Electronic Supplementary Information (ESI)

Stepwise ligand transformations through [2+2] photodimerization and hydrothermal in situ oxidation reactions

Dong Liu,^{*a,b*} Jian-Ping Lang,*^{*a*} and Brendan F. Abrahams

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China;

^b College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, P. R. China;

^c School of Chemistry, University of Melbourne, Victoria 3010, Australia

*E-mail: jplang@suda.edu.cn

Table of Contents

Experimental Section S3
General procedures. S3
Preparation of $[Cd(1,3-bdc)(4-spy)_2]_n$ (1) S3
Preparation of $[Cd(1,3-bdc)(4-spy)(HT-ppcb)_{0.5}]_n$ (2) ······ S4
Isolation of HT-ppcb S4
Preparation of {[Cd(H ₂ O)(1,3-bdc)(bpbpf)]·H ₂ O} _n (3) ······S4
Isolation of bpbpf ······S5
X-ray diffraction crystallography
Table S1. Selected bond length (Å) and angle (°) of 1-3 S7
Fig. S1. Experimental (red) and simulated (black) PXRD patterns for 1 (a), 2 (b) and 3 (c)
Fig. S2. The TGA curves for 1-3
Fig. S3. The ¹ H NMR spectra of 1 (a), 2 (b), HT-ppcb (c), 3 (d) and bpbpf (e) in DMSO- d_6 at
ambient temperature S12
Fig. S4. The ¹ H NMR spectrum of the precipitation (after hydrothermal treatment of a mixture of
$CdCl_2 \cdot 2.5H_2O$, 1,3-H ₂ bdc and HT-ppcb under nitrogen) in DMSO- d_6 at ambient temperatureS15
Fig. S5. The ¹ H NMR spectrum of the precipitation (after hydrothermal treatment of a mixture of
$CdCl_2 \cdot 2.5H_2O$, HT-ppcb and H_2O_2) in DMSO- d_6 at ambient temperature $S16$
Fig. S6. The ¹ H NMR spectrum of the precipitation (after hydrothermal treatment of a mixture of
1,3-H ₂ bdc, HT-ppcb and H ₂ O ₂) in DMSO- d_6 at ambient temperatureS17

Experimental Section

General procedures. All chemicals and reagents were purchased from TCI Co., Ltd., and Sigma-Aldrich Co. All the chemicals were of reagent grade and used without any further purification. Infrared (IR) samples were prepared as KBr pellets, and spectrum was obtained in the 4000–400 cm⁻¹ range using a Nicolet Avatar 360 FT-IR spectrophotometer. The elemental analyses for C, H, and N were performed on an EA1110 CHNS elemental analyzer. Powder XRD patterns were obtained using a PANalytical X'Pert PRO MPD system (PW3040/60). Thermal analysis was performed with a Perkin Elmer TGA-7 thermogravimetric analyser at a heating rate of 10 °C/min and a flow rate of 100 cm³/min (N₂). ¹H NMR spectra were recorded at ambient temperature on a Bruker Avance-III 400 MHz NMR spectrometer. ¹H NMR chemical shifts were referenced to the solvent signal in d_{g} -DMSO.

Preparation of [Cd(1,3-bdc)(4-spy)₂]_{*n*} **(1).** To a 50 mL Teflon-lined autoclave was loaded CdCl₂·2.5H₂O (0.228 g, 1 mmol), 1,3-H₂bdc (0.166 g, 1 mmol), 4-spy (0.362 g, 2 mmol), NaOH (0.080 g, 2 mmol) and H₂O (25 mL). The Teflon-lined autoclave was sealed and heated in an oven to 165°C for 50 hours, and then cooled to ambient temperature at a rate of 5°C h⁻¹ to form yellow blocks of **1**, which were washed with ethanol and dried in air. Yield: 0.466 g (73% yield based on Cd). ¹H NMR (400 MHz, *d*₆-DMSO): δ = 8.55 (d, 4H, Py–H, 4-spy), 8.51 (s, 1H, Ph–H, 1,3-bdc), 8.15 (d, 2H, Ph–H, 1,3-bdc), 7.66 (s, 1H, Ph–H, 1,3-bdc), 7.56 (d, 4H, CH=CH, 4-spy), 7.52–7.23 (m, 14H, Ph–H and Py–H of 4-spy). Anal. calcd. for C₃₄H₂₆CdN₂O₄: C, 63.91; H, 4.10; N, 4.38. Found: C, 64.12; H, 4.08; N, 4.15. IR (KBr, cm⁻¹): 3422m, 3024w,1607s, 1556s, 1499m, 1437m, 1427m, 1385s, 1308m, 1224m, 1100m, 1071w, 1017m, 962s, 867m, 832s, 743s, 720s, 649m, 539s, 421w.

Preparation of [Cd(1,3-bdc)(4-spy)(HT-ppcb)_{0.5}]_{*n*} (2). Single crystals of **1** (1.278 g, 2 mmol, combined product from three Teflon-lined autoclaves) were irradiated by Hg lamp (250 W) for about 10 hours to form crystals of **2** in an almost quantitative yield (based on **1**). ¹H NMR (400 MHz, *d*₆-DMSO): δ =8.62 (d, 2H, Py–H, 4-spy), 8.56 (s, 1H, Ph–H, 1,3-bdc), 8.32 (d, 2H, Py–H, HT-ppcb), 8.07 (d, 2H, Ph–H, 1,3-bdc), 7.65 (s, 1H, Ph–H, 1,3-bdc), 7.58 (d, 2H, CH=CH, 4-spy), 7.52–7.03 (m, 14H, Py–H and Ph–H of 4-spy and HT-ppcb), 4.57 (d, 2H, C–H, HT-ppcb). Anal. calcd. for C₃₄H₂₆CdN₂O₄: C, 63.91; H, 4.10; N, 4.38. Found: C, 63.74; H, 3.96; N, 4.22. IR (KBr, cm⁻¹): 3424m, 3026w,1608s, 1558s, 1506m, 1439m, 1420m, 1386s, 1309m, 1226m, 1101m, 1074w, 1018m, 963s, 869m, 833s, 744s, 720s, 650m, 538s, 422w.

Isolation of HT-ppcb. A mixture of Na₂(H₂edta)·2H₂O (3.722 g, 10 mmol), NaOH (0.800g, 20 mmol), **2** (1.278 g, 2 mmol), H₂O (50 mL) and CH₂Cl₂ (30 mL) were placed in a 150 mL flask and stirred for 20 hours. The organic phase was separated from the reaction mixture and the aqueous layers were extracted with CH₂Cl₂ (3 x 30 mL). The combined organic phase was concentrated to dryness *in vacuo*. The powder was then washed thoroughly with NaOH solution and H₂O, and finally dried with anhydrous Na₂SO₄ to give yellow powder (4-spy and HT-ppcb). HT-ppcb was further isolated from the aforementioned yellow powder by column chromatography. Yield: 0.264 g (73% based on **2**). ¹H NMR (400 MHz, *d*₆-DMSO): δ = 8.30 (d, 4H, Py–H), 7.22–7.05 (m, 14H, Py–H, Ph–H), 4.59 (s, 4H, CH–CH). Anal. Calcd. for C₂₆H₂₂N₂: C 86.15,H 6.12, N 7.73; found: C 85.97, H 6.39, N 8.04. IR (KBr, cm⁻¹): 3435m, 3023m,1598s, 1552s, 1494s, 1448m, 1414s, 1220m, 1141m, 1074m, 993m, 820s, 575m, 545s, 425w.

Preparation of {[Cd(H₂O)(1,3-bdc)(bpbpf)]·H₂O}_n (3). To a 50 mL Teflon-lined autoclave was loaded CdCl₂·2.5H₂O (0.114 g, 0.5 mmol), 1,3-H₂bdc (0.083 g, 0.5 mmol), HT-ppcb (0.181 g, 0.5

mmol), H₂O₂ (3%,1.2 mL) and H₂O (25 mL). The Teflon-lined autoclave was sealed and heated in an oven to 165°C for 20 hours. The mixture was then cooled to ambient temperature at a rate of 5 °C h⁻¹ to form yellow rhombic crystals of **3**, which were washed with ethanol and dried in air. Yield: 0.141g (41% yield based on Cd). ¹H NMR (400 MHz, d_6 -DMSO): δ = 8.61 (s, 1H, Ph–H, 1,3-bdc), 8.52 (d, 2H, Py–H, bpbpf), 8.38 (s, 1H, Py–H, bpbpf), 8.14 (s, 1H, Py–H, bpbpf), 7.95 (d, 2H, Ph–H, 1,3-bdc), 7.65 (s, 1H, Ph–H, 1,3-bdc), 7.56–6.97 (m, 14H, Ph–H and Py–H of bpbpf). Anal. calcd. for C₃₄H₂₆CdN₂O₇: C, 59.44; H, 3.81; N, 4.08. Found: C, 59.27; H, 4.11; N, 4.29. IR (KBr, cm⁻¹): 3398s, 3062m, 2959w, 1606s, 1548s, 1520s, 1475m, 1439m, 1383s, 1269m, 1224m, 1068m, 1016s, 966m, 832s, 772m, 743m, 723s, 629m, 557s, 420w.

Isolation of bpbpf. Na₂(H₂edta)·2H₂O (0.372 g, 1 mmol), NaOH (0.080 g, 2 mmol), **2** (0.137 g, 0.2 mmol), H₂O (20 mL) and CH₂Cl₂ (20 mL) were placed in a 100 mL flask and stirred for 20 hours. The organic phase was separated from the reaction mixture and the aqueous layers were extracted with CH₂Cl₂ (3 x 20 mL). The combined organic phase was concentrated to dryness in vacuo. The powder was then washed thoroughly with NaOH solution and H₂O, and finally dried with anhydrous Na₂SO₄ to give bpbpf as a yellow powder. Yield: 52mg (69%). ¹H NMR (400 MHz, *d*₆-DMSO): δ = 8.50 (d, 2H, Py–H), 8.37 (s, 1H, Py–H), 8.14 (s, 1H, Py–H), 7.63–6.97 (m, 14H, Ph–H and Py–H). Anal. Calcd. for C₂₆H₁₈N₂O: C 83.40,H 4.85, N 7.48; found: C 83.01, H 4.63, N 7.12. IR (KBr, cm⁻¹): 3413m, 3029m,1596s, 1542s, 1498m, 1484m, 1409s, 1260m, 1219m, 1069m, 990m, 831s, 822s, 790m, 710s, 573m, 551s, 421w.

Single-crystal X-ray diffraction crystallography. All measurements were made on a Rigaku Mercury CCD X-ray diffractometer by using graphite monochromated Mo K α ($\lambda = 0.071073$ nm). Single crystals of 1–3 suitable for X-ray analysis were obtained directly from the above preparations. These crystals were mounted on glass fibers and cooled at 223 K in a liquid nitrogen stream. Cell parameters were refined on all observed reflections by using the program *Crystalclear* (Rigaku and MSc, Ver. 1.3, 2001). The collected data were reduced by the program *CrystalClear*, and an absorption correction (multiscan) was applied. The reflection data were also corrected for Lorentz and polarization effects. The structures were solved by direct methods, and nonhydrogen atoms were refined anisotropically by least-squares on F^2 using the *SHELXTL*-97 program.^[1] All non-hydrogen atoms were refined anisotropically. The H atoms of the water molecules in **3** were located from the Fourier map. All other H atoms were introduced at the calculated positions and included in the structure-factor calculations.

[1] G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction for Area Detector Data; University of Göttingen: Göttingen, Germany, **2000**.

Crystal data for **1**: $C_{34}H_{26}CdN_2O_4$, $M_r = 638.98$, triclinic, space group $P\overline{I}$, a = 10.258(2), b = 10.714(2), c = 14.328(3) Å, a = 106.41(3), $\beta = 93.68(3)$, $\gamma = 108.85(3)^\circ$, V = 1408.4(6) Å³, Z = 2, $D_c = 1.507g/cm^3$, $R_1 = 0.0450$ ($I > 2\sigma$), $wR_2 = 0.1144$, GOF = 1.020. *Crystal data* for **2**: $C_{34}H_{26}CdN_2O_4$, $M_r = 638.98$, triclinic, space group $P\overline{I}$, a = 10.298(2), b = 10.631(2), c = 14.608(3) Å, a = 107.72(3), $\beta = 93.61(3)$, $\gamma = 108.14(3)^\circ$, V = 1425.5(7)Å³, Z = 2, $D_c = 1.489g/cm^3$, $R_1 = 0.0993$ ($I > 2\sigma$), $wR_2 = 0.2133$, GOF = 1.185. *Crystal data* for **3**: $C_{34}H_{26}CdN_2O_7$, $M_r = 686.98$, triclinic, space group $P\overline{I}$, a = 10.300(2), b = 11.960(2), c = 14.114(3) Å, a = 70.96(3), $\beta = 70.79(3)$, $\gamma = 66.70(3)^\circ$, V = 1468.9(5) Å³, Z = 2, $D_c = 1.553g/cm^3$, $R_1 = 0.0282$ ($I > 2\sigma$), $wR_2 = 0.0633$, GOF = 1.038.

Table S1. Selected Bond Lengths (Å)) and Angles (°) for 1-3
-------------------------------------	--------------------------

Compound 1					
Cd(1)-N(1)	2.298(4)	Cd(1)-O(2A)	2.310(3)		
Cd(1)-O(1)	2.311(3)	Cd(1)-N(2)	2.312(4)		
Cd(1)-O(3B)	2.385(3)	Cd(1)-O(4B)	2.392(3)		
N(1)-Cd(1)-O(2A)	88.57(13)	N(1)-Cd(1)-O(1)	93.81(13)		
O(2A)-Cd(1)-O(1)	125.65(11)	N(1)-Cd(1)-N(2)	175.08(12)		
O(2A)-Cd(1)-N(2)	86.74(12)	O(1)-Cd(1)-N(2)	87.72(12)		
N(1)-Cd(1)-O(3B)	93.80(12)	O(2B)-Cd(1)-O(3B)	95.32(10)		
O(1)-Cd(1)-O(3B)	138.45(10)	N(2)-Cd(1)-O(3B)	88.12(12)		
N(1)-Cd(1)-O(4B)	93.62(13)	O(2A)-Cd(1)-O(4B)	150.23(10)		
O(1)-Cd(1)-O(4B)	83.87(10)	N(2)-Cd(1)-O(4B)	91.19(13)		
O(3B)-Cd(1)-O(4B)	54.91(9)				
Compound 2					
Cd(1)-N(1)	2.282(9)	Cd(1)-N(2)	2.297(10)		
Cd(1)-O(3A)	2.313(6)	Cd(1)-O(4B)	2.313(8)		
Cd(1)-O(1)	2.378(7)	Cd(1)-O(2)	2.404(6)		
N(1)-Cd(1)-N(2)	174.1(3)	N(1)-Cd(1)-O(3A)	94.2(3)		
N(2)-Cd(1)-O(3A)	87.4(3)	N(1)-Cd(1)-O(4B)	88.6(3)		
N(2)-Cd(1)-O(4B)	85.9(3)	O(3A)-Cd(1)-O(4B)	126.5(2)		
N(1)-Cd(1)-O(1)	96.1(3)	N(2)-Cd(1)-O(1)	89.6(3)		
O(3A)-Cd(1)-O(1)	84.8(2)	O(4B)-Cd(1)-O(1)	148.0(2)		

N(1)-Cd(1)-O(2)	93.6(3)	N(2)-Cd(1)-O(2)	88.8(3)		
O(3A)-Cd(1)-O(2)	138.9(2)	O(4B)-Cd(1)-O(2)	94.0(2)		
O(1)-Cd(1)-O(2)	54.2(2)				
Compound 3					
Cd(1)-O(4A)	2.2492(16)	Cd(1)-N(2B)	2.322(2)		
Cd(1)-N(1)	2.331(2)	Cd(1)-O(1)	2.353(2)		
Cd(1)-O(6)	2.3562(19)	Cd(1)-O(2)	2.4384(16)		
Cd(1)-O(3A)	2.8482(19)				
O(4A)-Cd(1)-N(2B)	101.33(7)	O(4A)-Cd(1)-N(1)	87.35(7)		
N(2B)-Cd(1)-N(1)	166.08(7)	O(4A)-Cd(1)-O(1)	88.08(6)		
N(2B)-Cd(1)-O(1)	95.42(8)	N(1)-Cd(1)-O(1)	95.73(7)		
O(4A)-Cd(1)-O(6)	128.45(6)	N(2B)-Cd(1)-O(6)	85.10(7)		
N(1)-Cd(1)-O(6)	80.98(7)	O(1)-Cd(1)-O(6)	142.77(6)		
O(4A)-Cd(1)-O(2)	141.98(6)	N(2B)-Cd(1)-O(2)	90.57(7)		
N(1)-Cd(1)-O(2)	89.10(7)	O(1)-Cd(1)-O(2)	54.66(6)		
O(6)-Cd(1)-O(2)	88.14(7)	O(4A)-Cd(1)-O(3A)	49.55(6)		
N(2B)-Cd(1)-O(3A)	83.68(7)	N(1)-Cd(1)-O(3A)	94.04(7)		
O(1)-Cd(1)-O(3A)	135.89(6)	O(6)-Cd(1)-O(3A)	81.26(6)		
O(2)-Cd(1)-O(3A)	168.32(5)				

Symmetry codes: A: - *x* + 1, - *y* + 1, - *z* + 1; B: *x* - 1, *y*, *z* for **1**. A: *x* - 1, *y*, *z*; B: - *x* + 2, - *y* + 1, - *z*

+ 1 for **2**. A: x + 1, y, z; B: x, y - 1, z + 1 for **3**.

Fig. S1. Experimental (red) and simulated (black) PXRD patterns for 1 (a); 2 (b) and 3 (c).

Fig. S2. The TGA curves for **1-3**. Compound **1** is stable up to about 200°C, and then becomes continuous decomposition. The TGA curve of **2** is almost the same as **1**. The final residues were assumed to be Cd (ca. 17.59%), which is corresponding to the experimental weight of residues (17.39% for **1** and 17.72% for **2**). Compound **3** showed a first weight loss of 5.66% in the range of 50-175°C, which corresponds to the removal of two water molecules per formula unit (*ca.* 5.24%). When the temperature rises, a series of decomposition steps commence. The weight of the final residue (16.04%) was assumed to be Cd (*ca.* 16.36%).

(b)

(d)

Fig. S3. The ¹H NMR spectra of **1** (a), **2** (b), **HT-ppcb** (c), **3** (d) and **bpbpf** (e) in DMSO- d_6 at ambient temperature.

NOTES:

The ¹H NMR spectrum of the irradiated product, **2**, dissolved in d_6 -DMSO shows the presence of cyclobutane protons with a signal at 4.57 ppm. Shifts in the location of the signals for pyridyl protons from 8.55 and 7.56 ppm to 8.32 and 7.20 ppm respectively are noted upon dimer formation.

Fig. S4. The ¹H NMR spectrum of the precipitation (after hydrothermal treatment of a mixture of $CdCl_2 \cdot 2.5H_2O$, 1,3-H₂bdc and HT-ppcb under nitrogen) in DMSO- d_6 at ambient temperature. $\delta = 8.49$ (s, 1H, Ph–H, 1,3-bdc), 8.30 (d, 4H, Py–H, 4-spy), 8.15 (d, 2H, Ph–H, 1,3-bdc), 7.64 (s, 1H, Ph–H, 1,3-bdc), 7.20–7.04 (m, 14H, Py–H and Ph–H of HT-ppcb), 4.57 (d, 4H, C–H, HT-ppcb).

NOTES:

The ¹H NMR spectrum indicated that HT-ppcb ligand had not changed after hydrothermal treatment of a mixture of CdCl₂·2.5H₂O, 1,3-H₂bdc and HT-ppcb under nitrogen.

Fig. S5. The ¹H NMR spectrum of the precipitation (after hydrothermal treatment of a mixture of $CdCl_2$ ·2.5H₂O, HT-ppcb and H₂O₂) in DMSO-*d*₆ at ambient temperature.

δ = 8.28 (d, 4H, Py–H, HT-ppcb), 7.17–7.05 (m, 14H, Py–H and Ph–H of HT-ppcb), 4.57 (s, 4H, CH–CH, HT-ppcb).

NOTES:

The ¹H NMR spectrum confirmed that the organic component of the precipitation is HT-ppcb.

Fig. S6. The ¹H NMR spectrum of the precipitation (after hydrothermal treatment of a mixture of 1,3-H₂bdc, HT-ppcb and H₂O₂) in DMSO- d_6 at ambient temperature.

δ = 8.49 (s, 1H, Ph–H, 1,3-bdc), 8.30 (d, 4H, Py–H, 4-spy), 8.16 (d, 2H, Ph–H, 1,3-bdc), 7.62 (s, 1H, Ph–H, 1,3-bdc), 7.17–7.05 (m, 14H, Py–H and Ph–H of HT-ppcb), 4.58 (d, 4H, C–H, HT-ppcb).

NOTES:

The ¹H NMR spectrum confirmed that the organic component of the precipitation is a mixture of $1,3-H_2$ bdc and HT-ppcb.