Supplementary Information for

Microwave-Assisted Solvothermal Synthesis of Zirconium Oxide Based Metal-Organic Frameworks

Weibin Liang and Deanna M. D'Alessandro* School of Chemistry, The University of Sydney, New South Wales 2006, Australia

EXPERIMENTAL SECTION

Syntheses

Microwave Heating: Microwave syntheses of MIL-140A-MW, MIL-140B-MW and MIL-140A-NH₂-MW were conducted using an Anton Paar Monowave 300 microwave oven. A 30 mL glass microwave vial was charged with 0.25 mmol ZrCl₄ (> 99.9%, Sigma-Aldrich) and 0.5 mmol 1,4-benzenedicarboxylic acid (H₂bdc, 98%, Sigma-Aldrich), 2,6-naphthalenedicarboxylic acid (H₂ndc, 99%, Sigma-Aldrich) or 2-amino-1,4-benzenedicarboxylic acid (H₂abdc, 99%, Sigma-Aldrich). Thereafter, 0.04 mL (0.7 mmol) of acetic acid and 2.5 mL of *N*,*N'*-dimethylformamide (DMF) were introduced. The mixture was heated with magnetic stirring to 220 °C within 2 min, and held at this temperature for 15 min before cooling to 55 °C within 2 min. The precipitates were vacuum filtered, and repeatedly washed with DMF and acetone. The materials were subsequently solvent exchanged with methanol using a Soxhlet washing procedure for 12 h. The resulting powder was dried in air. Elemental analysis calculated for the newly synthesised framework MIL-140A-NH₂-MW ([ZrO(O₂C-C₆H₅N-CO₂)]): C, 33.54; H, 1.75; N, 4.90 %; experimental: C, 32.16; H, 1.95; N, 4.16 %.

Conventional Electric Heating. MIL-140A-CE, MIL-140B-CE and MIL-140A-NH₂-CE were synthesised solvothermally using similar methods to those reported by Serre and coworkers.¹ Typically, in a 25 mL Teflon-lined steel Parr bomb, 0.5 mmol of H₂bdc, H₂ndc or H₂abdc and 0.25 mmol of ZrCl₄ were dissolved in 2.5 mL of DMF. To this solution, 0.04 mL (0.7 mmol) of acetic acid was added (the synthesis of MIL-140A-NH₂-CE was attempted using three different amounts of acetic acid, namely, 0.04, 0.16 and 0.54 mL). The reaction vessel was sealed and placed in a pre-heated oven at 220 °C for a period of 16 h for MIL-140A-CE, 6 h for MIL-140B-CE, and both 12 and 24 h for MIL-140A-NH₂-CE. The Parr bombs were subsequently cooled to room temperature in the oven within 8 h before the precipitates were isolated by vacuum filtration and washed with DMF and acetone. The materials were subsequently solvent exchanged with methanol using a Soxhlet washing procedure for 12 h. The resulting powder was dried in air.

A summary of the reaction conditions is provided in Tables S1 and S2.

Phase ^a	ZrCl ₄	Ligand ²	DMF [mL]	Acetic acid [mL]	Heating method ^b	Т [°С]	Time [min]	Yield [%] ^c
MIL-140A-MW	0.25	0.5	2.5	0.04	MW	220	15	91.0
MIL-140A-CE	0.25	0.5	2.5	0.04	CE	220	960	88.9
MIL-140B-MW	0.25	0.5	2.5	0.04	MW	220	15	90.3
MIL-140B-CE	0.25	0.5	2.5	0.04	CE	220	360	90.0
MIL-140A-NH ₂ -MW	0.25	0.5	2.5	0.04	MW	220	15	96.1

Table S1 Synthesis conditions for the frameworks using microwave heating (MW) and conventional electric heating (CE)

^a bdc: 1,4-benzenedicarboxylic acid, ndc: 2,6-naphthalenedicarboxylic acid, abdc:

2-amino-1,4-benzenedicarboxylic acid; ^b MW: microwave heating, temperature ramp to 220 °C within 2 min; CE: conventional electric heating, syntheses in a pre-heated oven at 220 °C; ^c based on zirconium.

Entry	ZrCl ₄	Ligand 2	DMF [mL]	Acetic acid [mL]	Т [°С]	Time [min]	Product
1	0.25	0.5	2.5	0.04	220	12	UiO-66-NH2 ^{a3}
2	0.25	0.5	2.5	0.16	220	12	UiO-66-NH ₂ ^a
3	0.25	0.5	2.5	0.54	220	12	UiO-66-NH ₂ ^a

0.54

Table S2 Attempted synthesis conditions for MIL-140A-NH₂ using conventional electric heating (CE)

^a MIL-140A-NH₂ was not attainable using the conventional electric heating method. The amino-tagged framework UiO-66-NH₂ was the only product obtained from each of the four attempted syntheses.³

220

24

UiO-66-NH₂^a

Characterisation

0.25

0.5

2.5

4

Powder X-ray diffraction (PXRD). PXRD measurements were performed on a PANalytical X'pert Pro diffractometer fitted with a solid-state PIXcel detector (40 kV, 30 mA, 1° divergence and anti-scatter slits, and 0.3 mm receiver and detector slits) using Cu-K α ($\lambda = 1.5406$ Å) radiation.

Gas Sorption. N_2 sorption isotherms were measured on an Accelerated Surface Area & Porosimetry System, ASAP 2020 (Micromeritics Instruments Inc.). Prior to analysis, the materials were solvent exchanged with methanol using a Soxhlet washing procedure for 12 h. Approximately 100 mg of the powdered solid was loaded into a glass analysis tube and outgassed for 12 h under vacuum at 120 °C. N_2 adsorption and desorption isotherms were measured at 77 K and data was analysed using Brunauer-Emmett-Teller (BET) analysis models to determine the surface area.

Scanning Electron Microscopy (SEM). Field-emission SEM (FE-SEM) images were obtained using a Zeiss ULTRA plus microscope (working distance 9 mm; acceleration voltage 15 kV). Samples were prepared

by dispersing the powdered solids in ethanol to produce a suspension that was deposited onto a carbon block and dried in air.

Thermogravimetric Analysis (TGA). TGA measurements were carried out on a TA Instruments Hi-Res TGA 2950 Thermogravimetric Analyser. Approximately 5 mg of sample was placed on a platinum pan which was heated under a flow of N_2 at a rate of 1.5 °C.min⁻¹ up to 800 °C.

Elemental analyses. Elemental analyses were performed at the Chemical Analysis Facility, Macquarie University, Sydney, Australia.

RESULTS

Fig. S1 Le Bail refinement of MIL-140A-MW showing the experimental (black), refined (red), and difference (blue) patterns. The positions of the Bragg peaks are indicated by the pink bars.

Fig. S2 Le Bail refinement of MIL-140B-MW showing the experimental (black), refined (red), and difference (blue) patterns. The positions of the Bragg peaks are indicated by the pink bars.

Phase	Space group	a (Å)	b (Å)	c (Å)	β (Å)	$V(A^3)$
MIL-140A _{sim}	C2/c	24.53	11.24	7.87	97.71	2150.4
MIL-140A-MW	C2/c	24.420(1)	11.211(1)	7.836(1)	103.98(1)	2081.7(1)
MIL-140B _{sim}	C c	27.65	13.41	7.85	90.13	2909.9
MIL-140B-MW	C c	26.865(1)	13.424(1)	7.820(1)	93.669(1)	2814.7(1)

Table S3 Experimental and simulated Le Bail cell parameters for MIL-140A-MW and MIL-140B-MW

Fig. S3 Simulated PXRD patterns for (a) MIL-140A and (b) UiO-66; Experimental PXRD patterns for (c) MIL-140A-CE (target temperature: 220 °C, hold-time: 16 h, peaks marked with an asterisk indicate the UiO-66 impurity).

Fig. S4 Simulated PXRD patterns for (a) MIL-140A and (b) UiO-66; Experimental PXRD patterns for MIL-140A-CEa (target temperature: 220 °C, hold-time: 18 h). Peaks marked with an asterisk indicate the UiO-66 impurity which is maintained, despite the increased reaction time compared with the data presented in Fig. S3.

Fig. S5 Simulated PXRD patterns for (a) MIL-140A, (b) UiO-66, (c) MIL-140A-MWa synthesised with a slow ramp rate (1 h to 220 °C and 15 min hold-time) in the microwave oven (peaks marked with an asterisk indicate the UiO-66 impurity) and (d) phase pure MIL-140A-MW synthesised with a fast ramp rate (2 min to 220 °C and 15 min hold-time) in the microwave oven.

Fig. S6 Simulated PXRD patterns for (a) MIL-140A and (b) UiO-66. Experimental PXRD patterns for the products obtained from the attempted synthesis of MIL-140A-NH₂ using CE heating (different acetic acid dosage and reaction time): (a) 0.04 mL acetic acid and 12 h at 220 °C, (b) 0.16 mL acetic acid and 12 h at 220 °C, (c) 0.54 mL acetic acid and 12 h at 220 °C and (d) 0.54 mL acetic acid and 24 h at 220 °C. In each case, the product was identifiable as the UiO-66 phase.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

Fig. S7 Thermogravimetric analysis (N_2 environment) showing the weight loss (a) and differential weight loss (b) for MIL-140A-MW, MIL-140A-CE, MIL-140B-MW, MIL-140B-CE and MIL-140A-NH₂-MW after solvent exchange with methanol as described in the experimental section.

Phase	Theoretical Weight loss [%] ^a	Experimental Weight loss [%]	Reported Weight loss [%] ¹	Decomposition Temperature [°]
MIL-140A-MW	54.5	55.8	-	563.9
MIL-140A-CE	54.5	53.0	51.3	551.9
MIL-140B-MW	61.6	60.1	-	551.9
MIL-140B-CE	61.6	57.9	58.6	554.0
MIL-140A-NH ₂ -MW	56.9	55.7	-	541.6

Table S4 Comparison of experimental and theoretical weight losses for the series of frameworks.

^a calculated from the formula for the framework.

Fig. S8 N₂ adsorption (filled symbols) and desorption (open symbols) isotherms for MIL-140A-MW, MIL-140A-CE, MIL-140B-MW, MIL-140B-CE and MIL-140A-NH₂-MW at 77 K ($P_0 = 1$ atm., the activation procedure is described in the experimental section).

REFERENCES

- V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan, B. Campo, A. Vimont, G. Clet, Q. Yang, G. Maurin, G. Ferey, A. Vittadini, S. Gross and C. Serre, *Angew. Chem. Int. Ed. Engl.*, 2012, **51**, 9188.
- 2. S. Luukkanen, M. Haukka, E. Eskelinen, T. A. Pakkanen, V. Lehtovuori, J. Kallioinen, P. Myllyperkiö and J. Korppi-Tommola, *Phys. Chem. Chem. Phys.*, 2001, **3**, 1992-1998.
- M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino and K. P. Lillerud, *Chem. Mater.*, 2010, 22, 6632-6640.