Supporting Information

Fluorescent water-soluble perylenediimide-cored cationic dendrimers: synthesis, optical properties, and cell uptake

Zejun Xu^{\dagger}, Bicheng He^{\ddagger}, Jie Shen^{\ddagger}, Wantai Yang^{\dagger} and Meizhen Yin^{\dagger *}

[†] State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, China, E-mail: vinmz@mail.buct.edu.cn

[‡] Department of Entomology, China Agricultural University, 100193 Beijing, China

Materials

2-Hydroxyethylmetharylate (97%), acryloyl chloride (98%), triethylamine (Et₃N, 99.5%), 2,6-diisopropylaniline (90+%), N-methyl-2-pyrrolidone (NMP, 99+%), cysteamine (CA, 98%), anhydrous dimethyl sulfoxide (DMSO, 99.9%) were purchased from Alfa Aesar and used without further purification. 1, 6, 7, 12-Tetrachloroperylene-3, 4, 9, 10-tetracar-boxylic acid dianhydride was obtained from Beijing Wenhaiyang Perylene Chemistry (Beijing, China). All other solvents and reagents were purchased from commercial suppliers and were used as received. S2 cells were propagated in Schneider Drosophila Medium supplemented with 10% FBS, 100 U/mL penicillin and 100 μ g/mL streptomycin at 25 °C without CO₂.

Instruments

Nuclear magnetic resonance (NMR) spectra were recorded on Bruker 400 (400 MHz ¹H; 100 MHz ¹³C) or Bruker 600 (600 MHz¹H; 150 MHz¹³C) spectrometer using CDCl₃ and CF₃COOD as solvent at room temperature. Chemical shifts were reported downfield from 0.00 ppm using TMS as internal reference. Matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) were determined on Bruker Daltonics Inc. BIFLEX III MALDI-TOF (MW<3000) and AXIMA-CFR plus MALDI-TOF (MW>3000) mass spectrometer. The molecular weights (Mn) and molecular weight distributions (Mw/Mn) of dendrimers were determined by gel permeation chromatography (GPC), GPC measurements were performed on a Waters GPC system equipped with Waters Styragel columns, a Waters-2487 dual wavelength (λ) UV detector, and a Waters-2414 refractive index detector. Monodispersed dextran standards were used to obtain a calibration curve. The UV-Vis absorption spectra were recorded on a spectrophotometer (Cintra 20, GBC, and Australia). The corrected Fluorescence spectroscopic studies were performed on a fluorescence spectrophotometer (Horiba Jobin Yvon FluoroMax-4 NIR, NJ, USA) at room temperature (25 $^{\circ}$ C). Fluorescence quantum yields (FQYs) were measured at room temperature by using cresyl violet in methanol as reference ($\emptyset_f = 0.54$).¹ Dynamic light scattering (DLS) was performed with an argon ion laser (Stabilite 2060-04, λ 637.2 nm, Spectra-Physics), a SP-125 goniometer, and an ALV-5000 multiple-tau digital correlator. The temperature was kept constant at 293 K for light scattering measurements. Excited state life-time measurement data were collected using a Horiba Jobin Yvon Fluromax-4 spectroflurometer at 560 nm excitation for G1, G2, and G3.

Cytotoxicity Assay

Cell viability was monitored using TaliTM viability kit-Dead Cell Green (Invitrogen, Catalog A10787) that was a green-fluorescent nuclear and chromosome stain. It does not penetrate intact membranes, but easily penetrate compromised membranes characteristic of dead cells. The measurement was performed at 48 h post-incubation of dendrimer or dendrimer/DNA complexes. Replace the fresh cell medium after 48 h of incubation and then add 1 μ L Dead Cell Green into 100 μ L cell medium for 0.5 h incubation.

Cellular Uptake

Cellular uptake experiment was performed in 35 mm \times 35 mm cell culture dish, 2.5 \times 10⁵ cells per well. After 6 h of cell seeding, making the cells adhere to the bottom of the dish, add the dendrimer to the cell culture dish. Cellular uptake was imaged by fluorescent microscope. The fluorescence intensity of uptaken dendrimers was calculated by Image-J Program.

Transfection Efficiency

Single-strand DNA (20 bp, 100 μ M) was labled with 30 μ M CXR Reference Dye (Promega, Catalog C5411) that could bind with DNA at a final concentration of 0.3-0.5 μ M. DNA and dendrimer at different N/P ratios of 1:1, 2:1, 4:1 and 8:1 were pre-incubated in culture medium at room temperature and then treated with cells. After 24 h, 36 h and 48 h, the fluorescence images of dendrimers binding to DNA were obtained by fluorescent microscopy.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

Synthesis Schemes

1. Synthesis of G1

Scheme S1 Synthesis of **G1**: i) MAEA, first at room temperature for 24 h and then at 50 $^{\circ}$ C for another 50 h; ii) Cysteamine, DMSO, room temperature (r. t.), 45 min; iii) 2M HCl, CH₂Cl₂, r. t., 5 min.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

2. Synthesis of G2

Scheme S2 Synthesis of G2: i) MAEA, first at room temperature for 24 h and then at 50°C for another 72 h; ii) Cysteamine, DMSO, r. t., 45 min; iii) 2M HCl, CH_2Cl_2 , r. t., 5 min.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

3. Synthesis of G3

Scheme S3 Synthesis of 4a.

Scheme S4 Synthesis of 4b.

Scheme S5 Synthesis of G3.

Fig. S1 ¹H NMR spectra of **2a** and **2b** in CDCl₃ (Note: the characteristic peaks of methylene group (CH₂=) at 5.56 and 6.11 ppm disappeared completely, indicating the completion of the click reaction of **2a**).

UV-Vis Absorption and Fluorescence Emission Properties

Fig. S2 Concentration-dependent absorbance (A1, B1, and C1) and fluorescence (A2, B2, and C2) spectra in aqueous solutions of **G1-G3** (concentration: 1.0×10^{-6} M to 1.0×10^{-5} M, $\lambda_{ex} = 545$ nm).

From the inset of B1 and C1 (Fig. S2), a linear dose-dependent absorbance was observed over the whole concentration range of **G2** and **G3**. But in case of **G1**, when the concentration was higher than 5 μ M, a nonlinear curve was observed (Fig. S2A1). These indicate that the aggregation of central PDI in aqueous solution was inhibited by the increase of dendron generations. Therefore, all the dendrimers exist in a non-aggregated state in aqueous solution at concentrations below 5 μ M.

Fig. S3 Absorption and emission spectra of **G1**, **G2**, and **G3** in water (concentration: 2×10^{-6} M, $\lambda_{ex} = 545$ nm).

molecule no. λ_{abs}/nm λ_{em}/nm τ/ns

Table S1. Excited state life-time date of G1, G2, and G3 in water.

$\lambda_{\rm em}/{\rm nm}$ $\lambda_{\rm em}/{\rm nm}$	m τ/ns
60 615	0.03
60 615	0.22
60 615	1.37
	$\frac{\lambda_{\rm em}}{660} = \frac{\lambda_{\rm em}}{615}$

Table S2. Dynamic light scattering (DLS) data of G1, G2, and G3 in water.

molecule no.	number of NH ₃ ⁺ Cl ⁻	radius (nm)
	groups	in water
G1	8	1.1 ± 0.5
G2	16	1.8 ± 0.3
G3	32	3.2 ± 0.2

Table S3. The complex sizes of dendrimer and DNA (Dendriplex) at N/P=8:1 in water.

Dendriplex no.	Average size	
	(nm)	
G1/DNA	129.9 ± 1.1	
G2/DNA	136.5 ± 3.4	
G3/DNA	136.6 ± 2.1	

Fig. S4 Cell viability assays. (A) Fluorescence image of cells incubated with G3 and then subjected to the staining of Dead Cell Green. Arrows indicate dead cells. (B) Cell viability with 48h incubation of 2 μ M G1, G2, and G3. (C) Cell viability with 48h incubation of dendrimers and dendrimer/DNA complexes (2 μ M). The data were mean±SEM.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Synthesis and characterizations

1. Synthesis of 2-methacryloyloxyethyl acrylate (MAEA)

Scheme S6 Synthesis of MAEA.

2-Hydroxyethyl methacrylate (39 g, 0.30 mol) and triethylamine (50 mL, 0.36 mol) were dissolved in 200 mL CH₂Cl₂. Acryloyl chloride (26.2 mL, 0.33 mol) was added dropwise into the solution at 0 °C under nitrogen. The solution was then stirred at room temperature overnight. The precipitate was filtered and the filtrate was washed with water (100 mL×3). The organic phase was evaporated under reduced pressure. The further purification was done by column chromatography on silica gel (EtOAc/pentane=3/8 v/v) to afford the product as a colorless oil in a yield of 90.8% (50.1g).¹H-NMR (400 Hz, CDCl₃): δ ppm: 6.42 (m, 1H), 6.27-6.06 (m, 2H), 5.85 (m, 1H), 5.58 (m, 1H), 4.40 (m, 4H), 1.94 (s, 3H).

Fig. S5 ¹H NMR spectrum of MAEA in CDCl₃.

2. Synthesis of G1

Synthesis of compound 1

Compound **1** was synthesized according to the literature.² ¹H-NMR (400 MHz, CF₃COOD): δ ppm: 8.50 (s, 4H), 7.60 (d, *J* = 7.8 Hz, 2H), 7.47 (d, *J* = 7.9 Hz, 4H), 7.33 (d, *J* = 8.2 Hz, 8H), 7.20 (d, *J* = 8.3 Hz, 8H), 3.60 (s, 8H), 3.19 (s, 8H), 2.79-2.71 (m, 4H), 1.22 (d, *J* = 6.4 Hz, 24H). ¹³C-NMR (151 MHz, CF₃COOD), δ ppm: 166.20, 156.76, 154.78, 145.54, 132.63, 131.82, 130.92, 130.29, 128.47, 124.88, 122.16, 121.43, 121.09, 120.77, 120.14, 42.02, 31.96, 29.09, 22.41.MS (MALDI-TOF, m/z) Calc. for C₈₀H₇₈N₆O₈: 1251.51, found: 1250.6.

Fig. S6 MALDI-TOF MS spectrum of compound 1.

Synthesis of compound 2a

Compound **1** (0.2 g, 0.16 mmol) and MAEA (0.58 g, 3.15 mmol) were added in a 10-mL, two-necked reaction tube at room temperature under an N₂ atmosphere. The solution was first stirred overnight and then stirred at 50 °C for 48 h. After cooling down to room temperature, the solution was washed with hexane (30 mL × 3). The residue was dried under vacuum to give **2a** as a red oil in a yield of 98%. ¹H-NMR (400 Hz, CDCl₃): δ ppm: 8.20 (s, 4H, *perylene*), 7.40 (t, 2H, *Ph-H*), 7.27 (d, 4H, *Ph-H*), 7.09 (d, 8H, *Ph-H*), 6.91 (d, 8H, *Ph-H*), 6.11 (s, 8H, *HCH=C(CH₃)CO*), 5.56 (d, 8H, *HCH=C(CH₃)CO*), 4.32 (br, 32H, *COOCH₂CH₂OCO*), 2.87 (t, 16H, *CH₂CH₂CO*), 2.69 (m, 20H, *CH₂ & CH isopropyl*), 2.51 (t, 16H, *CH₂CO*), 1.9 (s, 24H, *CH2=C(CH₃)CO*), 1.12 (d, 24H, *CH₃ isopropyl*). ¹³C-NMR (CDCl₃, 400 Hz), δ ppm: 172.57, 167.26, 163.34, 156.48, 153.58, 145.80, 136.18, 133.31, 130.42, 126.26, 124.46, 122.94, 120.72, 120.22, 62.46, 56.05, 49.63, 32.90, 29.14, 24.18, 18.28. MS (MALDI-TOF, m/z) Calc. for C₁₅₂H₁₇₄N₆O₄₀, 2725.02; found: 2724.8.

Synthesis of compound 2b

Compound **2a** (0.218 g, 0.08 mmol) and cysteamine (0.062 g, 0.81 mmol) were dissolved in DMSO (1 mL). The solution was stirred at room temperature under N₂ atmosphere for 45 min. Dichloromethane (20 mL) was added to dilute the solution followed by washing with cold brine (30 mL×4). Evaporation of the solvent under reduced pressure afforded dendrimer **2b** as a red oil in 98.0% yield. ¹H-NMR (CDCl₃, 400 Hz): δ ppm: 8.12 (s, 4H, *perylene*), 7.35 (t, 2H, *Ph-H*), 7.20 (d, 4H, *Ph-H*), 7.03 (d, 8H, *Ph-H*), 6.84 (d, 8H, *Ph-H*), 4.22 (m, 32H, *COOCH*₂*CH*₂*OCO*), 2.81 (t, 16H, *SCH*₂*CH*₂*NH*₂), 2.77 (m, 32H, *CH*₂*SCH*₂), 2.61 (m, 24H, *CH*₂*CH*₂*CO* & *COCH*(*CH*₃)*CH*₂), 2.53 (m, 20H, *CH*₂ & *CH isopropyl*), 2.43 (t, 16H, *CH*₂*CO*), 1.18 (s, 24H, *CH*₂=*C*(*CH*₃)*CO*), 1.03 (d, 24H, *CH*₃ *isopropyl*). ¹³C-NMR (CDCl₃, 400 Hz), δ ppm: 174.60, 172.26, 163.07, 155.96, 153.36, 145.56, 136.84, 133.04, 130.45, 124.26, 122.66, 120.73, 120.10, 62.36, 60.85, 55.97, 49.15, 41.53, 40.11, 36.86, 35.12, 32.56, 29.74, 28.80, 24.07, 16.75. MS (MALDI-TOF, m/z) Calc. for C₁₆₈H₂₃₀N₁₄O₄₀S₈: 3342.21, found: 3343.57 (M+H⁺), 3364.75 (M+Na⁺), 3381.66 (M+K⁺).

Fig. S11 ¹H NMR spectrum of **2b** in $CDCl_3$.

Fig. S12¹³C NMR spectrum of 2b in CDCl₃.

Synthesis of the first-generation dendrimer G1

Dendrimer **2b** was dissolved in CH_2Cl_2 (2 mL), and then 2M HCl (2 mL) was added under stirring. After 5 min of stirring, the solvent was evaporated under reduced pressure. The obtained residue was precipitated by pouring into diethyl ether and re-dissolved in water (2 mL). The further dialysis and lyophilization afforded red solid **G1**.

3. Synthesis of G2

Synthesis of compound 3a

MAEA (0.5 g, 2.71 mmol) was added dropwise to **2b** (0.243 g, 0.072 mmol) in a 10-mL, two-necked reaction tube at room temperature under N₂ atmosphere. After stirring for 24 h, the solution was warmed gradually to 50 °C and stirred for another 72 h. The reaction mixture was washed with hexane (30 mL × 4). The crude product was re-dissolved in dichloromethane (20 mL), and then evaporation of solvent under reduced pressure resulted in the product **3a** as a red oil in 90% yield. ¹H-NMR (400 Hz, CDCl₃): δ ppm: 8.18 (s, 4H, *perylene*), 7.41 (t, 2H, *Ph-H*), 7.25 (d, 4H, *Ph-H*), 7.10 (d, 8H, *Ph-H*), 6.92 (d, 8H, *Ph-H*), 6.12 (s, 16H, *HCH=C(CH₃)CO*), 5.59 (d, 16H, *HCH=C(CH₃)CO*), 4.33-4.27 (br, 96H, *COOCH₂CH₂OCO*), 2.90-2.42 (m, 172H, $CH_2NCH_2CH_2CO \& COCH(CH_3)CH_2 \& SCH_2CH_2N \& CH(CH_3)CH_2S \& CH_2CH_2CO \& CH_2 \& CH isopropyl), 1.94 (s, 48H, <math>CH_2=C(CH_3)CO$), 1.25 (d, 24H, $COCH(CH_3)CH_2$), 1.11 (d, 24H, CH_3 isopropyl). ¹³C-NMR (CDCl₃, 400 Hz), δ ppm: 175.30, 173.03, 167.29, 163.65, 156.76, 154.02, 146.06, 136.36, 133.63, 130.86, 126.50, 124.20, 123.08, 120.98, 120.54, 62.84, 56.40, 54.31, 49.32, 40.57, 36.05, 33.08, 30.98, 30.30, 29.59, 24.38, 18.35, 17.25. MS (MALDI-TOF, m/z) Calc. for C₃₁₂H₄₂₂N₁₄O₁₀₄S₈: 6289.24, found: 6290.33 (M+H⁺), 6314.61 (M+Na⁺), 6328.42 (M+K⁺).

Fig. S13 MALDI-TOF MS spectrum of compound 3a.

Fig. S14 ¹H NMR spectrum of compound **3a** in CDCl₃.

Fig. S15 ¹³C NMR spectrum of compound **3a** in CDCl₃.

Synthesis of compound 3b

3b was synthesized by using compound **3a** (0.075 g, 0.012 mmol) and cysteamine (0.0195 g, 0.25 mmol) according to the same procedure as for the synthesis of **2b. 3b** was received as a red oil in 92% yield. ¹H-NMR (400 MHz, CDCl₃): δppm: 8.18 (s, 4H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.28 (s, 4H), 7.12 (d, *J* = 7.5 Hz, 8H), 6.91 (d, *J* = 7.1 Hz, 8H), 4.30 (s, 96H), 2.88-2.47 (m, 284H), 1.26 (d, *J* = 5.1 Hz, 72H), 1.11 (d, *J* = 4.9 Hz, 24H). ¹³C-NMR (CDCl₃, 400 Hz), δppm: 174.21, 171.61, 162.39, 155.41, 152.82, 145.32, 135.82, 130.31, 129.45, 123.67, 122.21, 119.87, 119.37, 66.15, 61.59, 55.79, 52.77, 52.02, 51.68, 48.50, 40.63, 39.40, 34.38, 31.86, 29.08, 23.31, 21.06, 16.16.

Fig. S17¹³C NMR spectrum of 3b in CDCl₃.

Synthesis of the second generation G2

G2 was synthesized from dendrimer 3b according to the same procedure as for the synthesis of G1.

4. Synthesis of G3

Synthesis of compound 4a

Compound **4a** was synthesized by using **3b** (0.09 g, 0.012 mmol) and MAEA (1.3 g, 7.06 mmol) according to the same procedure as for the synthesis of **2a.** Compound **4a** was received as a red oil in 95% yield. ¹H-NMR (400 MHz, CDCl₃): δ ppm: 8.18 (s, 4H), 7.42 (s, 2H), 7.27-7.24 (m, 4H), 7.11 (d, *J* = 7.1 Hz, 8H), 6.92 (s, 8H), 6.13 (s, 32H), 5.60 (s, 32H), 4.31 (d, *J* = 22.1 Hz, 224H), 2.88-2.44 (m, 412H), 1.95 (s, 96H), 1.25 (d, *J* = 6.5 Hz, 72H), 1.10 (s, 24H). ¹³C-NMR (CDCl₃, 400 Hz), δ ppm: 174.55, 172.49, 167.30, 163.26, 156.05, 153.17, 145.65, 135.84, 130.31, 125.73, 123.41, 123.08, 120.21, 119.95, 62.32, 62.18, 62.07, 53.79, 49.06, 48.96, 40.17, 35.53, 32.56, 32.47, 31.49, 30.34, 29.60, 28.98, 23.94, 22.56, 18.20, 16.80.

Fig. S18 ¹H NMR spectrum of compound **4a** in CDCl₃.

Fig. S19 13 C NMR spectrum of compound **4a** in CDCl₃.

Synthesis of compound 4b

4b was synthesized by using compound **4a** and cysteamine according to the same procedure as for the synthesis of **2b. 4b** was received as a red oil in 90% yield. ¹H-NMR (400 MHz, CDCl₃): δ ppm: 8.18 (s, 4H), 7.41 (d, *J* = 7.3 Hz, 2H), 7.26 (s, 4H), 7.11 (d, *J* = 7.2 Hz, 8H), 6.92 (s, 8H), 4.30 (s, 224H), 2.89-2.48 (m, 636H), 1.43 (s, 96H), 1.27 (s, 72H), 1.11 (s, 24H). ¹³C-NMR (CDCl₃, 400 Hz), δ ppm: 173.81, 170.80, 161.88, 154.85, 152.08, 144.33, 134.49, 128.81, 126.96, 123.98, 122.86, 121.44, 118.52, 65.52, 61.18, 54.55, 52.59, 52.16, 51.15, 47.75, 39.90, 39.02, 35.55,34.34, 33.79, 32.93, 31.33, 29.03, 25.32, 22.74, 20.49, 19.89.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Fig. S21 ¹³C NMR spectrum of **4b** in CDCl₃.

Synthesis of the third generation (G3)

G3 was synthesized from dendrimer 4b according to the same procedure as for the synthesis of G1.

Fig. S22 Molecular weight progress of G1-G3 measured by GPC.

G1-G3 molecular weights were characterized by gel permeation chromatography (GPC) in aqueous solution (Fig. S22). The molecular weights increased with increasing generations and their distributions were very narrow (all the polydispersity index (M_w/M_n) were less than 1.15).

References

- 1. C. Kohl, T. Weil, J. Qu and K. Müllen, Chem. Eur. J., 2004, 10, 5297.
- 2. H. A. Klok, J. R. Hernánedz, S. Becker and K. Müllen, *Journal of Polymer Science: Part A: Polymer Chemistry*, 2001, **39**, 1572.