Electronic supplementary information

Fingerprint signatures of lanthanide circularly polarized luminescence from proteins covalently labeled by a β -diketonate europium(III) chelate

Junpei Yuasa*, Tomoko Ohno, Hiroyuki Tsumatori, Rumi Shiba, Hironari Kamikubo, Mikio Kataoka, Yasuchika Hasegawa, Tsuyoshi Kawai*

Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan,

* To whom correspondence should be addressed. E-mail: yuasaj@ms.naist.jp; tkawai@ms.naist.jp

Experimental Section

2,5-dioxopyrrolidin-1-yl4'-(4,4,5,5,5-pentafluoro-3-oxopentanoyl)-[1,1'-biphenyl]-4carboxylate (DK) was perched from KNC Laboratories Co., Ltd. ¹H NMR (300 MHz, CDCl₃) [deprotonated form]: $\delta = 8.26$ (d, J = 8.7 Hz, 2H), 8.08 (d, J = 8.7 Hz, 2H), 7.78 (d, J = 8.7 Hz, 4H), 6.70 (s, 1H), 2.94 (s, 4H). HRMS [ESI-MS (negative)]: m/z calcd. for C₂₂H₁₃F₅N₁O₆([M-H]⁻), 482.06630; found 482.06638. The labeling reaction of DK with proteins was performed as follows: DK (5 mg, 0.01 mmol) was introduced into 5 ml aqueous solution of proteins (5 mg). The cloudy mixture stirred for 24 h at 4 °C, and was filtrated to remove unreacted DK molecules. In the emission lifetime measurements, the samples were excited by a N₂ laser (Usho KEC-160; wavelength, 337 nm; pulse width, 600 ps; 10 Hz). The emission profiles were recorded using a streak camera (Hamamatsu, picosecond fluorescence measurement system, C4780). Emission quantum yields of proteins and Lys labeled with DK-Eu³⁺ were measured using a calibrated integrating sphere system in aqueous solution.

The emission spectra were measured at room temperature using JASCO FP-6500. A schematic diagram of the CPL measurement system used in this study is given (see ESI[†], S5).

Fig. S1 MALDI-TOF positive ion [M + H] mass spectra of (a) Ins-DK and (b) Lys-DK.

I

(b)

I

(c)

I

600

0.2 0.4 0.6 0.8 1.0 10⁵ [Eu³⁺] / mol dm⁻³

660

640

Fig. S2 Emission spectral changes observed upon addition of EuCl₃ to an aqueous solution of (a) SNase-DK ($1.6 \times 10^{-6} \text{ mol dm}^{-3}$), (b) BSA-(DK)₄ ($1.1 \times 10^{-5} \text{ mol dm}^{-3}$), and (b) Ins-DK (2.5 $\times 10^{-6}$ mol dm⁻³) at 298 K. Excitation wavelength $\lambda = 290$ nm. Inset: plot of emission intensity at $\lambda = 613$ nm vs. [Eu³⁺]. The titration curves can be well fitted using eqn [K([Eu³⁺] - α [L]₀) = $\alpha(1-\alpha)^{-1}$] representing a 1:1 interaction model, where $\alpha = (I-I_0)/(I_{\infty}-I_0)$ at $\lambda = 613$ nm, I_0 and I_{∞} are the emission intensity due to DK and a 1:1 complex DK-Eu³⁺ bound to proteins at λ = 613 nm, respectively. K denotes the binding constant between Eu^{3+} and DK bound to proteins.

620

Wavelength / nm

Fig. S3 (a) CD spectra of aqueous solutions of SNase-DK (2.4×10^{-5} M: blue line), SNase-(DK-Eu³⁺) (4.8×10^{-6} M, [Eu³⁺] = 5.3×10^{-6} M: red line), SNase (3.9×10^{-7} M: black line), and that in the presence of EuCl₃ (4.5×10^{-4} M: black dashed line). (b) UV-vis absorption spectra of aqueous solutions of SNase-DK (8.5×10^{-6} M: blue line), SNase-(DK-Eu³⁺) (8.5×10^{-6} M, [Eu³⁺] = 9.4×10^{-6} M: red line), SNase (3.9×10^{-7} M: black line), and that in the presence of EuCl₃ (4.5×10^{-6} M: red line). (c) Emission spectra of aqueous solutions of SNase (3.9×10^{-7} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black dashed line). (c) Emission spectra of aqueous solutions of SNase (3.9×10^{-7} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line) $\lambda = 360$ nm.

Fig. S4 (a) CD spectra of aqueous solutions of Ins-DK (4.6×10^{-6} M: blue line), Ins-(DK-Eu³⁺) (4.6×10^{-6} M, [Eu³⁺] = 5.1×10^{-6} M: red solid line), Ins (2.2×10^{-7} M: black line), and that in the presence of EuCl₃ (4.5×10^{-4} M: black dashed line). (b) CD spectra of aqueous solutions of Ins-DK (4.6×10^{-6} M: blue line), Ins-(DK-Eu³⁺) (4.6×10^{-6} M, [Eu³⁺] = 5.1×10^{-6} M: red solid line), Ins (2.2×10^{-7} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line), and that in the presence of EuCl₃ (4.5×10^{-4} M: black line), and that in the presence of EuCl₃ (4.5×10^{-4} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line) for $(2.2 \times 10^{-7}$ M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line) and that in the presence of EuCl₃ (4.5×10^{-4} M: black line). Excitation wavelength $\lambda = 360$ nm.

Scheme S5 illustrates schematic diagram of our CPL measurement system in which an excitation laser of 375 nm in wavelength is irradiated to the sample from the same-side to the detection in the epi illumination con-figuration. The retardation of the emitted light was controlled by a photo-elastic modulator (Hinds, PEM-90) that is modulated with the frequency of 50kHz. The circularly polarized component was converted to the linearly polarized light and detected by a photomultiplier tube (Hamamatsu, H7732-10) after passing through the linearly polarized cubic prism (200,000:1) for analyzing circularly polarized luminescence (CPL) signal. In order to maintain a circularly polarized component in the emission, the dichroic filter was precisely settled to be 45° against the optical path. The AC component of the PMT output with frequency of 50kHz was analyzed by a lock-in amplifier (EG&G, Model 7265), which can be modulated by the reference frequency signal from the PEM. A PC system controls a monochromator and the PEM for the appropriate detection wavelength. The emission intensity and the CPL dissymmetry, $g_{\text{lum}} = 2(I_{\text{L}} - I_{\text{R}})/(I_{\text{L}} + I_{\text{R}})$, were evaluated by the DC component and ratio of AC and DC components, respectively, as a function of wavelength. The calibration of the EI-CPL was performed by reference to obtained data from a CPL spectrometer (JASCO, A description of other components in the measurement system as follows; CPL-200). depolarizer (SIGUMA KOKI CO., LTD., DEQ-S2), dichroic mirror (Chroma Technology Corp., Z375RDC), polarizing prism (Edmund Optics Japan Ltd., 47045-K), monochromator (SHIMADZU CORPORATION, SPG-120S), pre-amplifier (Stanford Research Systems, SR570).