Supplementary Information

Evolution of Nano- to Microsized Spherical Assemblies of Fluorogenic Biscalixarenes into Supramolecular Organogels

Chia-Chen Tsai, Kai-Chi Chang, I-Ting Ho, Jean-Ho Chu, Ying- Tsai Cheng, Li-Ching Shen, and Wen-Sheng Chung*

Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050, Republic of China wschung@nctu.edu.tw

Page No.	Contents						
S2	Figure S1. FM-SEM and TEM images of the xerogels of 1.						
S 3	Figure S2. (a) CLSM images of organogel 1 with different depth in						
	CH ₃ CN (0.5 mM). λ_{ex} = 405 nm; λ_{em} = 415–500 nm and (b) Entire						
	image stacks in Z axis.						
S4	Figure S3. Variable-temperature ¹ H-NMR spectra of gelator 1 (3.0						
	mM) in CD_3CN .						
S5	Figure S4. Changes in absorption and fluorescence spectra of						
	biscalixarene 1 in CH_3CN .						
S6	Scheme S1. Syntheses of biscalix[4]arenes 1-6.						
S7	Scheme S2. Synthesis of control compound 7.						
S7–S12	General procedures for the syntheses of biscalix[4]arenes 1-6.						
S13-S19	Figures S5–S18. ¹ H NMR (300 MHz) and ¹³ C NMR (75.5 MHz).						
S20	Table S1. Gelation properties of compounds 1–7 in different solvents.						

Materials:

Materials: All solvents were purified according to reported procedures. Unless otherwise noted, reagents and materials were obtained from commercial suppliers and were used without further purification.

General Methods:

¹H and ¹³C NMR spectra were obtained on Varian VNMRS-600, UNITY INOVA-500, and Bruker DRX 300 NMR in CDCl₃, CD₃CN, or with TMS as internal standard. FE-SEM measurements were carried out on JEOL JSM-7401. Transmission Electron Micrographs (TEM) were recorded on a JEOL JEM-3000 F. CLSM images were recorded on Leica TCS SP5 X AOBS. UV-Vis spectra were obtained on a HP-8453 spectrophotometer. Fluorescence spectra were recorded on a HORIBA Fluoromax 4.

Figure S1. Morphology of self-assembled objects of **1**. FM-SEM images of the xerogels of **1** (a) and (b) 5×10^{-5} M, (c) 1×10^{-3} M in CH₃CN, (d) 5×10^{-3} M in CHCl₃, and (e) TEM image of a xerogels **1** in CH₃CN (0.5 mM).

(b)

Figure S2. (a) CLSM images of organogel **1** with different depths in CH₃CN (0.5 mM). $\lambda_{ex} = 405$ nm; $\lambda_{em} = 415-500$ nm. (b) Entire image stack in Z axis.

Figure S3. Variable-temperature ¹H-NMR spectra of gelator 1 (3.0 mM) in CD₃CN, where * denotes signal of an external standard TMS.

Figure S4. Changes in the UV-Vis and fluorescence spectra of biscalixarene 1 in CH_3CN . (a) Temperature-dependent absorption spectra (0.5 mM), (b) concentration-dependent absorption spectra, (c) temperature-dependent fluorescence spectra (2.0 mM), and (d) normalized fluorescence spectra for various concentrations of 1 at 25 °C. The excitation wavelength was 391 nm.

Scheme S1. Syntheses of biscalix[4]arenes 1-6.

Scheme S2. Synthesis of control compound 7.

General procedures for the syntheses of biscalix[4]arenes 1-6.

9,10-Bis-isoxazolylanthrylmethyl linked biscalix[4]arene, 1. mixture of А 25-propargyloxy-26,27,28-trihydroxycalix[4]arene (0.20 g, 0.30 mmol) and 8 (0.04 g, 0.15 mmol) in THF (15 mL) was heated at reflux for 24 h under N2 (g). After evaporation of the solvent, the mixture was washed with water and extracted with dichloromethane. The organic phase was dried over MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography with ethyl acetate/n-hexane as eluent to give 0.15 g (62.2%) of **1** as a yellow solid; mp 180–182 °C; $R_f = 0.35$ (ethyl acetate/n-hexane (v/v, 1:5)). ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 10.13 (s, 2H), 9.34 (s, 4H), 8.11–8.08 (m, 4H), 7.61–7.58 (m, 4H), 7.28–7.07 (m, 18H), 5.63 (s, 4H), 4.55(d, 4H, J = 13.2 Hz), 4.33 (d, 4H, J = 13.8 Hz), 3.61 (d, 4H, J = 13.2 Hz), 3.51 (d, 4H, J = 13.8 Hz), 1.33–1.29 (m, 72H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) $\delta_{\rm C}$ 167.2 (Cq), 161.4 (Cq), 149.1 (Cq), 148.8 (Cq), 148.3 (Cq), 147.7 (Cq), 143.6 (Cq), 143.3 (Cq), 133.5 (Cq), 130.3 (Cq), 128.1 (Cq), 127.7 (Cq), 127.7(Cq), 126.8 (CH), 126.0 (CH), 125.9 (CH), 125.7 (CH), 125.7 (CH), 125.5 (Cq), 108.8 (CH), 67.6 (CH₂), 34.3 (Cq), 34.0 (Cq), 33.9 (Cq), 32.9 (CH₂), 32.4 (CH₂), 31.5 (CH₃), 31.2 (CH₃) ppm. FAB-MS m/z 1634 (M + H⁺), 1633 (M⁺); HRMS (FAB) calcd for $C_{110}H_{124}O_{10}N_2$ 1632.9256; found 1632.9275.

1,4-Bis-isoxazolyl-phenylmethyl linked biscalix[4]arene, 2. Triethylamine (0.35 mmol) in

ethanol (1.9)mL) slowly added well-stirred solution of was to a 25-propargyloxy-26,27,28-trihydroxycalix[4]arene (0.40 g, 0.69 mmol) and hydroximoyl chloride 9 (0.07 g, 0.31 mmol) in ethanol (30 mL). The reaction mixture was stirred at reflux for 24 h under N_2 (g). After evaporation of the solvent, the mixture was washed with water and extracted with dichloromethane. The organic phase was dried over MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography using ethyl acetate/n-hexane as eluent to give 0.20 g (42.7%) of 2 as a yellow solid; mp 178–180 °C; $R_f = 0.45$ (ethyl acetate/*n*-hexane = 1:4); ¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ 10.00 (s, 2H), 9.16 (s, 4H), 8.03 (s, 4H), 7.12–6.99 (m, 16H), 5.39 (s, 4H), 4.33 (d, 4H, J = 13.2 Hz), 4.26 (d, 4H, J = 13.7 Hz), 3.46 (d, 4H, J = 13.2 Hz), 3.44 (d, 4H, J = 13.7 Hz), 1.22–1.20 (m, 72H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz): $\delta_{\rm C}$ 167.6 (Cq), 162.1 (Cq), 149.0 (Cq), 148.9 (Cq), 148.3 (Cq), 147.5 (Cq), 143.7 (Cq), 143.2 (Cq), 133.2 (Cq), 130.4 (Cq), 128.1 (Cq), 127.7 (Cq), 127.6 (CH), 127.4 (Cq), 126.7 (CH), 125.8 (CH), 125.7 (CH), 125.6 (CH), 102.8 (CH), 68.1 (CH₂), 34.3 (Cq), 34.0 (Cq), 33.9 (Cq), 32.9 (CH₂), 32.2 (CH₂), 31.4 (CH₃), 31.2 (CH₃) ppm. FAB-MS m/z 1534 (M + H⁺), 1533 (M⁺); HRMS (FAB) calcd for C₁₀₂H₁₂₀O₁₀N₂ 1532.8943; found: 1532.8916.

2,5-Bis-isoxazolylthiophene-methyl linked biscalix[4]arene, 3. Triethylamine (97.1 mg, 0.96 mmol) dissolved in toluene (3 mL) was slowly added to a well-stirred solution of 25-propargyloxy-26,27,28-trihydroxycalix[4]arene (0.7g, 1.02 mmol) and hydroxyimoyl chloride **10** (0.12g, 0.48 mmol) in toluene (7 mL). The reaction mixture was stirred at reflux for 14 h under N₂ (g). After evaporation of the solvent, the mixture was washed with water and extracted with ethyl acetate. The organic layer was dried over MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography with ethyl acetate/*n*-hexane to give **3** as a yellow solid in 57% (425 mg) yield. mp 163-168 °C; $R_f = 0.63$ (ethyl acetate/*n*-hexane (v/v, 1:4)). ¹H NMR (300 MHz,

CDCl₃) $\delta_{\rm H}$ 9.99 (s, 2H), 9.12 (s, 4H) , 7.59 (s, 2H), 7.11-6.99 (m, 18H), 5.37 (s, 4H), 4.31 (ABq, J = 13.2 Hz, 4H), 4.26 (ABq, J = 14.4 Hz, 4H), 3.45 (ABq, J = 13.2 Hz, 4H), 3.43 (ABq, J = 14.4 Hz, 4H), 1.29-1.19 (m, 72H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) $\delta_{\rm C}$ 167.7 (Cq), 157.6 (Cq), 148.9 (Cq), 148.8 (Cq), 147.5 (Cq), 143.7 (Cq), 143.3 (Cq), 133.2 (Cq), 132.5 (Cq), 128.3 (CH), 128.2 (Cq), 127.6 (Cq), 127.4 (Cq), 126.8 (CH), 125.9 (CH), 125.7 (CH), 125.6 (CH), 102.8 (CH), 77.2 (Cq), 68.0 (CH₂), 34.4 (Cq), 34.0 (Cq), 33..9 (Cq), 32.9 (CH₂), 32.2 (CH₂), 31.5 (CH₃), 31.4 (CH₃), 31.2 (CH₃) ppm. FAB-MS *m*/*z* 1540 (M + H⁺); HRMS (FAB) calcd for C₁₀₀H₁₁₈O₁₀N₂S 1538.8507; found 1538.8536.

1,3-(5-Bromo)-bis-isoxazolybenzen-methyl linled biscalix[4]arene, 4. Triethylamine (0.03 g, 0.32 mmol) dissolved in toluene (1 mL) was slowly added to a well-stirred solution of 25-propargyloxy-26,27,28-trihydroxycalix[4]arene (0.22 g, 0.32 mmol) and hydroxyimoyl chloride 11 (0.05 g, 0.16 mmol) in toluene (4 mL). The reaction mixture was stirred at reflux for 14 h under $N_{2(g)}$. After evaporation of the solvent, the mixture was washed with water and extracted with ethyl acetate. The organic layer was dried over MgSO4 and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography with ethyl acetate /n-hexane to give 4 as a white solid in 71% (0.18 g) yield. mp 164-167 °C; $R_f = 0.71$ (ethyl acetate/*n*-hexane (v/v, 1:5)). ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 9.98 (s, 2H), 9.12 (s, 4H), 8.31 (t, J = 0.9 Hz, 1H), 8.18 (d, J = 0.9 Hz, 2H), 7.12-6.99 (m, 18H,), 5.39 (s, 4H), 4.31 (ABq, J = 13.2 Hz, 4H), 4.26 (ABq, J = 14.4 Hz, 4H), 3.45 (ABq, J = 13.2 Hz, 4H), 3.43 (ABq, J = 14.4 Hz, 4H), 1.29-1.19 (m, 72H) ppm.¹³C NMR (CDCl₃, 75.5 MHz) δ_C 167.9 (Cq), 161.1 (Cq), 148.9 (Cq), 148.3 (Cq), 147.5 (Cq), 143.6 (Cq), 143.2 (Cq), 133.2 (Cq), 131.3 (CH), 128.1 (Cq), 127.6 (Cq), 127.4 (Cq), 126.8 (CH), 125.9 (CH), 125.7 (CH), 125.6 (CH), 124.2 (CH), 123.7 (Cq), 102.9 (CH), 67.8 (CH₂), 34.3 (Cq), 34.0 (Cq), 33.9 (Cq), 32.9 (CH₂), 32.2 (CH₂), 31.5 (CH₃), 31.2 (CH₃) ppm. FAB-MS *m/z* 1612 (M + H⁺); HRMS (FAB) calcd for C₁₀₂H₁₁₉O₁₀N₂Br 1610.8048; found 1610.8043.

1,3-(5-Phenylethynyl)-bis-isoxazolybenzen-methyl linked biscalix[4]arene, 5. Triethylamine (0.012g, 0.12 mmol) dissolved in toluene (1 mL) was slowly added to a well-stirred solution of 25-propargyloxy-26,27,28-trihydroxycalix[4]arene (0.08g, 0.12 mmol) and hydroxyimoyl chloride 12 (0.02 g, 0.06 mmol) in toluene (4 mL). The reaction mixture was stirred at reflux for 8 h under $N_{2(g)}$. After evaporation of the solvent, the mixture was washed with water and extracted with dichloromethane. The organic layer was dried over MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography with ethyl acetate/n-hexane to give 5 as a white solid in 54.0% (0.05g) yield. mp 135-140 °C; $R_f = 0.56$ (/*n*-hexane (v/v, 1:5)). ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 10.01 (s, 2H), 9.13 (s, 4H), 8.35 (t, J = 1.5 Hz, 1H), 8.17 (d, J = 1.5 Hz, 2H), 7.60-7.56 (m, 2H), 7.47-7.44 (m, 3H), 7.25-6.98 (m, 18H), 5.39 (s, 4H), 4.31 (d, 4H, J = 13.5 Hz), 4.26 (d, 4H, J = 13.7 Hz), 3.45 (d, 4H, J = 13.5 Hz), 3.42 (d, 4H, J = 13.7 Hz), 1.22-1.20 (m, 72H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) $\delta_{\rm C}$ 167.7 (Cq), 161.7 (Cq), 148.9 (Cq), 148.8 (Cq), 148.3 (Cq), 147.6 (Cq), 143.6 (Cq), 143.2 (Cq), 133.3 (Cq), 131.8 (CH), 131.4 (CH), 129.9 (Cq), 128.7 (CH), 128.4 (CH), 128.2(Cq), 127.7 (Cq), 127.5(Cq), 126.8(CH), 125.9 (CH), 125.7 (CH), 125.6 (CH), 125.2 (Cq), 125.0 (CH), 122.6 (Cq), 103.0 (CH), 91.3 (Cq), 87.9 (Cq), 67.8 (CH₂), 34.4 (Cq), 34.0 (Cq), 33.9 (Cq), 32.9 (CH₂), 32.2 (CH₂), 31.5 (CH₃), 31.2 (CH₃). FAB-MS m/z 1634 (M + H⁺); HRMS (FAB) calcd for C₁₁₀H₁₂₄O₁₀N₂ 1632.9256, found 1632.9218.

9,10-(Bis-triazole)-methylanthryl methyl linked biscalix[4]arene, 6. To a well stirred solution of 25-propargyloxy-26,27,28-trihydroxycalix[4]arene (476 mg, 0.7 mmol) and anthracene derivative **13** (100 mg, 0.34 mmol) in 10 mL THF was added CuI (13.2 mg, 0.07 mmol). The reaction mixture was reflux for 10 h. After evaporation of solvent, the residue was dissolved in CH_2Cl_2 and extracted with H_2O . The organic layer was dried over MgSO₄ and the filtrate was concentrated under reduced pressure. The solid product was purified by

column chromatography to afford **6** (394 mg, 67%) as a yellow powder. mp 198-200 °C; $R_f = 0.33$ (/*n*-hexane (v/v, 1:4)). ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 9.15 (s, 2H), 8.70 (s, 4H), 8.49–8.46 (m, 4H), 7.91 (s, 2H), 7.68–7.64 (m, 4H), 6.98–6.83 (m, 16H), 6.37 (s, 4H), 5.12 (s, 4H), 4.11 (d, 4H, J = 13.2 Hz), 3.36 (d, 4H, J = 13.5 Hz), 3.24 (d, 4H, J = 13.2 Hz), 3.16 (d, 4H, J = 13.5 Hz), 1.15–1.14 (m, 72H) ppm. ¹³C NMR (CDCl₃, 75.5 MHz) $\delta_{\rm C}$ 148.6 (Cq), 148.4 (Cq), 147.8 (Cq), 147.4 (Cq), 143.6 (Cq),143.1 (Cq), 133.6 (Cq), 130.8 (Cq), 127.9 (Cq), 127.7 (CH), 127.6(Cq), 127.5 (Cq), 127.4 (Cq), 126.7 (Cq), 126.3 (CH), 125.7 (CH), 125.5 (CH), 124.7 (Cq), 124.2 (CH), 123.8 (CH), 69.4 (CH₂), 46.3 (CH₂), 34.2 (Cq), 34.0 (Cq), 33.8 (Cq), 32.6 (CH₂), 32.0 (CH₂), 31.5 (CH₃), 31.4 (CH₃), 31.1 (CH₃). FAB-MS m/z 1661 (M⁺); HRMS (FAB) calcd for C₁₁₀H₁₂₈O₈N₆ 1660.9794, found 1660.9790.

3,3'-Anthracene-9,10-diylbis{5-[4-*tert***-butylphenoxy)methyl]isoxazole}, 7.** A mixture of 1-*tert*-butyl-4-(prop-2-ynyloxy)benzene (0.20 g, 1.07 mmol) and **8** (0.12 g, 0.48 mmol) in THF (25 mL) was stirred and heated at reflux for 24 h under N₂ system. The solvent was removed under vacuum and the residue was purified by silica gel column chromatography with ethyl acetate/*n*-hexane as eluent to give 0.16 g (52.1%) of **7** as a yellow solid; mp 231–233 °C; $R_f = 0.45$ (ethyl acetate/*n*-hexane (v/v, 1:4)). ¹H NMR (300 MHz, CDCl₃) δ_H 7.88–7.85 (m, 4H), 7.49–7.45 (m, 4H), 7.38 (d, 4H, J = 8.7 Hz), 7.00 (d, 4H, J = 8.7 Hz), 6.64 (s, 2H), 5.37 (s, 4H), 1.31 (s, 18H) ppm. ¹³C NMR (75.5 MHz, CDCl₃) δ_C 168.9 (Cq), 160.8 (Cq), 155.5 (Cq), 144.7 (Cq), 130.1 (Cq), 126.5 (CH), 125.9 (CH), 125.5 (Cq), 114.4 (CH), 106.8 (CH), 61.7 (CH₂), 34.1 (Cq), 31.5 (CH₃) ppm. FABMS m/z 637 (M+H⁺), 636 (M⁺).; HRMS calcd for C₄₂H₄₀O₄N₂ 636.2988; found 636.2994.

Figure S7. ¹H NMR (300 MHz) spectrum of 2 in CDCl₃.

Figure S8. ¹³C NMR (75.5 MHz) spectra of 2 in CDCl₃.

Figure S9. ¹H NMR (300 MHz) spectrum of 3 in CDCl₃.

Figure S10. ¹³C NMR (75.5 MHz) spectra of 3 in CDCl₃.

Figure S12. ¹³C NMR (75.5 MHz) spectra of 4 in CDCl₃.

Figure S13. ¹H NMR (300 MHz) spectrum of 5 in CDCl₃.

Figure S14. ¹³C NMR (75.5 MHz) spectra of 5 in CDCl₃.

Figure S15. ¹H NMR (300 MHz) spectrum of 6 in CDCl₃.

Figure S16. ¹³C NMR (75.5 MHz) spectra of 6 in CDCl₃.

solvent	1	2	3	4	5	6	7
CH_2Cl_2	S	S	S	S	S	S	S
CHCl ₃	S	S	S	S	S	S	S
DMSO	S	S	S	S	S	S	S
DMF	S	S	S	S	S	S	S
THF	S	S	S	S	S	S	S
EA	S	S	S	S	S	S	S
toluene	S	S	S	S	S	S	S
acetone	S	S	S	S	S	S	S
CH ₃ CN	G (5.0)	S	Ι	Ι	Ι	S	Ι
MeOH	Ι	Ι	Ι	Ι	Ι	Ι	Ι
EtOH	Ι	Ι	Ι	Ι	Ι	Ι	Ι
<i>n</i> -propanol	Ι	Ι	Ι	Ι	Ι	Ι	Ι
isopropanol	Ι	Ι	Ι	Ι	Ι	Ι	Ι
<i>n</i> -butanol	Ι	Ι	Ι	Ι	Ι	Ι	Ι
<i>t</i> -butanol	Ι	Ι	Ι	Ι	Ι	Ι	Ι
cyclohexane	Ι	Ι	Ι	Ι	Ι	Ι	Ι
hexane	Ι	Ι	Ι	Ι	Ι	Ι	Ι

Table S1. Gelation properties of compounds **1–7** in different solvents.^a

 a G = gel, I = insoluble, and S = solution. The minimum gelation concentration (mg/mL) is included in the parentheses.