# **Electronic Supplementary Information (ESI)**

### **Experimental details**

#### Preparation of mesoporous TiO<sub>2</sub>-Sn@C core-shell microspheres

All chemicals were analytical grade and used without further purification. Amorphous TiO<sub>2</sub> microspheres were prepared according to our previous method.<sup>1</sup> Typically, 2.2 mL of titanium tetraisopropoxide (TTIP) was slowly dropped into 100 mL ethanol containing 0.4 mL of 0.1M KCl aqueous solution. After stirred for 10 min, this suspension was aged in a static condition for 24 h in a closed container at room temperature. Then, the white precipitate was collected, washed with ethanol and deionized water to get monodispersed amorphous TiO<sub>2</sub> microspheres as the precursor. 0.6 g as-prepared TiO<sub>2</sub> precursor was added to 20 mL ethanol-water (1:1) mixed solution, followed by the addition of 0.108 g  $K_2SnO_3$ ·  $3H_2O$  and 0.675 g urea. After stirred for 1h, this suspension was transferred into a 30 mL teflon-lined stainless steel autoclave, and then placed in an oven at 180°C for 12 h. After that, TiO<sub>2</sub>-SnO<sub>2</sub> composite was obtained by centrifugation, washed with deionized water and ethanol thoroughly, and dried in an oven at 80°C overnight. This composite was then dispersed in 20 mL ethanol-water (1:1) mixed solution containing 0.4 g glucose, transformed into a 30 mL autoclave, and then kept at 180°C for 18 h. The precipitate was collected by centrifugation and washed with water and ethanol thoroughly. After dried at 80°C, the powders were finally calcined at 700°C under Ar atmosphere for 4 h. TiO<sub>2</sub>-Sn@C composite with the black color was thus obtained.

#### Materials characterization

The morphology and microstructure of the products were obtained using field emitting scanning electron microscopy (FE-SEM, JEOL JSM-7401F) and transmission electron microscopy (TEM, JEOL JEM-2010). The composition and

crystal structure were characterized by X-ray diffraction measurement (XRD, Rigaku, D/max-Rbusing Cu K $\alpha$  radiation). ICP analysis was conducted by an iCAP6300-type inductively-coupled plasma spectrometer. Raman spectra were recorded from Bruker Optics Senterra R200-L Raman micro-spectrometer ( $\lambda$ =532 nm, 2 mW). The N<sub>2</sub> adsorption/desorption tests were carried out by Micromeritics ASAP 2010 instrument.

### Electrochemical characterization

Electrochemical measurements were performed using 2016-type coin cells assembled in an argon-filled glove box (German, M. Braun Co.,  $[O_2] < 1$  ppm,  $[H_2O] < 1$  ppm). For preparing working electrodes, a mixture of the active material, acetylene black, and polyvinylidene fluoride (PVDF) binder at a weight ratio of 80:10:10 was pasted on pure copper foil. Pure lithium foil was used as the counter electrode. A glass fiber (GF/A) from Whatman was used as the separator. The electrolyte consisted of a solution of 1M LiPF<sub>6</sub> in ethylene carbonate and dimethyl carbonate (EC +DMC) (1:1 in volume). The cells were cycled under 500 mA g<sup>-1</sup> between cutoff voltages of 2.5 and 0.01 V on a CT2001A cell test instrument (LAND Electronic Co.) at room temperature. Cyclic voltammetry (CV) was implemented on a CHI660D electrochemical workstation.

## **Figures**



Fig. S1 Schematic illustration of step I hydrothermal reaction if tin source  $(K_2SnO_3)$  was not added.



Fig. S2 TEM images of (a) crystallized TiO<sub>2</sub> obtained after 3 h and (b) after 12 h step I hydrothermal reaction if tin source ( $K_2SnO_3$ ) was not added, (c)  $SnO_2$  obtained after step I hydrothermal reaction if TiO<sub>2</sub> precursor was not added, and (d) Sn@C obtained after step III calcination process in Ar when using  $SnO_2$  instead of TiO<sub>2</sub>-SnO<sub>2</sub> in step II.



Electronic Supplementary Information (ESI) for Chemical Communications

Fig. S3 TEM images of (a, b) TiO<sub>2</sub>-SnO<sub>2</sub>, and (c, d) TiO<sub>2</sub>-Sn@C.



Fig. S4 SEM images of (a)  $TiO_2$  precursor, (b)  $TiO_2$ -SnO<sub>2</sub>, (c)  $TiO_2$ -SnO<sub>2</sub>@C, and (d)  $TiO_2$ -Sn@C.



Fig. S5 (a) Wide-angle and (b) small-angle XRD patterns of  $TiO_2$ -SnO<sub>2</sub> and  $TiO_2$ -Sn@C.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013



Fig. S6 Raman spectra of TiO<sub>2</sub>-SnO<sub>2</sub> and TiO<sub>2</sub>-Sn@C.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013





Fig. S7  $N_2$  adsorption and desorption isotherms of TiO<sub>2</sub>-SnO<sub>2</sub> and TiO<sub>2</sub>-Sn@C. The inset shows corresponding Barrett–Joyner–Halanda (BJH) pore-size distributions.





Fig. S8 Initial three discharge/charge curves of TiO<sub>2</sub>-Sn@C at 500 mA  $g^{-1}$ .

# References

1 J. Z. Chen, L. Yang and Y. F. Tang, J. Power Sources, 2010, 195, 6893.