C NMR (100 MHz, DMSO, rt) δ 147.4, 146.9, 135.4, 131.7, 129.7, 129.6, 123.5. ¹¹**B** NMR (128.4 MHz, DMSO, rt) δ 2.38. ¹⁹**F** NMR (376.5 MHz, DMSO, rt) δ -138.2. **HRMS** (ESI-TOF): calculated for [C₇H₆BF₃N]⁻ requires 172.0552, found 172.0560.

Potassium (E)-2-[4-(2-chloropyridine)]ethenyltrifluoroborate (20)

A 2-neck 300 mL round-bottom flask was charged with 4-iodo-2-chloropyridine (5.0 g, 20.9 mmol), PdCl₂(PPh₃)₂ (77 mg, 0.11 mmol), PPh₃ (55 mg, 0.22 mmol), dry THF (16 mL) and NEt₃ (25 mL) under N₂. After bubbling N₂ into the solution for 15 min, CuI (40 mg, 0.33 mmol) and trimethylsilylacetylene (3.3 mL, 23.0 mmol) were added sequentially. The reaction mixture was stirred at room temperature. After 13 h, the precipitate (NEt₃•HI) was filtered off and washed with EtOAc. The filtrate solution was concentrated and residue was diluted with ether/hexane. The crude product was purified by flash column chromatography on silica gel (hexane \rightarrow hexane/AcOEt = 9/1) to afford the 4-TMS-ethynyl-2-chloropyridine as a pale yellow oil (4.30 g, 98% yield). The spectral data of the product were identical with those reported in the literature.

¹**H NMR** (400 MHz, CDCl₃, rt) δ 8.32 (dd, J = 5.2, 0.8 Hz, 1 H), 7.35 (dd, J = 1.2, 0.8 Hz, 1 H), 7.21 (dd, J = 5.2, 1.2 Hz, 1 H), 0.25 (s, 9 H).

Ref.: Y. Takayama, T. Hanazawa, T. Andou, K. Muraoka, H. Ohtani, M. Takahashi, F. Sato, *Org. Lett.* **2004**, *6*, 4253–4256.

A 2-neck 100 mL round-bottom flask was charged with TMS-alkyne (4.3 g, 20.5 mmol), 18-crown-6-ether (5.42 g, 20.5 mmol) and dry CH_2Cl_2 (28 mL), then KF (2.38 g, 41 mmol) was added to the mixture under N₂. The reaction mixture was stirred at room temperature for 5 h. Resulting reaction mixture was extracted with CH_2Cl_2 , dried (Na₂SO₄), and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel (pentane/Et₂O = 4/1) to afford the 4-ethynyl-2-chloropyridine as a colorless crystal (0.94 g, 33% yield). The spectral data of the product were identical with those reported in the literature.

¹**H NMR** (400 MHz, CDCl₃, rt) δ 8.37 (dd, J = 4.8, 0.4 Hz, 1 H), 7.39 (br s, 1 H), 7.27 (dd, J = 5.2, 1.6 Hz, 1 H), 3.35 (s, 1 H).

Ref.: A. Conte, H. Kuehne, T. Luebbers, P. Mattei, C. Maugeais, W. Mueller, P. Pflieger, Patent:

US2007/185058 A1, 2007, 12.

A 2-neck 100 mL round-bottom flask was charged with 4-ethynyl-2-chloropyridine (0.82 g, 8.96 mmol), carbonylchlorohydridotris(triphenylphosphine)ruthenium (281 mg, 0.30 mmol) and dry toluene (23 mL), then 4,4,5,5-tetramethyl-1,3,2-dioxaborane (4.3 mL, 29.8 mmol, 5 eq.) was added to the mixture under N₂. The reaction mixture was stirred at 50 °C for 16 h. After cooling to room temperature, the solvent was removed under vaccum. Resulting reaction mixture was diluted with Et₂O, washed with sat. aq. NaHCO₃, dried (Na₂SO₄), and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel (hexane/AcOEt = $9/1 \rightarrow 4/1$) to afford the (*E*)-4-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl]-2-chloropyridine as a colorless oil (1.34 g, 84% yield).

¹**H** NMR (400 MHz, CDCl₃, rt) δ 8.39 (d, J = 4.8 Hz, 1 H), 7.38 (d, J = 0.8 Hz, 1 H), 7.29 (dd, J = 5.6, 1.6 Hz, 1 H), 7.28 (d, J = 18.4 Hz, 1 H), 6.41 (d, J = 18.4, 1 H). ¹³**C** NMR (100 MHz, CDCl₃, rt) δ 152.2, 150.0, 147.8, 144.9, 121.8, 119.8, 83.9, 24.8. ¹¹**B** NMR (128.4 MHz, CDCl₃, rt) δ 29.5. **HRMS** (ESI-TOF): calculated for [C₁₃H₁₇ClBNO₂]⁻ requires 266.1127, found 266.1198.

To a solution of (*E*)-4-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl]-2-chloropyridi--ne (1.2 g, 4.52 mmol) in dry THF (20 mL) was added a solution of KHF₂ (2.30 g, 29.4 mmol) in water (10 mL). The raction mixture was stirred at room temperature for overnight. The mixture was concentrated *in vacuo*. The residue was dissolved in hot acetone, and filtered. The filtrate was reduced under vacuum to yield a mixture of potassium trifluoroborate and pinacol. The crude product was washed with ether, pentane and CH_2Cl_2 for several times to afford the title compound as a white solid (0.79 g, 71% yield).

¹**H NMR** (400 MHz, DMSO, rt) δ 8.21 (d, *J* = 5.2 Hz, 1 H), 7.35-7.33 (m, 2 H), 6.61 (dq, *J* = 18.0, 3.2 Hz, 1 H), 6.45 (q, *J* = 18.0 Hz, 2 H). ¹³**C NMR** (100 MHz, DMSO, rt) δ 151.1, 150.9, 149.6, 130.0, 120.3, 119.4. ¹¹**B NMR** (128.4 MHz, DMSO, rt) δ 1.90. ¹⁹**F NMR** (376.5 MHz, DMSO, rt) δ -138.7. **HRMS** (ESI-TOF): calculated for [C₇H₅ClBF₃N]⁻ requires 206.0162, found 206.0166.

Potassium (E)-2-[3-(2-cyanopyridine)]ethenyltrifluoroborate (2p)

A 2-neck 300 mL round-bottom flask was charged with 5-bromo-2-cyanopyridine (5.0 g, 27.3 mmol), $PdCl_2(PPh_3)_2$ (111 mg, 0.158 mmol), PPh_3 (86 mg, 0.328 mmol), dry THF (25 mL) and NEt₃ (37 mL) under N₂. After bubbling N₂ into the solution for 15 min, CuI (64 mg, 0.33 mmol) and trimethylsilylacetylene (4.8 mL, 34 mmol) were added sequentially. The reaction mixture was stirred

at 50 °C for 5 h. After cooling to room temperature, the precipitate (NEt₃•HBr) was filtered off and washed with EtOAc. The filtrate solution was concentrated and residue was diluted with ether/hexane. The crude product was purified by flash column chromatography on silica gel (hexane \rightarrow hexane/AcOEt = 4/1) to afford the 5-TMS-ethynyl-2-cyanopyridine as a pale yellow solid (5.27 g, 96% yield). The spectral data of the product were identical with those reported in the literature.

¹**H NMR** (400 MHz, CDCl₃, rt) δ 8.73 (dd, J = 2.0, 0.8 Hz, 1 H), 7.84 (dd, J = 8.4, 2.0 Hz, 1 H), 7.62 (dd, J = 8.4, 0.8 Hz, 1 H), 0.27 (s, 9 H).

Ref.: A. A. Farahat, A. Kumar, M. Say, A. E.-D. M. Barghash, F. E. Goda, H. M. Eisa, T. Wenzler, R. Brun, Y. Liu, L. Mickelson, W. D. Wilson, D. W. Boykin, *Bioorganic & Medicinal Chemistry*, **2010**, *18*, 557–566.

A 2-neck 100 mL round-bottom flask was charged with TMS-alkyne (4.0 g, 20.0 mmol), 18-crown-6-ether (5.28 g, 20.0 mmol) and dry CH_2Cl_2 (30 mL), then KF (2.32 g, 40 mmol) was added to the mixture under N₂. The reaction mixture was stirred at room temperature for 2 h. Resulting reaction mixture was extracted with CH_2Cl_2 , dried (Na₂SO₄), and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel (pentane/Et₂O = 4/1→2/1) to afford the 5-ethynyl-2-cyanopyridine as an orange solid (2.08 g, 81% yield). The spectral data of the product were identical with those reported in the literature.

¹**H** NMR (400 MHz, CDCl₃, rt) δ 8.77 (dd, J = 2.0, 1.0 Hz, 1 H), 7.90 (dd, J = 8.0, 2.0 Hz, 1 H), 7.66 (dd, J = 8.0, 1.0 Hz, 1 H), 3.45 (s, 1 H).

Ref.: A. A. Farahat, A. Kumar, M. Say, A. E.-D. M. Barghash, F. E. Goda, H. M. Eisa, T. Wenzler, R. Brun, Y. Liu, L. Mickelson, W. D. Wilson, D. W. Boykin, *Bioorganic & Medicinal Chemistry*, **2010**, *18*, 557–566.

A 2-neck 100 mL round-bottom flask was charged with 5-ethynyl-2-cyanopyridine (1.2 g, 9.36 mmol), carbonylchlorohydridotris(triphenylphosphine)ruthenium (447 mg, 0.47 mmol) and dry toluene (37 mL), then 4,4,5,5-tetramethyl-1,3,2-dioxaborane (6.8 mL, 46.8 mmol, 5 eq.) was added to the mixture under N₂. The reaction mixture was stirred at 50 °C for 16 h. After cooling to room temperature, the solvent was removed under vaccum. Resulting reaction mixture was diluted with Et₂O, washed with sat. aq. NaHCO₃, dried (Na₂SO₄), and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel (hexane/AcOEt = $10/1 \rightarrow 4/1$) to afford the (*E*)-3-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl]-2-cyanopyridine as a white solid (1.50 g, 63% yield).

¹**H NMR** (400 MHz, CDCl₃, rt) δ 8.76 (d, J = 2.0 Hz, 1 H), 7.87 (dd, J = 8.4, 2.0 Hz, 1 H), 7.66 (d, J = 8.4 Hz, 1 H), 7.36 (d, J = 18.4 Hz, 1 H), 6.38 (d, J = 18.4, 1 H). ¹³**C NMR** (100 MHz, CDCl₃, rt) δ 150.1, 143.5, 136.2, 134.0, 133.2, 128.4, 117.3, 84.1, 24.9. ¹¹**B NMR** (128.4 MHz, CDCl₃, rt) δ 29.3. **HRMS** (ESI-TOF): calculated for [C₁₄H₁₇BN₂O₂-H]⁻ requires 255.1313, found 255.1310.

To a solution of (*E*)-3-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl]-2-cyanopyridi--ne (1.3 g, 5.47 mmol) in dry THF (20 mL) was added a solution of KHF₂ (2.38 g, 30.5 mmol) in water (10 mL). The raction mixture was stirred at room temperature for 5 h. The mixture was concentrated *in vacuo*. The residue was dissolved in hot acetone, and filtered. The filtrate was reduced under vacuum to yield a mixture of potassium trifluoroborate and pinacol. The crude product was washed with ether, pentane and CH_2Cl_2 for several times to afford the title compound as a white solid (0.48 g, 40% yield).

¹**H NMR** (400 MHz, DMSO, rt) δ 8.67 (d, J = 2.0 Hz, 1 H), 7.95 (dd, J = 8.4, 2.0 Hz, 1 H), 7.86 (d, J = 8.4 Hz, 1 H), 6.61-6.58 (m, 2 H). ¹³**C NMR** (100 MHz, DMSO, rt) δ 148.8, 139.0, 132.7, 129.1, 128.7, 128.5, 117.8. ¹¹**B NMR** (128.4 MHz, DMSO, rt) δ 2.35. ¹⁹**F NMR** (376.5 MHz, DMSO, rt) δ -138.8. **HRMS** (ESI-TOF): calculated for [C₈H₅BF₃N]⁻ requires 197.0505, found 197.0508.

A 2-neck 300 mL round-bottom flask was charged with 5-bromo-3-pyridinecarboxylic acid methyl ester (2.5 g, 11.6 mmol), $PdCl_2(PPh_3)_2$ (39 mg, 0.056 mmol), PPh_3 (30 mg, 0.11 mmol), dry THF (25 mL) and NEt₃ (13 mL) under N₂. After bubbling N₂ into the solution for 15 min, CuI (22 mg, 0.11 mmol) and trimethylsilylacetylene (1.8 mL, 12.7 mmol) were added sequentially. The reaction mixture was stirred at 50 °C for 5 h. After cooling to room temperature, the precipitate (NEt₃•HBr) was filtered off and washed with EtOAc. The filtrate solution was concentrated and residue was diluted with ether/hexane. The crude product was purified by flash column chromatography on silica gel (hexane \rightarrow hexane/AcOEt = 10/1 \rightarrow 4/1) to afford the 5-TMS-ethynyl-3-pyridinecarboxylic acid methyl ester as a pale yellow solid (2.42 g, 89% yield).

¹**H NMR** (400 MHz, CDCl₃, rt) δ 9.10 (d, *J* = 2.0 Hz, 1 H), 8.81 (d, *J* = 2.0 Hz, 1 H), 8.33 (dd, *J* = 2.0, 2.0 Hz, 1 H), 3.95 (s, 3 H), 0.27 (s, 9 H).

A 2-neck 100 mL round-bottom flask was charged with TMS-alkyne (1.86 g, 7.9 mmol), and dry THF (15 mL), then TBAF(1.0 M THF soln.) (13 mL, 13 mmol) was added to the solution at 0 °C under N₂. The reaction mixture was stirred at 0 °C for 1 h. The reaction mixture was extracted with CH₂Cl₂, dried (Na₂SO₄), and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel (hexane/AcOEt = $4/1 \rightarrow 3/1$) to afford the 5-ethynyl-3-pyridinecarboxylic acid methyl ester as a white solid (0.72 g, 43% yield). The spectral data of the product were identical with those reported in the literature.

¹**H NMR** (400 MHz, CDCl₃, rt) δ 9.15 (d, *J* = 2.4 Hz, 1 H), 8.85 (d, *J* = 2.0 Hz, 1 H), 8.36 (dd, *J* = 2.4, 2.0 Hz, 1 H), 3.96 (s, 3 H), 3.27 (s, 1 H).

Ref.: S. L. Bender, D. Bhumralkar, M. R. Collins, S. J. Cripps, J. G. Deal, L. Jia, M. D. Nambu, C. L. Palmer, Z. Peng, M. D. Varney, Patent: US2002/103203 A1, **2002**.

A 2-neck 100 mL round-bottom flask was charged with 5-ethynyl-3-pyridinecarboxylic acid methyl ester (1.22 g, 7.57 mmol), carbonylchlorohydridotris(triphenylphosphine)ruthenium (358 mg, 0.38 mmol) and dry toluene (31 mL), then 4,4,5,5-tetramethyl-1,3,2-dioxaborane (5.5 mL, 37.9 mmol, 5 eq.) was added to the mixture under N₂. The reaction mixture was stirred at 50 °C for 16 h. After cooling to room temperature, the solvent was removed under vaccum. Resulting reaction mixture was diluted with Et₂O, washed with sat. aq. NaHCO₃, dried (Na₂SO₄), and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel (hexane→hexane/AcOEt = 9/1→4/1) to afford the (*E*)-3-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan--2-yl)vinyl]-3-pyridinecarboxylic acid methyl ester as a white solid (1.10 g, 50% yield).

¹**H NMR** (400 MHz, CDCl₃, rt) δ 9.11 (d, J = 2.0 Hz, 1 H), 8.82 (d, J = 2.4 Hz, 1 H), 8.39 (dd, J = 2.4, 2.0 Hz, 1 H), 7.40 (d, J = 18.8 Hz, 1 H), 6.34 (d, J = 18.8 Hz, 1 H), 3.96 (s, 3 H), 1.32 (s, 9 H).

¹³C NMR (100 MHz, CDCl₃, rt) δ 165.7, 152.4, 150.6, 144.5, 134.3, 133.0, 126.2, 83.8, 52.6, 24.9.

¹¹**B** NMR (128.4 MHz, CDCl₃, rt) δ 28.5. HRMS (ESI-TOF): calculated for $[C_{15}H_{20}BNO_4-H]^-$ requires 288.1415, found 288.1463.

To a solution of (*E*)-3-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl]-3-pyridinecarboxylic acid methyl ester (1.0 g, 3.45 mmol) in dry THF (20 mL) was added a solution of KHF₂ (1.62 g, 20.8 mmol) in water (10 mL). The raction mixture was stirred at room temperature for 5 h. The mixture was concentrated *in vacuo*. The residue was dissolved in hot acetone, and filtered. The filtrate was reduced under vacuum to yield a mixture of potassium trifluoroborate and pinacol. The crude product was washed with ether, pentane and CH_2Cl_2 for several times to afford the title compound as a white solid (0.45 g, 49% yield).

¹**H** NMR (400 MHz, DMSO, rt) δ 8.82 (d, J = 1.6 Hz, 1 H), 8.72 (d, J = 2.0 Hz, 1 H), 8.15 (dd, J = 2.0, 1.6 Hz, 1 H), 6.56 (d, J = 18.4 Hz, 1 H), 6.42 (dq, J = 18.4, 3.6 Hz, 1 H), 3.88 (s, 3 H). ¹³C NMR (100 MHz, DMSO, rt) δ 165.4, 151.0, 146.9, 135.4, 131.8, 128.3, 125.3, 52.1. ¹¹B NMR (128.4 MHz, DMSO, rt) δ 2.27. ¹⁹F NMR (376.5 MHz, DMSO, rt) δ -138.5. HRMS (ESI-TOF): calculated for [C₉H₈BF₃NO₂]⁻ requires 230.0607, found 230.0610.

A 2-neck 300 mL round-bottom flask was charged with 6-bromo-2-methylquinoline (5.0 g, 22.5 mmol), $PdCl_2(PPh_3)_2$ (79 mg, 0.112 mmol), PPh_3 (59 mg, 0.225 mmol), dry THF (21 mL) and NEt₃ (30 mL) under N₂. After bubbling N₂ into the solution for 15 min, CuI (43 mg, 0.225 mmol) and

trimethylsilylacetylene (3.5 mL, 24.8 mmol) were added sequentially. The reaction mixture was stirred at 50 °C for 24 h. After cooling to room temperature, the precipitate (NEt₃•HBr) was filtered off and washed with EtOAc. The filtrate solution was concentrated and residue was diluted with ether/hexane. The crude product was purified by flash column chromatography on silica gel (hexane \rightarrow hexane/AcOEt = 4/1) to afford the 6-TMS-ethynyl-2-methylquinoline as a pale yellow solid (5.5 g, quant.). The spectral data of the product were identical with those reported in the literature.

¹**H** NMR (400 MHz, CDCl₃, rt) δ 7.96 (d, J = 8.4 Hz, 1 H), 7.92-7.90 (m, 2 H), 7.70 (d, J = 8.8 Hz, 1 H), 7.28 (d, J = 8.4 Hz, 1 H), 2.73 (s, 3 H), 0.27 (s, 9 H).

Ref.: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, P. Dalko, M. Petit, D. Ogden, F. Acher, WO2011/86469 A1, 40.

A 2-neck 100 mL round-bottom flask was charged with TMS-alkyne (3.0 g, 12.5 mmol), 18-crown-6-ether (3.3 g, 12.5 mmol) and dry CH_2Cl_2 (20 mL), then KF (1.45 g, 25 mmol) was added to the mixture under N₂. The reaction mixture was stirred at room temperature for 24 h. Resulting reaction mixture was extracted with CH_2Cl_2 , dried (Na₂SO₄), and filtered. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel (pentane/Et₂O = 4/1 \rightarrow 3/1) to afford the 6-ethynyl-2-methylquinoline as a white solid (1.99 g, 95% yield). The spectral data of the product were identical with those reported in the literature.

¹**H** NMR (400 MHz, CDCl₃, rt) δ 8.00-7.93 (m, 3 H), 7.71 (dd, J = 8.4, 2.0 Hz, 1 H), 7.29 (d, J = 8.8, Hz, 1 H), 3.15 (s, 1 H), 2.74 (s, 3 H).

Ref.: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, P. Dalko, M. Petit, D. Ogden, F. Acher, WO2011/86469 A1, 40.

A 2-neck 100 mL round-bottom flask was charged with 6-ethynyl-2-methylquinoline (1.5 g, 8.97 mmol), carbonylchlorohydridotris(triphenylphosphine)ruthenium (427 mg, 0.45 mmol) and dry toluene (36 mL), then 4,4,5,5-tetramethyl-1,3,2-dioxaborane (6.5 mL, 45 mmol, 5 eq.) was added to the mixture under N₂. The reaction mixture was stirred at 50 °C for 16 h. After cooling to room temperature, the solvent was removed under vaccum. Resulting reaction mixture was diluted with Et₂O, washed with sat. aq. NaHCO₃, dried (Na₂SO₄), and filtered. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel (hexane/AcOEt = 10/1 \rightarrow 4/12/11/1) \rightarrow to afford the (E)-6-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl]-2-methylquinoline as a white solid (2.3 g, 87% yield).

¹**H NMR** (400 MHz, CDCl₃, rt) δ 8.01 (dd, J = 8.4, 3.6 Hz, 1 H), 7.96 (d, J = 8.8 Hz, 1 H), 7.87 (dd, J = 8.8, 1.6 Hz, 1 H), 7.76 (s, 1 H), 7.54 (d, J = 18.4 Hz, 1 H), 7.29-7.25 (m, 1 H), 6.28 (d, J = 18.4, 1 H), 2.72 (s, 3 H), 1.32 (s, 12 H). ¹³**C NMR** (100 MHz, CDCl₃, rt) δ 159.4, 148.7, 148.3, 136.5, 135.0, 129.0, 127.3, 127.1, 126.5, 122.4, 83.5, 25.0, 24.9. ¹¹**B NMR** (128.4 MHz, CDCl₃, rt) δ 29.8. **HRMS** (**ESI-TOF**): calculated for [C₁₈H₂₂BNO₂-H]⁻ requires 294.1674, found 294.1643.

To a solution of (*E*)-6-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl]-2-methylquino--line (1.3 g, 4.4 mmol) in dry THF (10 mL) was added a solution of KHF₂ (2.06 g, 26.4 mmol) in water (10 mL). The raction mixture was stirred at room temperature for 5 h. The mixture was concentrated in vacuo. The residue was dissolved in hot acetone, and filtered. The filtrate was reduced under vacuum to yield a mixture of potassium trifluoroborate and pinacol. The crude product was washed with ether, pentane and CH_2Cl_2 for several times to afford the title compound as a white solid (0.92 g, 76% yield).

¹**H NMR** (400 MHz, DMSO, rt) δ 8.14 (d, J = 8.4 Hz, 1 H), 7.82-7.76 (m, 2 H), 7.67 (s, 1 H), 7.33 (d, J = 8.4 Hz, 1 H), 6.64 (d, J = 18.0 Hz, 1 H), 6.35 (dq, J = 18.0, 3.6 Hz, 1 H). ¹³**C NMR** (100 MHz, DMSO, rt) δ 157.2, 146.5, 137.5, 135.7, 132.4, 127.9, 126.9, 126.4, 123.5, 121.9, 24.6. ¹¹**B NMR** (128.4 MHz, DMSO, rt) δ 2.40. ¹⁹**F NMR** (376.5 MHz, DMSO, rt) δ -137.9. **HRMS (ESI-TOF)**: calculated for [C₁₂H₁₀BF₃N]⁻ requires 236.0866, found 236.0873.

Potassium (E)-2-[6-(2-methylquinoline)]ethenyltrifluoroborate (2s)

A 2-neck 300 mL round-bottom flask was charged with 3-bromoquinoline (6.0 g, 28.8 mmol), PdCl₂(PPh₃)₂ (82 mg, 0.117 mmol), PPh₃ (61 mg, 0.233 mmol), dry THF (18 mL) and NEt₃ (27 mL) under N₂. After bubbling N₂ into the solution for 15 min, CuI (44 mg, 0.233 mmol) and trimethylsilylacetylene (4.5 mL, 31.7 mmol) were added sequentially. The reaction mixture was stirred at 50 °C for 24 h. After cooling to room temperature, the precipitate (NEt₃•HBr) was filtered off and washed with EtOAc. The filtrate solution was concentrated and residue was diluted with ether/hexane. The crude product was purified by flash column chromatography on silica gel (hexane \rightarrow hexane/AcOEt = 9/1) to afford the 3-TMS-ethynylquinoline as a brown oil (6.7 g, quant.). The spectral data of the product were identical with those reported in the literature.

¹**H NMR** (400 MHz, CDCl₃, rt) δ 8.91 (d, *J* = 2.0 Hz, 1 H), 8.24 (br s, 1 H), 8.07 (d, *J* = 8.4 Hz, 1 H), 7.75 (d, *J* = 8.0 Hz, 1 H), 7.70 (dd, *J* = 8.0, 8.4 Hz, 1 H), 7.54 (dd, *J* = 8.4, 8.0 Hz, 1 H), 0.29 (s, 9 H). Ref.: T. Li, L. Guo, Y. Zhang, J. Wang, Z. Li, L. Lin, Z. Zhang, L. Li, J. Lin, W. Zhao, J. Li, P. G. Wang, Carbohydrate Research, **2011**, *346*, 1083–1092.

A 2-neck 100 mL round-bottom flask was charged with TMS-alkyne (6.7 g, 29.7 mmol), 18-crown-6-ether (7.86 g, 29.7 mmol) and dry CH₂Cl₂ (40 mL), then KF (3.45 g, 59.4 mmol) was added to the mixture under N₂. The reaction mixture was stirred at room temperature for 24 h. Resulting reaction mixture was extracted with CH₂Cl₂, dried (Na₂SO₄), and filtered. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel (pentane/Et₂O = $4/1 \rightarrow 3/2$) to afford the 3-ethynyl-quinoline as a pale yellow solid (4.0 g, 88% yield). The spectral data of the product were identical with those reported in the literature.

¹**H** NMR (400 MHz, CDCl₃, rt) δ 8.94 (d, J = 2.0 Hz, 1 H), 8.28 (br s, 1 H), 8.09 (d, J = 8.4 Hz, 1 H),

7.78 (d, *J* = 8.0 Hz, 1 H), 7.73 (dd, *J* = 7.6, 7.2 Hz, 1 H), 7.57 (dd, *J* = 7.6, 7.2 Hz, 1 H), 3.27 (s, 1 H). Ref.: N. S. Gulykina, T.M. Dolgina, G. N. Bondarenko, and I. P. Beletskaya, *Russian Journal of Organic Chemistry*, **2003**, *39*, 797–807.

A 2-neck 100 mL round-bottom flask was charged with 6-ethynyl-2-methylquinoline (1.5 g, 9.79 mmol), carbonylchlorohydridotris(triphenylphosphine)ruthenium (464 mg, 0.49 mmol) and dry toluene (39 mL), then 4,4,5,5-tetramethyl-1,3,2-dioxaborane (7.1 mL, 49 mmol, 5 eq.) was added to the mixture under N₂. The reaction mixture was stirred at 50 °C for 16 h. After cooling to room temperature, the solvent was removed under vaccum. Resulting reaction mixture was diluted with Et₂O, washed with sat. aq. NaHCO₃, dried (Na₂SO₄), and filtered. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel (hexane/AcOEt = $9/1 \rightarrow 4/1$) to afford the (*E*)-3-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl]quinoline as a yellow solid (2.2 g, 80% yield).

¹**H NMR** (400 MHz, CDCl₃, rt) δ 9.08 (dd, J = 1.6 Hz, 1 H), 8.15 (br s, 1 H), 8.07 (d, J = 8.4 Hz, 1 H), 7.82 (d, J = 8.4 Hz, 1 H), 7.69 (dd, J = 7.6, 7.6 Hz, 1 H), 7.60-7.52 (m, 2 H), 6.41 (d, J = 18.8, 1 H), 1.33 (s, 12 H). ¹³**C NMR** (100 MHz, CDCl₃, rt) δ 149.6, 148.2, 146.0, 133.7, 130.4, 129.8, 129.4, 128.3, 128.0, 127.1, 83.7, 24.9. ¹¹**B NMR** (128.4 MHz, CDCl₃, rt) δ 29.4. **HRMS (ESI-TOF)**: calculated for [C₁₇H₂₀BNO₂-H]⁻ requires 280.1517, found 281.1541.

To a solution of (*E*)-3-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl]quinoline (2.0 g, 7.1 mmol) in dry THF (28 mL) was added a solution of KHF₂ (3.33 g, 42.7 mmol) in water (10 mL). The raction mixture was stirred at room temperature for overnight. The mixture was concentrated in vacuo. The residue was dissolved in hot acetone, and filtered. The filtrate was reduced under vacuum to yield a mixture of potassium trifluoroborate and pinacol. The crude product was washed with ether, pentane and CH₂Cl₂ for several times to afford the title compound as a white solid (1.77 g, 95% yield). ¹H NMR (400 MHz, DMSO, rt) δ 8.97 (s, 1 H), 8.14 (s, 1 H), 7.94 (d, *J* = 8.4 Hz, 1 H), 7.91 (d, *J* = 8.0 Hz, 1 H), 7.64 (m, 1 H), 7.53 (dd, *J* = 8.0, 8.0 Hz, 1 H), 6.68 (d, *J* = 18.4 Hz, 1 H), 6.53 (dq, *J* = 18.4, 3.2 Hz, 1 H). ¹³C NMR (100 MHz, DMSO, rt) δ 149.4, 146.3, 132.9, 130.1, 129.8, 128.5, 128.1, 128.0, 127.8, 126.4. ¹¹B NMR (128.4 MHz, DMSO, rt) δ 2.51. ¹⁹F NMR (376.5 MHz, DMSO, rt) δ -138.2. HRMS (ESI-TOF): calculated for [C₁₁H₈BF₃N]⁻ requires 222.0709, found 222.0746.

Potassium (E)-2-[5-(2-methylbenzothiazole)]ethenyltrifluoroborate (2t)

A 2-neck 300 mL round-bottom flask was charged with 5-bromo-2-methylbenzothiazole (5.0 g, 21.9 mmol), PdCl₂(PPh₃)₂ (294 mg, 0.42 mmol), PPh₃ (220 mg, 0.84 mmol), dry THF (17 mL) and NEt₃

(25 mL) under N₂. After bubbling N₂ into the solution for 15 min, CuI (160 mg, 0.84 mmol) and trimethylsilylacetylene (3.4 mL, 24.1 mmol) were added sequentially. The reaction mixture was stirred at 50 °C for 28 h. After cooling to room temperature, the precipitate (NEt₃•HBr) was filtered off and washed with EtOAc. The filtrate solution was concentrated and residue was precipitated with ether/pentane. The crude product was washed with ether/penrane (1/1) for several times to afford the 5-TMS-ethynyl-2-methylbenzothiazole as a pale pink solid (4.2 g, 79% yield).

¹**H** NMR (400 MHz, CDCl₃, rt) δ 8.02 (d, J = 1.4 Hz, 1 H), 7.72 (dd, J = 8.0, 0.4 Hz, 1 H), 7.43 (dd, J = 8.0, 1.4 Hz, 1 H), 2.83 (s, 3 H), 0.27 (s, 9 H). ¹³**C** NMR (100 MHz, CDCl₃, rt) δ 168.0, 153.3, 136.1, 128.4, 125.9, 121.3, 121.0, 104.8, 94.5, 20.3, 0.11. **HRMS (ESI-TOF)**: calculated for [C₁₃H₁₅NSSi+H]⁺ requires 246.0767, found 246.0768.

A 2-neck 100 mL round-bottom flask was charged with TMS-alkyne (2.5 g, 10.2 mmol), 18-crown-6-ether (2.7 g, 10.2 mmol) and dry CH₂Cl₂ (15 mL), then KF (1.2 g, 20.4 mmol) was added to the mixture under N₂. The reaction mixture was stirred at room temperature for 24 h. Resulting reaction mixture was extracted with CH₂Cl₂, dried (Na₂SO₄), and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel (pentane/Et₂O = $4/1 \rightarrow 3/2$) to afford the 5-ethynyl-2-methylbenzothiazole as a yellow solid (1.50 g, 85% yield).

¹**H** NMR (400 MHz, CDCl₃, rt) δ 8.05 (d, J = 1.2 Hz, 1 H), 7.74 (d, J = 8.4 Hz, 1 H), 7.44 (dd, J = 8.4, 1.2 Hz, 1 H), 3.11 (s, 1 H), 2.82 (s, 1 H). ¹³**C** NMR (100 MHz, CDCl₃, rt) δ 168.3, 153.3, 136.5, 128.4, 126.2, 121.4, 119.9, 83.5, 77.4, 20.3. **HRMS (ESI-TOF)**: calculated for $[C_{10}H_7NS+H]^+$ requires 174.0372, found 174.0356.

A 2-neck 100 mL round-bottom flask was charged with 5-ethynyl-2-methylbenzothiazole (1.30 g, 7.5 mmol), carbonylchlorohydridotris(triphenylphosphine)ruthenium (356 mg, 0.375 mmol) and dry toluene (30 mL), then 4,4,5,5-tetramethyl-1,3,2-dioxaborane (5.4 mL, 37.5 mmol, 5 eq.) was added to the mixture under N₂. The reaction mixture was stirred at 50 °C for 16 h. After cooling to room temperature, the solvent was removed under vaccum. Resulting reaction mixture was diluted with Et₂O, washed with sat. aq. NaHCO₃, dried (Na₂SO₄), and filtered. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel $(pentane \rightarrow pentane/Et_2O)$ $4/1 \rightarrow 3/2$) = to afford the (E)-5-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl]-2-methylbenzothiazole as a yellow solid (1.54 g, 68% yield).

¹**H** NMR (400 MHz, CDCl₃, rt) δ 8.01 (d, J = 1.2 Hz, 1 H), 7.75 (d, J = 8.4 Hz, 1 H), 7.53-7.47 (m, 2 H), 6.2 (d, J = 18.0 Hz, 1 H), 2.82 (s, 3 H), 1.32 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃, rt) δ 167.7, 154.0, 149.1, 136.3, 136.1, 123.5, 121.4, 121.2, 83.5, 24.9, 20.2. ¹¹B NMR (128.4 MHz, CDCl₃, rt) δ 29.5. **HRMS** (ESI-TOF): calculated for [C₁₆H₂₀BNO₂S-H]⁻ requires 300.1238, found 300.1220.

To a solution of (*E*)-5-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl]-2-methylbenzo--thiazole (1.2 g, 3.98 mmol) in dry THF (20 mL) was added a solution of KHF₂ (1.87 g, 23.9 mmol) in water (10 mL). The raction mixture was stirred at room temperature for overnight. The mixture was concentrated *in vacuo*. The residue was dissolved in hot acetone, and filtered. The filtrate was reduced under vacuum to yield a mixture of potassium trifluoroborate and pinacol. The crude product was washed with ether, pentane and CH_2Cl_2 for several times to afford the title compound as a pale pink solid (0.94 g, 84% yield).

¹**H NMR** (400 MHz, DMSO, rt) δ 7.85 (d, J = 8.0 Hz, 1 H), 7.75 (d, J = 1.2 Hz, 1 H), 7.40 (dd, J = 8.4, 1.6 Hz, 1 H), 6.56 (d, J = 18.4 Hz, 1 H), 6.26 (dq, J = 18.4, 3.2 Hz, 1 H), 2.76 (s, 3 H). ¹³**C NMR** (100 MHz, DMSO, rt) δ 166.6, 153.6, 138.8, 132.6, 132.4, 122.4, 121.2, 118.3, 19.6. ¹¹**B NMR** (128.4 MHz, DMSO, rt) δ 2.80. ¹⁹**F NMR** (376.5 MHz, DMSO, rt) δ -137.8.

HRMS (ESI-TOF): calculated for $[C_{10}H_8BF_3NS]^-$ requires 242.0430, found 242.0436.

Potassium (E)-3-phenyl-1-propen-1-yltrifluoroborate (2u)

To a solution of (*E*)-3-phenyl-1-propen-1-ylboronic acid (1.0 g, 6.17 mmol) in dry THF (30 mL) was added a solution of KHF₂ (2.9 g, 37 mmol) in water (15 mL). The raction mixture was stirred at room temperature for 4 h. The mixture was concentrated *in vacuo*. The residue was dissolved in hot acetone, and filtered. The filtrate was reduced under vacuum to yield a mixture of potassium trifluoroborate and pinacol. The crude product was washed with ether, pentane and CH_2Cl_2 for several times to afford the title compound as a white solid (1.2 g, 87% yield).

¹**H NMR** (400 MHz, DMSO, rt) δ 7.28-7.23 (m, 2 H), 7.16-7.12 (m, 3 H), 5.66-5.58 (m, 1 H), 5.35-5.28 (m, 1 H), 3.21 (d, J = 6.4 Hz, 2 H). ¹³**C NMR** (100 MHz, DMSO, rt) δ 141.8, 132.4, 128.3, 127.9, 125.4, 41.9. ¹¹**B NMR** (128.4 MHz, DMSO, rt) δ 2.41. ¹⁹**F NMR** (376.5 MHz, DMSO, rt) δ -137.4. HRMS (ESI-TOF): calculated for [C₉H₉BF₃]⁻ requires 185.0757, found 185.0765.

Typical NMR experimental procedure (reaction conditions in Table 1) and NMR spectra

photocatalytic trifluoromethylation of (E)-styryltrifluoroborate (2a)

Under N₂, [Ru(bpy)₃](PF₆)₂ (1.0 mg, 1.25 μ mol), Togi's reagent (**1a**) (8.7 mg, 27.5 μ mol), (*E*)-styryltrifluoroborate (**2a**) (5.4 mg, 25 μ mol), SiEt₄ (~1 μ L) as an internal standard, CD₃OD (0.5 mL) were added to the NMR tube. The reaction was carried out at room temperarure (water bath) under irradiation of visible light (placed at a distance of ~3 cm from Blue LED lamp: hv = 425 ± 15 nm).

General procedure for the photocatalytic synthesis of trifluoromethylated alkenes (reaction conditions in Table 2)

General procedure A

20 mL-Schlenk tube was charged with Togni's reagent (1a) (0.275–0.30 mmol, 1.1 eq–1.2 eq), $[Ru(bpy)_3](PF_6)_2$ (10.7 mg, 12.5 µmol, 5 mol%), vinylborate (2) (0.25 mmol, 1.0 eq) and MeOH (5.0–10.0 mL) under N₂. The vinylborate (2) was dissolved with ultrasonic bath. The tube was placed at a distance of 2–3 cm from 3W Blue LED lamp (hv = 425 ± 15 nm). The red solution was stirred at room temperature (water bath) under visible light irradiation. After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with ether or pentane, dried (Na₂SO₄), and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on silica gel to afford trifluoromethylated alkene.

General procedure B

20 mL-Schlenk tube was charged with Togni's reagent (1a) (0.275–0.30 mmol, 1.1 eq–1.2 eq), [fac-Ir(ppy)₃] (0.8 mg, 1.25 µmol, 0.5 mol%), vinylborate (2) (0.25 mmol, 1.0 eq) and MeOH (5.0 mL) under N₂. The vinylborate (2) was dissolved with ultrasonic bath. The tube was placed at a distance of 2–3 cm from 3W Blue LED lamp (hv = 425 ± 15 nm). The yellow solution was irradiated with visible light at room temperature (the stirring cause a lowering of *E/Z* selectivity). After 2 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with ether or pentane, dried (Na₂SO₄), and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on silica gel to afford trifluoromethylated alkene.

(E)-1-(3,3,3-Trifluoroprop-1-enyl)-4-methylbenzene (3b)

According to general procedure A, Togni's reagent (1a) (348 mg, 1.1 mmol), $[Ru(bpy)_3](PF_6)_2$ (40 mg, 46.5 µmol), (*E*)-vinylborate (2b) (224 mg, 1.0 mmol) and MeOH (20 mL) were stirred at room temperature under visible light irradiation (3 W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane) afford the title compound (151.2 mg, 81% yield) as a white solid containing approximately 1% of (*Z*)-product. The

spectral data of the product were identical with those reported in the literature.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.34 (d, J = 8.0 Hz, 2 H), 7.19 (d, J = 8.0 Hz, 2 H), 7.10 (dq, J = 16.4, 2.0 Hz, 1 H), 6.15 (dq, J = 16.4, 6.4 Hz, 1 H), 2.37 (s, 3 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 140.4, 137.7 (q, J = 6.6 Hz), 130.8, 129.7, 127.6, 123.9 (q, J = 267 Hz), 115.0 (q, J = 33.6 Hz), 21.4. ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -63.11 (dd, J = 6.6, 2.2 Hz, 3 F). Ref.: T. Liu, Q. Shen, *Org. Lett.* **2011**, *13*, 2342–2345.

(E)-1-(3,3,3-Trifluoroprop-1-enyl)-4-methoxylbenzene (3c)

According to general procedure A, Togni's reagent (1a) (84 mg, 0.266 mmol), $[Ru(bpy)_3](PF_6)_2$ (10.7 mg, 12.5 µmol), (*E*)-vinylborate (2c) (56 mg, 0.233 mmol) and MeOH (10 mL) were stirred at room temperature under visible light irradiation (3 W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane/ether = 20/1) afford the title compound (42 mg, 88% yield) as a white solid containing approximately 1% of (*Z*)-product. The spectral data of the product were identical with those reported in the literature.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.39 (dd, J = 7.0, 2.0 Hz, 2 H), 7.07 (dq, J = 16.0, 2.0 Hz, 1 H), 7.91 (dd, J = 7.0, 2.0 Hz, 2 H), 6.06 (dq, J = 16.0, 6.8 Hz, 1 H), 3.83 (s, 3 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 161.2, 137.3 (q, J = 6.7 Hz), 129.1, 126.3, 124.1 (q, J = 262 Hz), 114.5, 113.6 (q, J = 33.7 Hz), 21.4. ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -62.85 (d, J = 6.7 Hz, 3 F). Ref.: T. Liu, Q. Shen, *Org. Lett.* **2011**, *13*, 2342–2345.

(E)-1-(3,3,3-Trifluoroprop-1-enyl)-4-chlorobenzene (3d)

According to general procedure A, Togni's reagent (1a) (87 mg, 0.275 mmol), $[Ru(bpy)_3](PF_6)_2$ (10.7 mg, 12.5 µmol), (*E*)-vinylborate (2d) (87 mg, 0.25 mmol) and MeOH (5.0 mL) were stirred at room temperature under visible light irradiation (3 W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane) afford the title compound (37 mg, 72% yield) as a colorless oil containing approximately 3% of (*Z*)-product. The spectral data of the product were identical with those reported in the literature.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.41-7.35 (m, 4 H), 7.10 (dq, J = 16.4, 2.0 Hz, 1 H), 6.18 (dq, J = 16.4, 6.4 Hz, 1 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 136.6 (q, J = 6.7 Hz), 136.1, 132.1, 129.3, 128.8, 123.5 (q, J = 267 Hz), 116.7 (q, J = 33.7 Hz). ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -63.44 (d, J = 7.3 Hz, 3 F).

Ref.: T. Hanamoto, N. Morita, K. Shindo, Eur. J. Org. Chem. 2003, 21, 4279-4285.

(E)-1-(3,3,3-Trifluoroprop-1-enyl)-4-bromobenzene (3e)

According to general procedure A, Togni's reagent (1a) (90 mg, 0.284 mmol), $[Ru(bpy)_3](PF_6)_2$ (10.7 mg, 12.5 µmol), (*E*)-vinylborate (2e) (72 mg, 0.25 mmol) and MeOH (5.0 mL) were stirred at room temperature under visible light irradiation (3W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane) afford the title compound (47 mg, 81% yield) as a colorless oil containing approximately 4% of (*Z*)-product. The spectral data of the product were identical with those reported in the literature.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.53 (d, J = 8.4 Hz, 2 H), 7.31 (d, J = 8.4 Hz, 2 H), 7.09 (dq, J = 16.4, 2.0 Hz, 1 H), 6.20 (dq, J = 16.4, 6.8 Hz, 1 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 136.6 (q, J = 6.6 Hz), 132.5, 132.3, 129.1, 124.4, 123.5 (q, J = 267 Hz), 116.9 (q, J = 33.8 Hz). ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -63.49 (d, J = 6.9 Hz, 3 F).

Ref.: A. T. Parsons, T. D. Senecal, S. L. Buchwald, Angew. Chem. Int. Ed. 2012, 51, 2947-2950.

(E)-1-(3,3,3-Trifluoroprop-1-enyl)-4-trifluoromethylbenzene (3f)

According to general procedure B, Togni's reagent (1a) (87 mg, 0.275 mmol), [*fac*-Ir(ppy)₃] (0.8 mg, 1.25 μ mol), (*E*)-vinylborate (2f) (70 mg, 0.25 mmol) and MeOH (5.0 mL) were irradiated with visible light (3 W Blue LEDs : hv = 425 ± 15 nm) at room temperature. After 2 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane) afford the title compound (47 mg, 79% yield) as a colorless oil containing approximately 4% of (*Z*)-product. The spectral data of the product were identical with those reported in the literature.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.66 (d, J = 8.4 Hz, 2 H), 7.56 (d, J = 8.4 Hz, 2 H), 7.19 (dq, J = 16.0, 2.0 Hz, 1 H), 6.30 (dq, J = 16.0, 6.4 Hz, 1 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 137.0, 136.4 (q, J = 6.5 Hz), 131.2 (q, J = 32.7 Hz), 127.9, 126.1, 123.9 (q, J = 271 Hz), 123.3 (q, J = 268 Hz), 118.7 (q, J = 34.0 Hz). ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -62.92 (s, 3 F), -63.80 (d, J = 5.1 Hz, 3 F). Ref.: T. Hanamoto, N. Morita, K. Shindo, *Eur. J. Org. Chem.* **2003**, *21*, 4279–4285.

(E)-1-(3,3,3-Trifluoroprop-1-enyl)-4-trifluoromethoxybenzene (3g)

According to general procedure A, Togni's reagent (1a) (90 mg, 0.284 mmol), $[Ru(bpy)_3](PF_6)_2$ (10.7 mg, 12.5 μ mol), (*E*)-vinylborate (2g) (70 mg, 0.238 mmol) and MeOH (5.0 mL) were stirred at room

temperature under visible light irradiation (3W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane/ether = 10/1) afford the title compound (42 mg, 69% yield) as a colorless oil containing approximately 6% of (Z)-product.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.49 (d, J = 8.8 Hz, 2 H), 7.24 (d, J = 8.8 Hz, 2 H), 7.13 (dq, J = 16.0, 2.0 Hz, 1 H), 6.19 (dq, J = 16.0, 6.4 Hz, 1 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 150.4, 136.3 (q, J = 6.8 Hz), 132.2, 129.1, 123.4 (q, J = 267 Hz), 121.4, 120.6 (q, J = 262 Hz), 117.0 (q, J = 34.0 Hz). ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -57.84 (s, 3 F), -63.56 (d, J = 6.6 Hz, 3 F). **HRMS** (ESI-TOF): calculated for [C₁₀H₆F₆O+Na]⁺ requires 279.0215, found 279.0210.

(E)-4-(3,3,3-Trifluoroprop-1-enyl)benzenecarbonitrile (3h)

According to general procedure A, Togni's reagent (1a) (90 mg, 0.284 mmol), $[Ru(bpy)_3](PF_6)_2$ (8.9 mg, 10.3 µmol), (*E*)-vinylborate (2h) (52 mg, 0.221 mmol) and MeOH (10 mL) were stirred at room temperature under visible light irradiation (3W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane/ether = 20/1) afford the title compound (34 mg, 78% yield) as a white solid containing approximately 3% of (*Z*)-product. The spectral data of the product were identical with those reported in the literature.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.69 (d, J = 8.4 Hz, 2 H), 7.55 (d, J = 8.4 Hz, 2 H), 7.17 (dq, J = 16.0, 2.4 Hz, 1 H), 6.31 (dq, J = 16.4, 6.4 Hz, 1 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 137.8, 136.0 (q, J = 6.7Hz), 132.8, 128.1, 123.1 (q, J = 268 Hz), 119.6 (q, J = 34.2 Hz), 118.3, 113.6. ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -63.90 (d, J = 4.5 Hz, 3 F).

Ref.: T. Kobayashi, T. Eba, O. Tamura, H. Ishibashi, J. Org. Chem. 2002, 67, 3156-3159.

(E)-1-(3,3,3-Trifluoroprop-1-enyl)-3,5-difluorobenzene (3i)

According to general procedure A, Togni's reagent (1a) (87 mg, 0.275 mmol), $[Ru(bpy)_3](PF_6)_2$ (10.7 mg, 12.5 µmol), (*E*)-vinylborate (2i) (61 mg, 0.25 mmol) and MeOH (5.0 mL) were stirred at room temperature under visible light irradiation (3W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane) afford the title compound (35 mg, 68% yield) as a colorless oil containing approximately 5% of (*Z*)-product.

¹**H** NMR (400 MHz, CDCl₃, rt): δ 7.07 (dq, J = 16.0, 2.0 Hz, 1 H), 7.01-6.94 (m, 2 H), 6.88-6.81 (m, 1

H), 6.22 (dq, J = 16.0, 6.4 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃, rt): δ 163.4 (d, J = 248 Hz), 136.9 (q, J = 9.4 Hz), 135.8, 123.1 (q, J = 267 Hz), 118.9 (q, J = 34.3 Hz), 110.5 (d, J = 26.0 Hz), 105.4 (t, J = 25.3 Hz). ¹⁹F NMR (376.5 MHz, CDCl₃, rt): δ -63.84 (d, J = 7.5 Hz, 3 F), -108.75 (m, 2 F). HRMS (ESI-TOF): calculated for [C₉H₅F₅+Na]⁺ requires 231.0204, found 231.0208.

(E)-1-(3,3,3-Trifluoroprop-1-enyl)-3,5-ditrifluoromethylbenzene (3j)

According to general procedure B, Togni's reagent (1a) (94 mg, 0.30 mmol), [*fac*-Ir(ppy)₃] (0.8 mg, 1.25 μ mol), (*E*)-vinylborate (2j) (86.5 mg, 0.25 mmol) and MeOH (5.0 mL) were irradiated with visible light (3 W Blue LEDs : hv = 425 ± 15 nm) at room temperature. After 2 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane) afford the title compound (63 mg, 81% yield) as a colorless oil containing approximately 2% of (*Z*)-product.

¹**H** NMR (400 MHz, CDCl₃, rt): δ 7.89 (br s, 3 H), 7.24 (dq, J = 16.4, 2.0 Hz, 1 H), 6.39 (dq, J = 16.4, 6.0 Hz, 1 H). ¹³**C** NMR (100 MHz, CDCl₃, rt): δ 135.7, 135.3 (q, J = 6.6 Hz), 132.8 (J = 33.6 Hz), 127.5, 123.5, 123.1 (q, J = 271 Hz), 122.9 (q, J = 268 Hz), 120.2 (q, J = 34.5 Hz). ¹⁹**F** NMR (376.5 MHz, CDCl₃, rt): δ -63.13 (s, 3 F), -63.14 (s, 3 F), -64.06 (d, J = 6.4 Hz, 3 F). HRMS (ESI-TOF): calculated for [C₁₁H₅F₉+Na]⁺ requires 331.0140, found 331.0145.

(E)-1-(3,3,3-Trifluoroprop-1-enyl)-3-tert-butoxycarbonylaminobenzene (3k)

According to general procedure A, Togni's reagent (1a) (90 mg, 0.284 mmol), $[Ru(bpy)_3](PF_6)_2$ (9.0 mg, 10.5 µmol), (*E*)-vinylborate (2k) (78 mg, 0.240 mmol) and MeOH (5.0 mL) were stirred at room temperature under visible light irradiation (3W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with ether, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane/ether = 10/1) afford the title compound (64 mg, 93% yield) as a white solid containing approximately 5% of (*Z*)-product.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.64 (s, 1 H), 7.32-7.22 (m, 2 H), 7.13-7.09 (m, 2 H), 6.56 (br s, 1 H), 6.21 (dq, J = 16.0, 6.4 Hz, 1 H), 1.53 (s, 9 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 152.8, 139.2, 137.6 (q, J = 6.6 Hz), 134.5, 129.6, 124.0 (q, J = 267 Hz), 122.4, 120.1, 117.3, 116.5 (q, J = 33.8 Hz), 81.0, 28.4. ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -63.37 (d, J = 3.8 Hz, 3 F). **HRMS** (ESI-TOF): calculated for $[C_{14}H_{16}F_{3}NO_{2}+Na]^{+}$ requires 310.1025, found 310.1025.

(E)-1-(3,3,3-Trifluoroprop-1-enyl)-2-methylbenzene (3l)

According to general procedure A, Togni's reagent (1a) (90 mg, 0.284 mmol), $[Ru(bpy)_3](PF_6)_2$ (10.7 mg, 12.5 µmol), (*E*)-vinylborate (2k) (56 mg, 0.25 mmol) and MeOH (5.0 mL) were stirred at room temperature under visible light irradiation (3W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane) afford the title compound (33 mg, 70% yield) as a colorless oil containing approximately 3% of (*Z*)-product.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.48-7.40 (m, 2 H), 7.31-7.20 (m, 3 H), 6.12 (dq, J = 19.6, 6.4 Hz, 1 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 137.0, 135.7 (q, J = 6.7 Hz), 132.8, 130.0, 129.9, 126.5, 126.3, 123.7 (q, J = 267 Hz), 117.3 (q, J = 33.4 Hz),19.7. ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -63.32 (dd, J = 6.7, 2.2 Hz, 3 F).

Ref.: G. K. S. Prakash, H. S. Krishnan, P. V. Jog, A. P. Lyer, G. A. Olah, Org. Lett. 2012, 14, 1146–1149.

(*E*)-1-(3,3,3-Trifluoroprop-1-enyl)-3-thiophene (3m)

According to general procedure A, Togni's reagent (1a) (79 mg, 0.25 mmol), $[Ru(bpy)_3](PF_6)_2$ (8.9 mg, 10.3 µmol), (*E*)-vinylborate (2m) (60 mg, 0.275 mmol) and MeOH (10 mL) were stirred at room temperature under visible light irradiation (3W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane/ether = 20/1) afford the title compound (28 mg, 63% yield) as a pale yellow solid containing approximately 2% of (*Z*)-product and 2% of protodeboronated by-product. The spectral data of the product were identical with those reported in the literature.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.42 (d, *J* = 2.4 Hz, 1 H), 7.35 (dd, *J* = 5.2, 0.4 Hz, 1 H), 7.24 (dd, *J* = 5.2, 1.2 Hz, 1H), 7.14 (dq, *J* = 16.0, 2.0 Hz, 1 H), 6.05 (dq, *J* = 16.0, 6.4 Hz, 1 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 136.4, 131.6 (q, *J* = 6.8 Hz), 127.2, 127.0, 126.5 (q, *J* = 267 Hz), 125.0, 115.5 (q, *J* = 34.1 Hz). ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -63.29 (dd, *J* = 6.7, 2.2 Hz, 3 F).

Ref.: A. T. Parsons, T. D. Senecal, S. L. Buchwald, Angew. Chem. Int. Ed. 2012, 51, 2947-2950.

(E)-3-(3,3,3-Trifluoroprop-1-enyl)pyridine (3n)

According to general procedure A, Togni's reagent (1a) (90 mg, 0.284 mmol), [Ru(bpy)₃](PF₆)₂ (9.5

mg, 11.0 µmol), (*E*)-vinylborate (**2n**) (52 mg, 0.246 mmol) and MeOH (5.0 mL) were stirred at room temperature under visible light irradiation (3W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane/ether = $10/1 \rightarrow 0/1$) afford the title compound (29 mg, 68% yield) as a pale yellow oil approximately 2% of (*Z*)-product. The spectral data of the product were identical with those reported in the literature.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 8.69 (d, J = 2.0 Hz, 1 H), 8.62 (dd, J = 4.8, 2.0 Hz, 1 H), 7.78 (dt, J = 8.0, 2.0 Hz, 1 H), 7.34 (dd, J = 8.0, 4.8 Hz, 1 H), 7.16 (dq, J = 16.4, 2.0 Hz, 1 H), 6.29 (dq, J = 16.4, 6.4 Hz, 1 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 151.1, 149.3, 134.6 (q, J = 6.8 Hz), 129.3, 123.8, 123.2 (q, J = 267 Hz), 118.4 (q, J = 34.3 Hz). ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -63.82 (d, J = 7.2 Hz, 3 F).

Ref.: T. Kobayashi, T. Eba, O. Tamura, H. Ishibashi, J. Org. Chem. 2002, 67, 3156-3159.

(E)-4-(3,3,3-Trifluoroprop-1-enyl)-2-chloropyridine (30)

According to general procedure A, Togni's reagent (1a) (87 mg, 0.275 mmol), $[Ru(bpy)_3](PF_6)_2$ (10.7 mg, 12.5 µmol), (*E*)-vinylborate (2o) (61 mg, 0.25 mmol) and MeOH (8.0 mL) were stirred at room temperature under visible light irradiation (3W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane/ether = $9/1 \rightarrow 3/2$) afford the title compound (29 mg, 56% yield) as a colorless crystal.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 8.44 (d, J = 4.8 Hz, 1 H), 7.37 (s, 1 H), 7.25 (dd, J = 4.8, 1.6 Hz, 1 H), 7.07 (dq, J = 16.0, 2.0 Hz, 1 H), 6.41 (dq, J = 16.0, 6.4 Hz, 1 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 152.8, 150.5, 143.9, 134.3 (q, J = 6.5 Hz), 122.6 (q, J = 268 Hz), 122.4, 121.9 (q, J = 34.6 Hz), 120.3. ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -64.36 (d, J = 5.6 Hz, 3 F). **HRMS** (ESI-TOF): calculated for [C₈H₅F₃NCl+Na]⁺ requires 229.9955, found 229.9956.

(E)-3-(3,3,3-Trifluoroprop-1-enyl)-2-cyanopyridine (3p)

According to general procedure A, Togni's reagent (1a) (90 mg, 0.284 mmol), $[Ru(bpy)_3](PF_6)_2$ (8.6 mg, 10.0 µmol), (*E*)-vinylborate (2p) (58 mg, 0.246 mmol) and MeOH (5.0 mL) were stirred at room temperature under visible light irradiation (3W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane/ether = $10/1 \rightarrow 0/1$) afford the title compound (32 mg, 66% yield) as a pale yellow solid containing approximately 1% of (*Z*)-product.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 8.79 (d, J = 2.0 Hz, 1 H), 7.91 (dd, J = 8.0, 2.4 Hz, 1 H), 7.74 (d, J = 8.0 Hz, 1 H), 7.19 (dq, J = 16.4, 2.0 Hz, 1 H), 6.41 (dq, J = 16.4, 6.0 Hz, 1 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 150.2, 135.0, 134.6, 132.9 (q, J = 6.7 Hz), 132.4, 128.5, 122.6 (q, J = 268 Hz), 121.6 (q, J = 34.7 Hz), 116.8. ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -64.26 (d, J = 7.1 Hz, 3 F). **HRMS** (ESI-TOF): calculated for [C₉H₅F₃N₂+Na]⁺ requires 221.0297, found 221.0301.

(E)-3-(3,3,3-Trifluoroprop-1-enyl)-3-pyridinecarboxylic acid methy ester (3q)

According to general procedure A, Togni's reagent (1a) (90 mg, 0.284 mmol), $[Ru(bpy)_3](PF_6)_2$ (9.2 mg, 10.6 µmol), (*E*)-vinylborate (2q) (63 mg, 0.234 mmol) and MeOH (10 mL) were stirred at room temperature under visible light irradiation (3W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with ether, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane/ether = 10/1→0/1) afford the title compound (38 mg, 70% yield) as a colorless solid containing approximately 1% of (*Z*)-product.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 9.20 (d, J = 2.0 Hz, 1 H), 8.83 (d, J = 2.0 Hz, 1 H), 8.39 (dd, J = 2.0, 2.0 Hz, 1 H), 7.20 (dq, J = 16.0, 2.0 Hz, 1 H), 6.41 (dq, J = 16.0, 6.4 Hz, 1 H), 3.98 (s, 3 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 165.2, 152.6, 151.8, 134.9, 133.5 (q, J = 6.7 Hz), 129.3, 126.4, 123.0 (q, J = 268 Hz), 119.7 (q, J = 34.4 Hz), 52.7. ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -64.01 (d, J = 4.1 Hz, 3 F). **HRMS** (ESI-TOF): calculated for [C₁₀H₈F₃NO₂+Na]⁺ requires 254.0399, found 254.0399.

(E)-6-(3,3,3-Trifluoroprop-1-enyl)-2-methylquinoline (3r)

According to general procedure A, Togni's reagent (1a) (95 mg, 0.30 mmol), $[Ru(bpy)_3](PF_6)_2$ (10.7 mg, 12.5 µmol), (*E*)-vinylborate (2r) (66 mg, 0.24 mmol) and MeOH (5.0 mL) were stirred at room temperature under visible light irradiation (3W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with ether, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane/ether = 10/1) afford the title compound (39 mg, 69% yield) as a colorless solid containing approximately 2% of (*Z*)-product.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 8.07-8.01 (m, 2 H), 7.82-7.79 (m, 2 H), 7.35-7.27 (m, 2 H), 6.32 (dq, J = 16.4, 6.4 Hz, 1 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 160.4, 148.7, 137.2 (q, J = 6.7 Hz), 136.4, 130.9, 129.7, 128.3, 127.0, 126.5, 123.7 (q, J = 267 Hz), 122.9, 116.8 (q, J = 33.9 Hz), 25.5. ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -63.28 (d, J = 6.7 Hz, 3 F). **HRMS** (ESI-TOF): calculated for $[C_{13}H_{10}F_{3}N+H]^{+}$ requires 238.0838, found 238.0839.

(E)-3-(3,3,3-Trifluoroprop-1-enyl)-quinoline (3s)

According to general procedure A, Togni's reagent (1a) (87 mg, 0.275 mmol), $[Ru(bpy)_3](PF_6)_2$ (10.7 mg, 12.5 µmol), (*E*)-vinylborate (2s) (63 mg, 0.241 mmol) and MeOH (5.0 mL) were stirred at room temperature under visible light irradiation (3W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane/ether = 10/1 \rightarrow 3/2) afford the title compound (38 mg, 71% yield) as a pale yellow crystal.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 9.03 (s, 1 H), 8.20 (d, J = 2.0 Hz, 1 H), 8.12 (d, J = 8.0 Hz, 1 H), 7.85 (d, J = 8.0 Hz, 1 H), 7.77 (dt, J = 7.2, 1.6 Hz, 1 H), 7.60 (dt, J = 7.2, 1.6 Hz, 1 H), 7.33 (dq, J = 16.0, 2.0 Hz, 1 H), 6.45 (dq, J = 16.0, 6.4 Hz, 1 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 148.9, 148.7, 135.0, 134.8 (q, J = 6.6 Hz), 130.7, 129.6, 128.3, 127.6, 127.3, 126.5, 123.3 (q, J = 267 Hz), 118.0 (q, J = 34.1 Hz). ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -63.63 (dd, J = 5.2, 2.2 Hz, 3 F).

HRMS (ESI-TOF): calculated for $[C_{12}H_8F_3N+H]^+$ requires 224.0682, found 224.0682.

(*E*)-5-(3,3,3-Trifluoroprop-1-enyl)-2-methyl-1,3-benzothiazole (3t)

According to general procedure A, Togni's reagent (1a) (87 mg, 0.275 mmol), $[Ru(bpy)_3](PF_6)_2$ (9.5 mg, 10.4 µmol), (*E*)-vinylborate (2t) (70 mg, 0.25 mmol) and MeOH (5.0 mL) were stirred at room temperature under visible light irradiation (3W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with ether, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane/ether = 10/1) afford the title compound (50 mg, 82% yield) as a white solid containing ca. 3% of (*Z*)-product.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.99 (s, 1 H), 7.83 (dd, J = 8.0, 4.4 Hz, 1 H), 7.45 (d, J = 8.4 Hz, 1 H), 7.26 (d, J = 16.0 Hz, 1 H), 6.28 (dq, J = 16.0, 6.4 Hz, 1 H), 2.85 (s, 3 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 168.5, 154.0, 137.5 (q, J = 6.7 Hz), 131.2, 123.7 (q, J = 267 Hz), 123.5, 121.8, 116.2 (q, J = 32.9 Hz), 20.2. ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -63.21 (d, J = 6.4 Hz, 3 F). **HRMS** (ESI-TOF): calculated for $[C_{11}H_8F_3NS+H]^+$ requires 244.0402, found 244.0402.

(4,4,4-Trifluorobut-2-enyl)benzene (3u)

According to general procedure A, Togni's reagent (1a) (87 mg, 0.275 mmol), $[Ru(bpy)_3](PF_6)_2$ (10.7 mg, 12.5 µmol), (*E*)-vinylborate (2u) (56 mg, 0.25 mmol) and MeOH (5.0 mL) were stirred at room temperature under visible light irradiation (3W Blue LEDs : $hv = 425 \pm 15$ nm). After 5 h, aqueous

saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. Purification by column chromatography on silica gel (pentane) afford the title compound (28 mg, 60% yield, E/Z = 65/35) as a colorless oil. The spectral data of the product were identical with those reported in the literature.

¹**H NMR** (400 MHz, CDCl₃, rt) of (*E*)-product: δ 7.36-7.18 (m, 5 H), 6.58-6.52 (m, 1 H), 5.68-5.57 (m, 1 H), 3.50-3.47 (m, 2 H). ¹**H NMR** (400 MHz, CDCl₃, rt) of (*Z*)-product: δ 7.36-7.18 (m, 5 H), 6.17-6.10 (m, 1 H), 5.75-5.62 (m, 1 H), 3.64 (d, J = 8.0 Hz, 2 H). ¹³**C NMR** (100 MHz, CDCl₃, rt): δ 141.2 (q, J = 5.2 Hz, (*Z*)-product), 139.5 (q, J = 6.4 Hz, (*E*)-product), 138.3, 137.4, 128.9, 128.8, 128.6, 127.0, 126.8, 123.1 (q, J = 267 Hz), 119.7 (q, J = 33.3 Hz, (*E*)-product), 118.9 (q, J = 33.3 Hz, (*Z*)-product), 37.8, 34.7, 31.7, 29.8, 22.8, 14.2. ¹⁹**F NMR** (376.5 MHz, CDCl₃, rt): δ -57.66 (dd, J = 7.9, 3.0 Hz, 3 F, (*Z*)-product), -63.97 (dd, J = 6.0, 2.6Hz, 3 F, (*E*)-product).

Ref.: T. Chu, F.-L. Qing, Org. Lett. 2010, 12, 5060-5063.

Gram-scale synthesis of 3s (Scheme 2)

300 mL-Schlenk tube was charged with Togni's reagent (1a) (2.6 g, 8.25 mmol), $[Ru(bpy)_3](PF_6)_2$ (320 mg, 0.372 mmol), vinylborate (2s) (1.96 g, 7.5 mmol) and MeOH (145 mL) under N₂. The vinylborate (2s) was dissolved with ultrasonic bath. The tube was placed at a distance of 2–3 cm from

3W Blue LED lamp ($hv = 425 \pm 15$ nm). The red solution was stirred at room temperature (water bath) under visible light irradiation. After 7 h, aqueous saturated NaHCO₃ solution was added. The resulting mixture was extracted with pentane, dried (Na₂SO₄), and filtered. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on silica gel (pentane/ether = 10/1 \rightarrow 3/2) to afford the title compound (1.06 g, 64% yield) as a pale yellow solid.

Crystallographic data for (E)-3-(3,3,3-Trifluoroprop-1-enyl)-3-pyridinecarboxylic acid methy ester (3q)

Diffraction measurements were made on a Bruker SMART APEX II ULTRA/CCD. Intensity measurements were performed using monochromated (doubly curved silicon crystal) Mo-K α -radiation (0.71073 Å) from a sealed microfocus tube. Data were acquired using three sets of Omega scans at different Phi settings. The frame width was 0.5 °. The crystallographic data are summarized in Table S1. The structural analysis was performed on an APEX2 software for preliminary determination of the unit cell. Determination of integrated intensities and unit cell refinement were performed using SAINT. Unless otherwise stated, all non-hydrogen atoms were refined anisotropically by full-matrix least-square techniques based on F^2 . All hydrogen atoms were fixed at the calculated positions.

Table 1. Crystal data and structure refinement for VitaminB3 CF3 alkene.

Identification code	VitaminB3_CF3_alkene	
Empirical formula	C10 H8 F3 N O2	
Formula weight	231.17	
Temperature	93(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	a = 13.040(2) Å	$\alpha = 90^{\circ}$
	b = 12.456(2) Å	$\beta = 104.452(2)^{\circ}$
	c = 19.177(4) Å	$\gamma = 90^{\circ}$
Volume	3016.3(10) Å ³	
Ζ	12	
Density (calculated)	1.527 g/cm ³	
Absorption coefficient	0.143 mm ⁻¹	
F(000)	1416	
Crystal size	0.25 x 0.30 x 0.40 mm ³	
Theta range for data collection	1.61 to 28.76°	
Index ranges	-12<=h<=17, -16<=k<=12, -24<=l<=20	
Reflections collected	17047	
Independent reflections	7077 [R(int) = 0.0332]	
Completeness to theta = 28.76°	90.1%	
Absorption correction	Multiscan	

Max. and min. transmission	0.9652 and 0.9451
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7077 / 0 / 436
Goodness-of-fit on F ²	1.084
Final R indices [I>2sigma(I)]	R1 = 0.0534, wR2 = 0.1382
R indices (all data)	R1 = 0.0982, wR2 = 0.1546
Largest diff. peak and hole	0.668 and -0.296
$R_{int} = \Sigma F_o^2 - F_o^2(mean) / \Sigma [F_o^2]$	
$\mathbf{R}_1 = \Sigma F_{\mathrm{o}} - F_{\mathrm{c}} / \Sigma F_{\mathrm{o}} $	
GOOF = S = { $\Sigma[w(F_o^2 - F_c^2)^2] / (n - p)$ } ^{1/}	2
$wR_2 = \{\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]\}^{1/2}$	
$w = 1 / [\sigma(F_o^2) + (aP)^2 + bP]$ where P is [$[2F_{\rm c}^2 + {\rm Max}(F_{\rm o}^2, 0)]/3$

Table 2. Atomic coordinates (x10⁴) and equivalent isotropic displacement parameters (Å²x10³) for VitaminB3_CF3_alkene.

U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U(eq)
N1	10591(2)	9312(1)	4390(1)	27(1)
C2	9343(2)	7862(2)	4015(1)	21(1)
C3	10178(2)	7132(2)	4100(1)	19(1)
C1	9600(2)	8942(2)	4168(1)	24(1)
C4	11206(2)	7504(2)	4331(1)	21(1)
C5	11376(2)	8597(2)	4468(1)	25(1)
02	13032(1)	7195(1)	4713(1)	31(1)
C6	12098(2)	6729(2)	4430(1)	22(1)
01	11993(1)	5790(1)	4278(1)	31(1)
C7	13933(2)	6481(2)	4852(1)	46(1)
C8	8222(2)	7565(2)	3788(1)	23(1)
C9	7858(2)	6565(2)	3739(1)	26(1)
C10	6695(2)	6293(2)	3538(1)	32(1)
F1	6087(1)	7160(1)	3397(1)	47(1)
F2	6425(1)	5782(1)	4075(1)	52(1)
F3	6444(1)	5670(1)	2967(1)	57(1)

	X	У	Z	U(eq)
N2	-574(1)	5956(1)	2382(1)	23(1)
C14	-1360(2)	4195(2)	2242(1)	19(1)
C12	527(2)	4370(2)	2602(1)	19(1)
C11	374(2)	5485(2)	2565(1)	21(1)
C13	-368(2)	3723(2)	2437(1)	20(1)
C15	-1425(2)	5312(2)	2224(1)	23(1)
04	-3203(1)	4080(1)	1866(1)	31(1)
C16	-2314(2)	3499(2)	2062(1)	21(1)
03	-2297(1)	2529(1)	2086(1)	28(1)
C17	-4180(2)	3482(2)	1693(1)	38(1)
C18	1581(2)	3873(2)	2804(1)	24(1)
C19	2491(2)	4393(2)	2969(1)	28(1)
C20	3520(2)	3833(2)	3176(1)	38(1)
F4	3445(1)	2764(1)	3169(1)	52(1)
F6	4140(1)	4072(1)	2734(1)	65(1)
F5	4071(1)	4096(1)	3838(1)	68(1)
05	7884(1)	799(1)	3533(1)	32(1)
06	6826(1)	2210(1)	3559(1)	31(1)
N3	9269(2)	4317(1)	4167(1)	27(1)
C22	10524(2)	2861(2)	4255(1)	21(1)
C23	9695(2)	2135(2)	4029(1)	21(1)
C25	8487(2)	3602(2)	3950(1)	25(1)
C24	8660(2)	2511(2)	3875(1)	21(1)
C21	10259(2)	3941(2)	4315(1)	25(1)
C26	7773(2)	1738(2)	3639(1)	24(1)
C27	5925(2)	1501(2)	3353(2)	45(1)
C28	11646(2)	2562(2)	4452(1)	23(1)
C29	12016(2)	1568(2)	4520(1)	24(1)
C30	13184(2)	1300(2)	4763(1)	32(1)
F9	13773(1)	2173(1)	4925(1)	50(1)
F7	13512(1)	772(1)	4271(1)	59(1)
F8	13366(1)	701(1)	5355(1)	54(1)

Table 3. Bond lengths (Å) and angles (°) for VitaminB3_CF3_alkene.

N1-C5	1.337(3)
N1-C1	1.339(3)
C2-C3	1.397(3)
C2-C1	1.399(3)
C2-C8	1.465(3)
C3-C4	1.382(3)
C4-C5	1.393(3)
C4-C6	1.487(3)
O2-C6	1.337(2)
O2-C7	1.445(3)
C6-O1	1.205(2)
C8-C9	1.327(3)
C9-C10	1.507(3)
C10-F3	1.315(3)
C10-F1	1.328(3)
C10-F2	1.331(3)
N2-C11	1.333(3)
N2-C15	1.341(3)
C14-C13	1.385(3)
C14-C15	1.394(3)
C14-C16	1.485(3)
C12-C13	1.388(3)
C12-C11	1.402(3)
C12-C18	1.469(3)
O4-C16	1.338(3)
O4-C17	1.441(3)
C16-O3	1.209(2)
C18-C19	1.319(3)
C19-C20	1.476(3)
C20-F5	1.335(3)
C20-F4	1.336(3)
C20-F6	1.342(3)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

O5-C26	1.202(3)
O6-C26	1.342(3)
O6-C27	1.444(3)
N3-C21	1.336(3)
N3-C25	1.339(3)
C22-C23	1.394(3)
C22-C21	1.400(3)
C22-C28	1.465(3)
C23-C24	1.388(3)
C25-C24	1.391(3)
C24-C26	1.487(3)
C28-C29	1.323(3)
C29-C30	1.514(3)
C30-F7	1.306(3)
C30-F9	1.323(3)
C30-F8	1.329(3)
C5-N1-C1	117.23(19)
C3-C2-C1	117.5(2)
C3-C2-C8	124.16(19)
C1-C2-C8	118.3(2)
C4-C3-C2	119.01(19)
N1-C1-C2	124.0(2)
C3-C4-C5	118.9(2)
C3-C4-C6	119.22(18)
C5-C4-C6	121.8(2)
N1-C5-C4	123.3(2)
C6-O2-C7	115.07(19)
01-C6-O2	123.8(2)
O1-C6-C4	124.22(19)
O2-C6-C4	111.98(18)
C9-C8-C2	124.8(2)
C8-C9-C10	123.2(2)
F3-C10-F1	107.4(2)
F3-C10-F2	107.6(2)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

F1-C10-F2	106.64(19)
F3-C10-C9	111.84(19)
F1-C10-C9	112.4(2)
F2-C10-C9	110.68(18)
C11-N2-C15	117.11(18)
C13-C14-C15	118.54(19)
C13-C14-C16	119.13(19)
C15-C14-C16	122.33(19)
C13-C12-C11	117.55(19)
C13-C12-C18	119.56(19)
C11-C12-C18	122.88(19)
N2-C11-C12	124.1(2)
C14-C13-C12	119.34(19)
N2-C15-C14	123.4(2)
C16-O4-C17	116.07(18)
O3-C16-O4	123.9(2)
O3-C16-C14	124.6(2)
O4-C16-C14	111.48(18)
C19-C18-C12	125.7(2)
C18-C19-C20	122.4(2)
F5-C20-F4	105.9(2)
F5-C20-F6	106.3(2)
F4-C20-F6	105.6(2)
F5-C20-C19	112.2(2)
F4-C20-C19	114.1(2)
F6-C20-C19	112.1(2)
C26-O6-C27	115.23(19)
C21-N3-C25	116.93(19)
C23-C22-C21	117.4(2)
C23-C22-C28	124.21(19)
C21-C22-C28	118.32(19)
C24-C23-C22	118.97(19)
N3-C25-C24	123.4(2)
C23-C24-C25	118.8(2)

C23-C24-C26	119.15(19)
C25-C24-C26	122.0(2)
N3-C21-C22	124.4(2)
O5-C26-O6	123.6(2)
O5-C26-C24	124.4(2)
O6-C26-C24	112.03(19)
C29-C28-C22	125.4(2)
C28-C29-C30	123.4(2)
F7-C30-F9	107.9(2)
F7-C30-F8	108.2(2)
F9-C30-F8	106.93(18)
F7-C30-C29	112.01(18)
F9-C30-C29	111.8(2)
F8-C30-C29	109.7(2)

Table 4. Anisotropic displacement parameters (Ųx10³) forVitaminB3_CF3_alkene.

The anisotropic displacement factor exponent takes the form: -2 π^2 [h² a^{*2} U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
N1	38(1)	17(1)	29(1)	-2(1)	-2(1)	-3(1)
C2	30(1)	17(1)	19(1)	2(1)	2(1)	2(1)
C3	26(1)	14(1)	19(1)	-0(1)	-0(1)	2(1)
C1	36(1)	15(1)	25(1)	2(1)	2(1)	3(1)
C4	27(1)	18(1)	17(1)	0(1)	0(1)	-0(1)
C5	33(1)	21(1)	23(1)	-0(1)	-0(1)	-6(1)
02	24(1)	28(1)	39(1)	5(1)	5(1)	-6(1)
C6	23(1)	22(1)	22(1)	3(1)	3(1)	-4(1)
01	27(1)	19(1)	47(1)	1(1)	1(1)	0(1)
C7	20(1)	42(2)	71(2)	21(1)	21(1)	-1(1)
C8	28(1)	20(1)	24(1)	2(1)	2(1)	8(1)
C9	24(1)	22(1)	30(1)	1(1)	1(1)	6(1)
C10	36(1)	29(1)	32(1)	1(1)	1(1)	13(1)
F1	28(1)	40(1)	74(1)	4(1)	4(1)	12(1)

	\mathbf{U}^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
F2	39(1)	55(1)	65(1)	13(1)	13(1)	-11(1)
F3	33(1)	66(1)	70(1)	-36(1)	-36(1)	-10(1)
N2	25(1)	17(1)	27(1)	0(1)	0(1)	1(1)
C14	25(1)	17(1)	17(1)	-1(1)	-1(1)	-2(1)
C12	24(1)	19(1)	15(1)	0(1)	0(1)	-0(1)
C11	25(1)	18(1)	22(1)	-1(1)	-1(1)	-2(1)
C13	27(1)	17(1)	17(1)	-1(1)	-1(1)	-2(1)
C15	26(1)	19(1)	24(1)	1(1)	1(1)	2(1)
O4	21(1)	24(1)	45(1)	-1(1)	-1(1)	-1(1)
C16	25(1)	21(1)	19(1)	-2(1)	-2(1)	-2(1)
03	30(1)	20(1)	35(1)	-0(1)	-0(1)	-4(1)
C17	23(1)	32(1)	58(2)	-2(1)	-2(1)	-4(1)
C18	28(1)	21(1)	23(1)	1(1)	1(1)	2(1)
C19	25(1)	28(1)	32(1)	2(1)	2(1)	3(1)
C20	31(1)	40(2)	46(1)	8(1)	8(1)	5(1)
F4	38(1)	34(1)	82(1)	11(1)	11(1)	14(1)
F6	40(1)	66(1)	99(1)	22(1)	22(1)	11(1)
F5	43(1)	77(1)	67(1)	-12(1)	-12(1)	17(1)
05	27(1)	20(1)	46(1)	-2(1)	-2(1)	1(1)
O6	25(1)	25(1)	43(1)	-1(1)	-1(1)	3(1)
N3	40(1)	16(1)	25(1)	0(1)	0(1)	3(1)
C22	29(1)	16(1)	18(1)	1(1)	1(1)	-1(1)
C23	30(1)	14(1)	19(1)	1(1)	1(1)	1(1)
C25	32(1)	19(1)	24(1)	3(1)	3(1)	4(1)
C24	28(1)	18(1)	18(1)	0(1)	0(1)	0(1)
C21	37(1)	15(1)	22(1)	0(1)	0(1)	-3(1)
C26	25(1)	22(1)	24(1)	2(1)	2(1)	3(1)
C27	23(1)	38(2)	71(2)	2(1)	2(1)	-3(1)
C28	27(1)	21(1)	22(1)	-0(1)	-0(1)	-6(1)
C29	24(1)	21(1)	26(1)	-2(1)	-2(1)	-4(1)
C30	47(2)	25(1)	24(1)	-5(1)	-5(1)	-15(1)
F9	31(1)	40(1)	75(1)	-4(1)	-4(1)	-12(1)
F7	38(1)	76(1)	58(1)	-24(1)	-24(1)	20(1)
	\mathbf{U}^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
----	-------------------	------------------------	-----------------	-----------------	-----------------	------------------------
F8	39(1)	55(1)	59(1)	23(1)	23(1)	6(1)

Table 5. Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters $(Å^2x10^3)$ for VitaminB3_CF3_alkene.

	X	У	Z	U(eq)
Н3	10042	6392	4000	23
H1	9035	9443	4111	29
Н5	12085	8845	4625	30
H7A	13818	5892	5163	70
H7B	14573	6878	5091	70
H7C	14018	6187	4395	70
H8	7718	8129	3668	28
Н9	8356	5993	3835	31
H11	983	5932	2677	25
H13	-300	2964	2459	24
H15	-2107	5633	2092	27
H17A	-4183	2991	1293	56
H17B	-4778	3980	1553	56
H17C	-4243	3069	2115	56
H18	1610	3111	2819	28
H19	2484	5155	2953	34
H23	9835	1393	3982	25
H25	7777	3853	3842	30
H21	10821	4439	4470	29
H27A	5922	1157	2893	67
H27B	5271	1916	3302	67
H27C	5969	950	3724	67
H28	12150	3128	4537	28
H29	11524	992	4411	29

X-ray data of 3q

Figure S2. ORTEP plot of the molecular structure.

Cyclic voltammograms

Cyclic voltammetry experiments were performed using Hokutodenkou HZ-5000 analyzer under N₂ at room temperature (observed in 0.002 M CH₃CN; $[(NBu_4)PF_6] = 0.1$ M; Ag/AgCl = electrode; reported with respect to the $[FeCp_2]/[FeCp_2]$ +couple).

References

- a) H. B. Ross, M. Boldaji, D. P. Rillema, C. B. Blanton and R. P. White, *Inorg. Chem.* 1989, 28, 1013; b) A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau, M. E. Thompson, *J. Am. Chem. Soc.* 2003, *125*, 7377.
- [2] a) M. Weber, F. V. Singh, A. S. Vieira, H. A. Stefani, M. W. Paixão, *Tetrahedron Lett.* 2009, *50*, 4324; b) K. Brak, J. A. Ellman, *J. Am. Chem. Soc.* 2009, *131*, 3850; c) G. W. Kabalka, A. R. Mereddy, J. F. Green, *J. Label. Compd. Radiopharm.* 2006, *49*, 11; d) S. Elsheimer, C. J. Foti, M. D. Bartberger, *J. Org. Chem.* 1996, *61*, 6252.
- [3] ASTRAZENECA AB; ASTRAZENECA UK LIMITED, WO2005/60970 A1, 2005, 148.
- [4] Y. Yu, R. Lin, P. J. Connolly, US2008/103172 A1, 2008, 13.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

