## **Electronic Supplementary Information**

High-rate lithium storage of anatase  $TiO_2$  crystals doped with both nitrogen and sulfur

Sample preparation Anatase TiO<sub>2</sub> nanoparticles used in this work were prepared according to the procedures by Chen et al. [22]. These anatase TiO<sub>2</sub> nanoparticles were heated at 700 °C for 18 h in gaseous ammonia atmosphere with a flux of 100 mL/min to prepare TiN<sub>x</sub>. The resultant TiN<sub>x</sub> was then oxidized at 340  $^{\circ}$ C in static air for 2 h to obtain nitrogen doped  $TiO_2$  (N-TiO<sub>2</sub>). Sulfur codoping was realized by treating N-TiO<sub>2</sub> at 400 °C in gaseous H<sub>2</sub>S atmosphere with a flux of 50 mL/min for 1 h (N/S-TiO<sub>2</sub>). S doped TiO<sub>2</sub> reference (S-TiO<sub>2</sub>) was prepared by treating anatase TiO<sub>2</sub> nanoparticles at 400 °C in gaseous H<sub>2</sub>S atmosphere with a flux of 50 mL/min for 1 h. **Characterization** X-ray diffraction (XRD) patterns of the samples were recorded on a Rigaku diffractometer using Cu Ka irradiation. Their morphology was determined by transmission electron microscopy (TEM) performed on JEOL2010 electron microscope. The Brunauer-Emmett-Teller (BET) specific surface area and pore size was determined by nitrogen adsorption-desorption isotherm measurements at 77 K (ASAP 2010). The chemical states of dopants in TiO<sub>2</sub> were analyzed using X-ray photoelectron spectroscopy (Thermo Escalab 250, a monochromatic Al Ka X-ray source). Binding energy was referenced to the C 1s peak (284.6 eV) arising from adventitious carbon. The optical absorbance spectra of the samples were recorded in a

UV-visible spectrophotometer (JASCO-550).

Electrochemical measurements The electrochemical properties of TiO<sub>2</sub>, N-TiO<sub>2</sub>,

N/S-TiO<sub>2</sub> as anode materials in lithium ion batteries were evaluated by a galvanostatic charge/discharge technique. The working electrodes were prepared by mixing the active material, carbon black (Super-P), and poly(vinyl difluoride) at a weight ratio of 80:10:10 and pasted onto pure aluminium foil, and pressed and dried under vacuum at 120 °C for 12 h. Coin cells were assembled in an argon-filled glove box, with metallic lithium as the counter electrode, 1 M LiPF<sub>6</sub> in ethylene carbonate, dimethyl carbonate (1:1 vol) as electrolyte, and Celgard 2400 polypropylene as separator. The electrochemical tests were performed between 1-3 V vs. Li<sup>+</sup>/Li. C-rate currents used were calculated based on an anatase TiO<sub>2</sub> theoretical capacity of 168 mA hg<sup>-1</sup>.



**Fig. S1** XRD patterns of  $TiO_2$  and  $TiN_x$ .



Fig. S2 XRD patterns of N-TiO<sub>2</sub> and N/S-TiO<sub>2</sub>. R: rutile.



Fig. S3  $N_2$  isotherm adsorption-desorption curves of TiO<sub>2</sub>, N-TiO<sub>2</sub>, S-TiO<sub>2</sub>and N/S-TiO<sub>2</sub>.



Fig. S4 Pore size distribution curves of TiO<sub>2</sub>, N-TiO<sub>2</sub>, S-TiO<sub>2</sub> and N/S-TiO<sub>2</sub>.



Fig. S5 XPS depth profiles of the elements of Ti, O and N in N-TiO<sub>2</sub> upon  $Ar^+$  sputtering.



**Fig. S6** High resolution N 1s XPS spectra recorded from the pristine surface of N-TiO<sub>2</sub> and N/S-TiO<sub>2</sub>.



**Fig. S7** Galvanostatic charging/discharging curves of the N-TiO<sub>2</sub>, S-TiO<sub>2</sub> and TiO<sub>2</sub> electrodes at different rates.

 Table S1 Impedance parameters calculated from equivalent circuits.

| Materials            | R <sub>e</sub> (Ω) | R <sub>ct</sub> (Ω) |
|----------------------|--------------------|---------------------|
| TiO <sub>2</sub>     | 13.7               | 282.0               |
| N-TiO <sub>2</sub>   | 11.2               | 181.6               |
| S-TiO <sub>2</sub>   | 11.4               | 248.3               |
| N/S-TiO <sub>2</sub> | 9.4                | 89.6                |

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013