Supporting Informations

Easy access to benzylic esters directly from alkyl benzenes under metal-free conditions

Ganesh Majji, Srimanta Guin, Anupal Gogoi, Saroj Kumar Rout, and Bhisma K. Patel*

Department of Chemistry, Indian Institute of Technology Guwahati

Email: patel@iitg.ernet.in

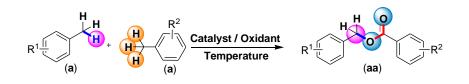
List of Contents

1.	General information	S 1
2.	General procedure, screening condition and mechanism	S1 - S4
3.	Spectral data of all compounds	S5 - S13
4.	Spectra of all compounds	S14–S39

General information:

All the reagents were commercial grade and used without purification. Organic extracts were dried over anhydrous sodium sulphate. Solvents were removed in a rotary evaporator under reduced pressure. Silica gel (60-120 mesh size) was used for the column chromatography. Reactions were monitored by TLC on silica gel 60 F_{254} (0.25mm). NMR spectra were recorded in CDCl₃ with tetramethylsilane as the internal standard for ¹H NMR (400 MHz) CDCl₃ solvent as the internal standard for ¹³C NMR (75 MHz and 100 MHz). HRMS spectra were recorded using ESI mode. IR spectra were recorded in KBr or neat.

General procedure for the synthesis of benzyl benzoate (aa): A mixture of Bu₄NI (36.9 mg, 10 mol %) and toluene (a) (1 mL) were taken in an oven dried round bottom flask fitted with a condenser. To this mixture an aqueous solution of TBHP (70% in H₂O) (857 μ L, 6 equiv.) was added and the reaction mixture was heated at 80 °C for 6 h. During this period formation of benzyl benzoate (aa) was observed as judged from TLC. The reaction mixture


was cooled to room temperature and admixed with ethyl acetate (20 mL). The ethyl acetate layer was washed successively with a 5% solution of sodium bicarbonate (2 x 5mL) and a 5% solution of sodium thiosulphate (2 x 5 mL). The ethyl acetate layer was dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was purified over a column of silica gel and elutedwith (98: 2, hexane / ethyl acetate) to afford benzyl benzoate (**aa**) (201 mg, 95% yield).

General procedure for the synthesis of 1-phenylethyl benzoate (ak): A mixture of Bu_4NI (36.9 mg, 10 mol %), toluene (a) (0.5 mL) and ethylbenzene (k) (0.5 mL) were taken in an oven dried round bottom flask fitted with a condenser. To this mixture an aqueous solution of TBHP (70% in H₂O) (857 µL, 6 equiv.) was added and the reaction mixture was heated at 80 °C for 6 h. During this period formation of 1-phenylethyl benzoate (ak) was observed as judged from TLC. The reaction mixture was cooled to room temperature and admixed with ethyl acetate (20 mL). The ethyl acetate layer was washed successively with a 5% solution of sodium bicarbonate (2 x 5mL) and a 5% solution of sodium thiosulphate (2 x 5 mL). The ethyl acetate layer was dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was purified over a column of silica gel and elutedwith (98: 2, hexane / ethyl acetate) to afford 1-phenylethyl benzoate (ak) (198 mg, 95% yield).

General procedure for the synthesis of 2-phenylpropan-2-yl benzoate (al): A mixture of Bu_4NI (36.9 mg, 10 mol %), toluene (a) (0.5 mL) and isopropylbenzene (l) (0.5 mL) were taken in an oven dried round bottom flask fitted with a condenser. To this mixture an aqueous solution of TBHP (70% in H₂O) (857 µL, 6 equiv.) was added and the reaction mixture was heated at 80 °C for 6 h. During this period formation of 1-phenylethyl benzoate (al) was observed as judged from TLC. The reaction mixture was cooled to room temperature and admixed with ethyl acetate (20 mL). The ethyl acetate layer was washed successively with a 5% solution of sodium bicarbonate (2 x 5mL) and a 5% solution of sodium thiosulphate (2 x

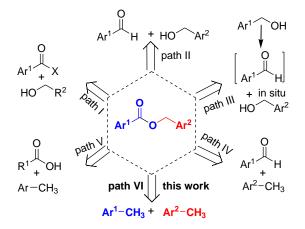
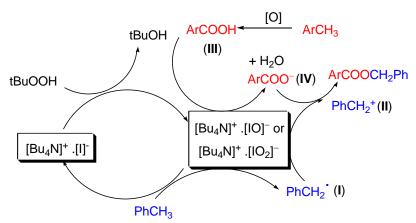
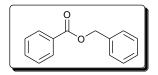

5 mL). The ethyl acetate layer was dried over anhydrous Na_2SO_4 and the solvent was evaporated under reduced pressure. The crude product was purified over a column of silica gel and elutedwith (98: 2, hexane / ethyl acetate) to afford 2-phenylpropan-2-yl benzoate (**al**) (180 mg, 75% yield).

Table S1. Screening of Reaction Conditions.^a

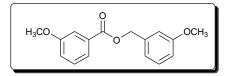

Entry	Catalyst (mol%)	Oxidant (Equiv.)	Temp (°C)	Yield % ^b
1.	Cu(OAc) ₂ .2 H ₂ O (10)	TBHP in decane (4)	100	3
2.	Bu ₄ NI (10)	TBHP in decane (4)	25	30
3.	Bu ₄ NI (10)	TBHP in decane (6)	80	90
4.	Bu ₄ NI (10)	Aq. TBHP (6)	80	95
5.	Bu ₄ NI (10)	Aq. TBHP (6)	100	95
6.	Bu ₄ NI (20)	Aq. TBHP (6)	80	95
7.	$Bu_4NI(5)$	Aq. TBHP (6)	80	60
8.	Bu ₄ NI (10)	Aq. TBHP (5)	80	50
9.	Bu ₄ NI (10)	Aq. $H_2O_2(6)$	80	00
10.	Bu ₄ NI (10)	DDQ (6)	80	00
11.	Bu ₄ NI (10)	$PhI(OAc)_2(6)$	80	00
12.	Bu ₄ NBr (10)	Aq. TBHP (6)	80	00
13.	KI (10)	Aq. TBHP (6)	80	00
14.	I ₂ (10)	Aq. TBHP (6)	80	00
15.	nil	Aq. TBHP (6)	80	00
16.	Bu ₄ NI (10)	nil	80	00

^{*a*} Toluene (1mL), Reaction time: 6 h, ^{*b*} Isolated yield.

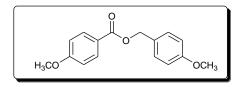
Scheme S1. Various routes to benzylic esters.


Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

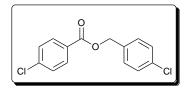
Scheme S2. Proposed mechanism of the oxidative esterification.


Spectral Data

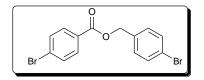
Benzyl benzoate (aa):


Colourless liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.36 (s, 2H), 7.33–7.45 (m, 7H), 7.54 (t, 1H, J = 7.6 Hz), 8.08 (d, 2H, J = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 66.7, 128.2, 128.3, 128.4, 128.6, 129.7, 130.2, 133.0, 136.1, 166.4; IR (KBr): 3066, 3033, 2923, 1718, 1451, 1314, 1271, 1109, 1070, 1026, 711 cm⁻¹; Anal. calcd. for C₁₄H₁₂O₂: C 79.22, H 5.70; found C 79.20, H 5.78.

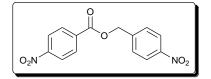
3-Methoxybenzyl 3-methoxybenzoate (bb):


Yellowish liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 3.81 (s, 3H), 3.83 (s, 3H), 5.33 (s, 2H), 6.88 (d, 1H, J = 8.4 Hz), 6.98 (s, 1H), 7.02 (d, 1H, J = 7.6 Hz), 7.08–7.11 (m, 1H), 7.28–7.35 (m, 2H), 7.60 (s, 1H), 7.68 (d, 1H, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 55.4, 55.6, 66.8, 113.8, 114.4, 119.6, 120.5, 122.3, 129.6, 129.8, 131.6, 137.7, 159.8, 159.9, 166.4; IR (KBr): 2938, 2837, 1717, 1602, 1587, 1489, 1456, 1275, 1225, 1104, 1043, 756 cm⁻¹; Anal. calcd. for C₁₆H₁₆O₄: C 70.57, H 5.92; found C 70.62, H 5.84.

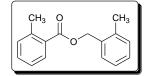
4-Methoxybenzyl 4-methoxybenzoate (cc):


Yellowish liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 3.79 (s, 3H), 3.82 (s, 3H), 5.25 (s, 2H), 6.87–6.90 (m, 4H), 7.36 (d, 2H, J = 8.4 Hz), 7.99 (d, 2H, J = 8.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 55.4, 55.5, 66.3, 113.7, 114.1, 122.8, 128.6, 130.1, 131.8, 159.7, 163.5, 166.4; IR (KBr): 3002, 2957, 2837, 1707, 1606, 1513, 1255, 1166, 1097, 1029, 823, 769 cm⁻¹; HRMS (ESI): calcd. for C₁₆H₁₆O₄ (MH⁺) 273.1121; found 273.1115.

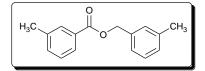
4-Chlorobenzyl 4-chlorobenzoate (dd):


White solid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.31 (s, 2H), 7.37–7.42 (m, 6H), 7.99 (d, 2H, J = 8.8 Hz); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 66.1, 128.3, 128.8, 128.9, 129.7, 131.0, 131.1, 134.3, 139.6, 165.4; IR (KBr): 3049, 2927, 2852, 1715, 1592, 1488, 1400, 1307, 1274, 1172, 1123, 1091, 1014, 848, 810, 756 cm⁻¹; HRMS (ESI): calcd. for C₁₄H₁₀Cl₂O₂ (MH⁺) 281.0131; found 281.0124.

4-Bromobenzyl 4-bromobenzoate (ee):

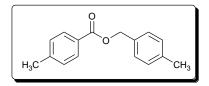

White solid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.30 (s, 2H), 7.31 (d, 2H, J = 8 Hz), 7.52 (d, 2H, J = 8.4 Hz), 7.58 (d, 2H, J = 8.4 Hz), 7.91 (d, 2H, J = 8.4 Hz); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 66.2, 122.5, 128.4, 128.8, 130.0, 131.3, 131.9, 134.8, 165.6; IR (KBr): 2928, 2852, 1713, 1588, 1483, 1397, 1271, 1172, 1121, 1105, 1067, 1011, 803, 754 cm⁻¹; HRMS (ESI): calcd. for C₁₄H₁₀Br₂O₂ (MH⁺) 368.9120; found 368.9123.

4-Nitrobenzyl 4-nitrobenzoate (ff):

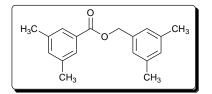

Yellowish gum; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.48 (s, 2H), 7.60 (d, 2H, J = 8.8 Hz), 8.22–8.30 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 68.6, 123.2, 124.4, 128.6, 130.9, 137.5, 146.5, 148.8, 166.7; IR (KBr): 2962, 2923, 2849, 1727, 1645, 1604, 1517, 1347, 1274, 1104, 735, 717 cm⁻¹; Anal. Calcd. for C₁₄H₁₀N₂O₆: C 55.63, H 3.33, N 9.27; found C 55.69, H 3.36, N 9.17.

2-Methylbenzyl 2-methylbenzoate (gg):

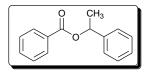
Colourless liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.40 (s, 3H), 2.60 (s, 3H), 5.34 (s, 2H), 7.18–7.24 (m, 5H), 7.34–7.42 (m, 2H), 7.93 (d, 1H, J = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 18.9, 21.7, 64.8, 125.7, 126.0, 128.4, 129.2, 129.4, 130.3, 130.6, 131.7, 131.9, 134.1, 136.8, 140.3, 167.0; IR (KBr): 3066, 3022, 2929, 1717, 1605, 1457, 1290, 1250, 1141, 1075, 738 cm⁻¹; HRMS (ESI): calcd. for C₁₆H₁₆O₂ (MH⁺) 241.1223; found 241.1219.


3-Methylbenzyl 3-methylbenzoate (hh):

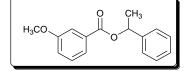
Yellowish liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.37(s, 3H), 2.38 (s, 3H), 5.31 (s, 2H), 7.14 (d, 1H, J = 6.4 Hz), 7.23–7.34 (m, 5H), 7.88 (d, 2H, J = 7.2 Hz); ¹³C NMR (100


MHz, CDCl₃): δ (ppm) 21.2, 21.4, 66.7, 125.3, 126.9, 128.3, 128.5, 129.0, 130.1, 130.2, 133.7, 136.1, 138.1, 138.2, 166.5; IR (KBr): 3027, 2922, 1721, 1610, 1455, 1372, 1276, 1197, 1106, 1081, 781, 746 cm⁻¹; Anal. calcd. for C₁₆H₁₆O₂: C 79.97, H 6.71; found C 79.82, H 6.94.

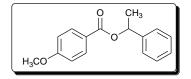
4-Methylbenzyl 4-methylbenzoate (ii):


Colourless liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.32 (s, 3H), 2.35 (s, 3H), 5.28 (s, 2H), 7.16 (t, 4H, J = 8.4 Hz), 7.31 (d, 2H, J = 8 Hz), 7.94 (d, 2H, J = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 20.9, 21.4, 66.2, 127.5, 128.2, 128.9, 129.1, 129.6, 133.2, 137.7, 143.4, 166.2; IR (KBr): 2923, 2857, 1718, 1613, 1451, 1372, 1271, 1177, 1103, 1018, 807, 754 cm⁻¹; Anal. calcd. for C₁₆H₁₆O₂: C 79.97, H 6.71; found C 79.82, H 6.84.

3,5-Dimethylbenzyl 3,5-dimethylbenzoate (jj):

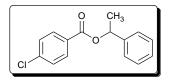

Colourless liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.32 (s, 6H), 2.32 (s, 6H), 5.26 (s, 2H), 6.95 (s, 1H), 7.04 (s, 2H), 7.15 (s, 1H), 7.69 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 21.2, 21.3, 66.8, 126.2, 127.5, 129.9, 130.2, 134.7, 136.1, 138.0, 138.2, 166.8; IR (KBr): 3011, 2920, 2863, 1717, 1609, 1456, 1382, 1310, 1209, 1163, 1115, 846, 768 cm⁻¹; HRMS (ESI): calcd. for C₁₈H₂₀O₂ (MH⁺) 269.1536; found 269.1534.

1-Phenylethyl benzoate (ak):

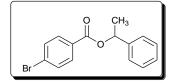

Colourless liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.70 (d, 3H, J = 6.4 Hz), 6.18 (q, 1H, J = 6.4 Hz), 7.30–7.49 (m, 7H), 7.56 (t, 1H, J = 7.6 Hz), 8.13 (d, 2H, J = 8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 22.3, 72.8, 126.0, 127.8, 128.3, 128.5, 129.5, 130.5, 132.8, 141.8, 165.6; IR (KBr): 3060, 2981, 1717, 1495, 1451, 1315, 1270, 1176, 1109, 1069, 1026, 761, 712, 698 cm⁻¹; Anal. calcd. for C₁₅H₁₄O₂: C 79.62, H 6.24; found C 79.69, H 6.17.

1-Phenylethyl 3-methoxybenzoate (bk):

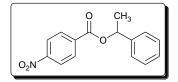
Colourless liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.68 (d, 3H, J = 6.8 Hz), 3.79 (s, 3H), 6.15 (q, 1H, J = 6.4 Hz), 7.41–7.46 (m, 5H), 7.52–7.56 (m, 2H), 7.94 (d, 2H, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 22.2, 55.4, 75.0, 113.8, 120.5, 126.4, 128.5, 129.0, 129.9, 130.1, 135.0, 140.5, 163.5, 166.6; IR (KBr): 2929, 2846, 1717, 1635, 1587, 1266, 1199, 757, 699 cm⁻¹; Anal. calcd. for C₁₆H₁₆O₃: C 74.98, H 6.29; found C 74.92, H 6.35.


1-Phenylethyl 4-methoxybenzoate (ck):

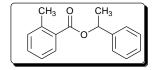
Yellowish liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.65 (d, 3H, *J* = 6.4 Hz), 3.82 (s, 3H), 6.11 (q, 1H, *J* = 6.4 Hz), 6.90 (d, 2H, *J* = 7.2 Hz), 7.28 (t, 1H, *J* = 7.6 Hz), 7.35 (t, 2H, *J*


= 7.6 Hz), 7.43 (d, 2H, J = 8 Hz), 8.04 (d, 2H, J = 9.2 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 22.6, 55.6, 72.7, 113.7, 123.1, 126.2, 127.9, 128.7, 131.8, 142.2, 163.5, 165.7; IR (KBr): 3063, 3032, 2979, 2934, 2839, 1713, 1606, 1510, 1454, 1258, 1167, 1100, 1029, 847, 769, 698 cm⁻¹; Anal. calcd. for C₁₆H₁₆O₃: C 74.98, H 6.29; found C 75.06, H 6.33.

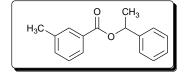
1-Phenylethyl 4-chlorobenzoate (dk):


Colourless liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.67 (d, 3H, J = 6.4 Hz), 6.12 (q, 1H, J = 6.8 Hz), 7.30–7.44 (m, 7H), 8.00 (d, 2H, J = 8.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 22.3, 73.2, 126.0, 128.0, 128.5, 128.6, 129.0, 131.0, 139.3, 141.5, 164.8; IR (KBr): 3038, 2981, 2929, 1718, 1594, 1452, 1269, 1103, 1063, 850, 759, 698 cm⁻¹; HRMS (ESI): calcd. for C₁₅H₁₃ClO₂ (MH⁺) 261.0677; found 261.0685.

1-Phenylethyl 4-bromobenzoate (ek):

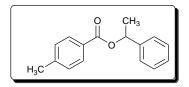

Colourless liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.66 (d, 3H, J = 6.4 Hz), 6.11 (q, 1H, J = 6.4 Hz), 7.29–7.43 (m, 6H), 7.56 (d, 2H, J = 8.8 Hz), 7.92 (d, 1H, J = 8.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 22.2, 73.2, 126.0, 126.6, 127.9, 128.5, 129.4, 131.1, 131.6, 141.5, 164.8; IR (KBr): 3034, 2980, 2931, 1719, 1590, 1269, 1102, 1065, 1012, 848, 756, 698 cm⁻¹; Anal. calcd for C₁₅H₁₃BrO₂: C 59.04, H 4.29; found C 59.11, H 4.33.

1-Phenylethyl 4-nitrobenzoate (fk):

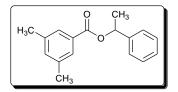

Yellowish liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.71 (d, 3H, J = 6.4 Hz), 6.16 (q, 1H, J = 6.8 Hz), 7.32–7.46 (m, 5H), 8.21–8.27 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 21.8, 73.8, 123.1, 125.8, 127.9, 128.4, 130.3, 135.5, 140.9, 150.1, 163.4; IR (KBr): 3035, 2984, 2934, 1724, 1689, 1607, 1527, 1452, 1351, 1271, 1199, 1103, 1061, 874, 762, 720, 699 cm⁻¹; Anal. calcd. for C₁₅H₁₃NO₄ : C 66.41, H 4.83, N 5.16; found C 66.46, H 4.79, N 5.12.

1-Phenylethyl 2-methylbenzoate (gk):

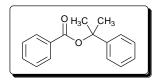
Colourless liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.66 (d, 3H, J = 6.8 Hz), 2.58 (s, 3H), 6.11 (q, 1H, J = 6.4Hz), 7.18–7.36 (m, 6H), 7.43 (d, 2H, J = 7.6 Hz), 7.96 (d, 1H, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 21.7, 22.3, 72.6, 125.6, 126.0, 127.8, 128.5, 129.9, 130.5, 131.6, 131.8, 140.1, 141.8, 166.5; IR (KBr): 3066, 3033, 2980, 2929, 1717, 1456, 1290, 1254, 1143, 1077, 1029, 738, 698 cm⁻¹; HRMS (ESI): calcd. for C₁₆H₁₆O₂ (MH⁺) 241.1223; found 241.1216.


1-Phenylethyl 3-methylbenzoate (hk):

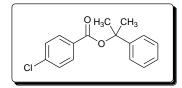
Yellowish liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.71 (d, 3H, *J* = 6.4 Hz), 2.61 (s, 3H), 6.17 (q, 1H, *J* = 6.8 Hz), 7.33–7.49 (m, 7H), 7.91 (d, 1H, *J* = 8.4 Hz), 7.96 (d, 1H, *J* =


7.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 20.5, 22.3, 75.0, 126.4, 126.8, 128.5, 128.9, 129.0, 130.1, 132.7, 133.3, 135.0, 140.5, 163.5; IR (KBr): 2984, 2931, 1738, 1693, 1597, 1452, 1199, 1176, 1059, 983, 761, 699 cm⁻¹; HRMS (ESI): calcd. for C₁₆H₁₆O₂ (MH⁺) 241.1223; found 241.1221.

1-Phenylethyl 4-methylbenzoate (ik):

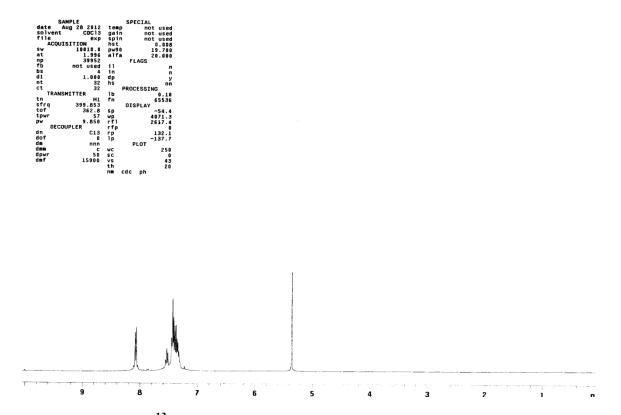

Colourless liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.64 (d, 3H, J = 6.8 Hz), 2.58 (s, 3H), 6.11 (q, 1H, J = 6.4 Hz), 7.17–7.35 (m, 6H), 7.43 (d, 2H, J = 8 Hz), 7.96 (d, 1H, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 21.7, 22.3, 72.6, 125.6, 126.0, 127.8, 128.5, 130.5, 131.6, 140.1, 141.8, 166.5; IR (KBr): 3066, 3027, 2979, 2923, 1717, 1455, 1255, 1077, 1029, 738, 698 cm⁻¹; HRMS (ESI): calcd. for C₁₆H₁₆O₂ Anal. calcd. for C₁₆H₁₆O₂: C 79.97, H 6.71; found C 79.85, H 6.67.

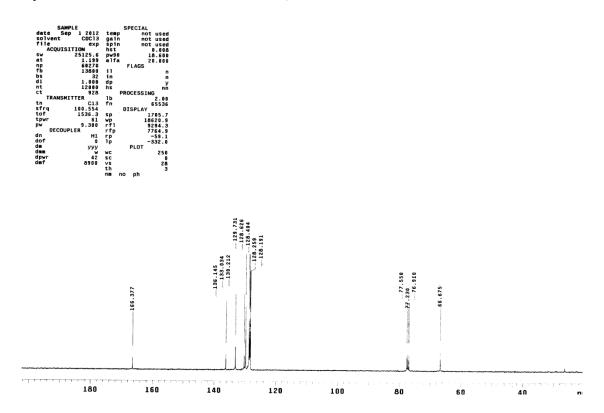
1-Phenylethyl 3,5-dimethylbenzoate (jk):


Yellowish liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.68 (d, 3H, J = 6.4 Hz), 2.58 (s, 6H), 6.15 (q, 1H, J = 6.8 Hz), 7.31–7.46 (m, 6H), 7.94 (d, 2H, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 21.3, 22.2, 75.0, 126.4, 128.4, 129.0, 130.0, 133.2, 134.9, 137.2, 140.4, 163.4; IR (KBr): 2923, 2852, 1734, 1635, 1449, 1198, 1177, 979, 760, 744, 698 cm⁻¹; Anal. calcd. for C₁₇H₁₈O₂: C 80.28, H 7.13; found C 80.37, H 7.09.

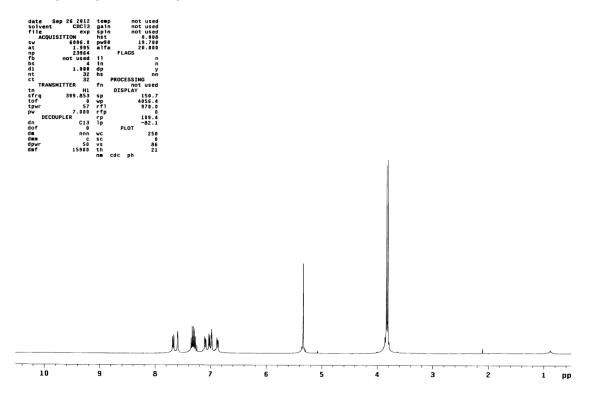
2-Phenylpropan-2-yl benzoate (al):

Colourless liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.91 (s, 6H), 7.24 (t, 2H, J = 7.2 Hz), 7.29–7.34 (m, 2H), 7.39–7.54 (m, 5H), 8.05 (d, 1H, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 28.5, 81.9, 124.0, 126.5, 128.1, 128.8, 129.3, 131.3, 132.4, 145.6, 164.8; IR (KBr): 2981, 2929, 1721, 1450, 1365, 1314, 1281, 1145, 1098, 1070, 1027, 763, 712, 698 cm⁻¹; Anal. calcd. for C₁₆H₁₆O₂: C 79.97, H 6.71; found C 80.03, H 6.77.

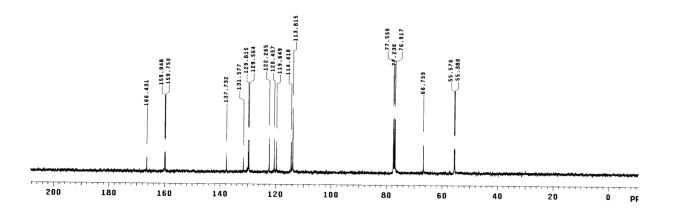

2-Phenylpropan-2-yl 4-chlorobenzoate (dl):


Colourless liquid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.89 (s, 6H), 7.22–7.42 (m, 7H), 7.96 (d, 2H, J = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 28.5, 82.4, 124.1, 127.0, 128.2, 128.4, 129.8, 130.8, 138.9, 145.4, 164.0; IR (KBr): 2981, 2931, 1725, 1595, 1449, 1365, 1277, 1145, 1116, 1098, 1015, 853, 761, 698 cm⁻¹; Anal. calcd. for C₁₆H₁₅ClO₂: C 69.95, H 5.50; found C 69.87, H 5.54. Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

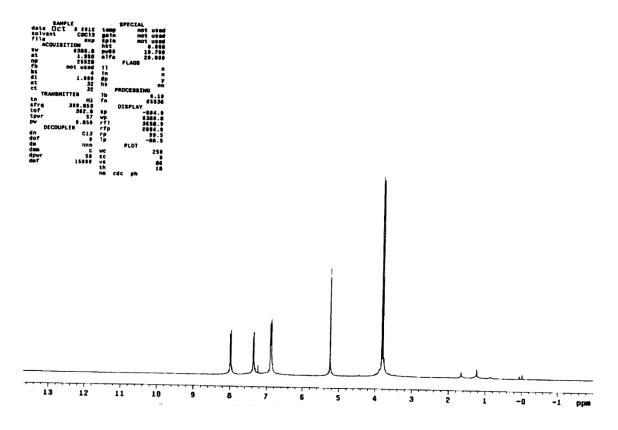
Spectra



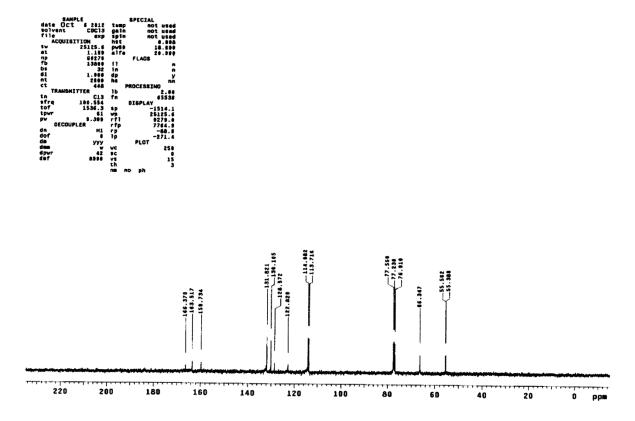
Benzyl benzoate (aa): ¹³C NMR (100 MHz, CDCl₃)

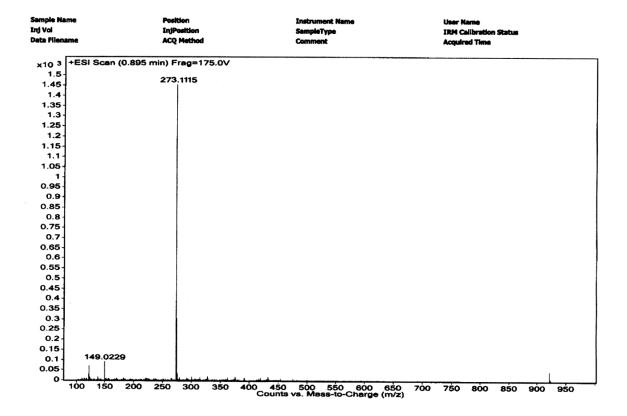


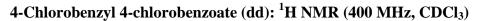
3-Methoxybenzyl 3-methoxybenzoate (bb): ¹H NMR (400 MHz, CDCl₃)

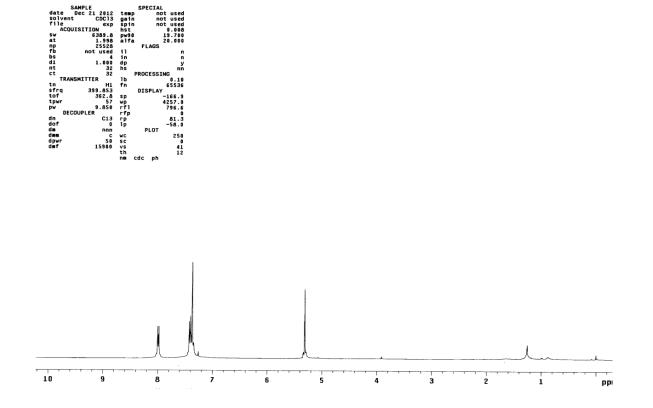


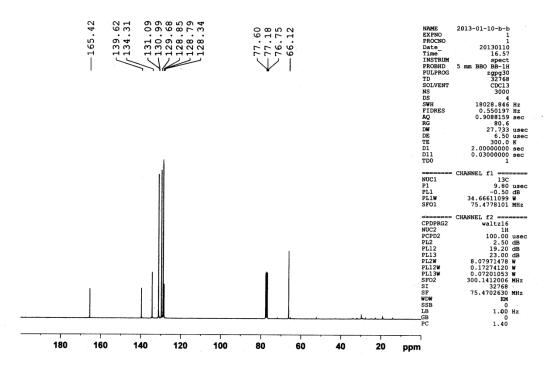
3-Methoxybenzyl 3-methoxybenzoate (bb): ¹³C NMR (100 MHz, CDCl₃)



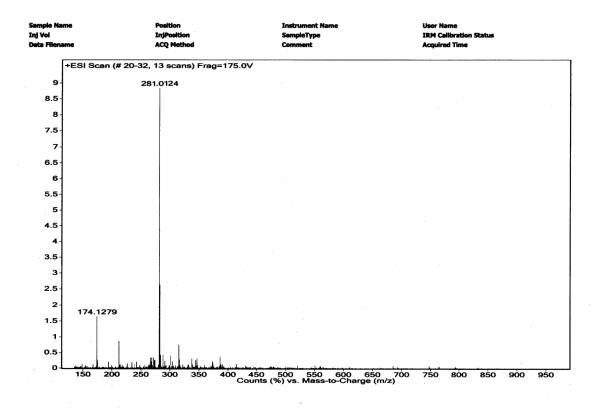




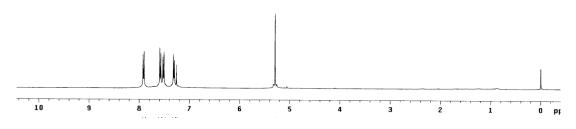

4-Methoxybenzyl 4-methoxybenzoate (cc): ¹³C NMR (100 MHz, CDCl₃)



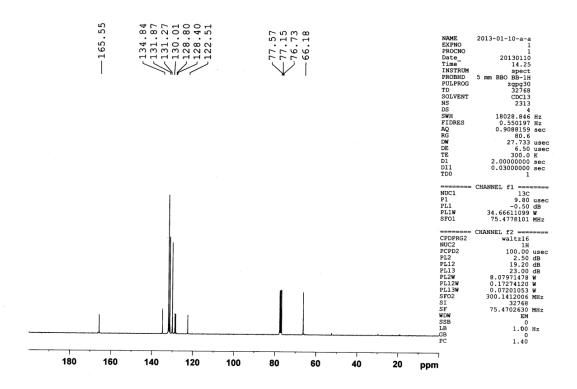
4-Methoxybenzyl 4-methoxybenzoate (cc): HRMS



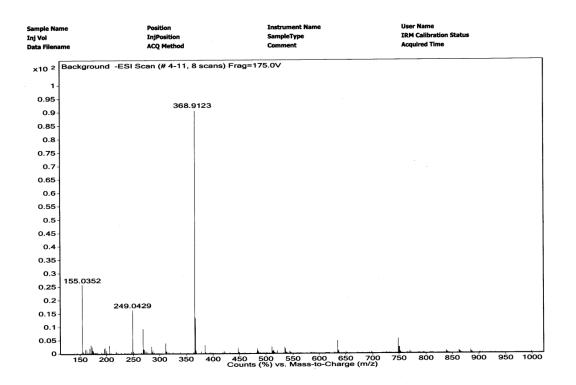
4-Chlorobenzyl 4-chlorobenzoate (dd): ¹³C NMR (75 MHz, CDCl₃)

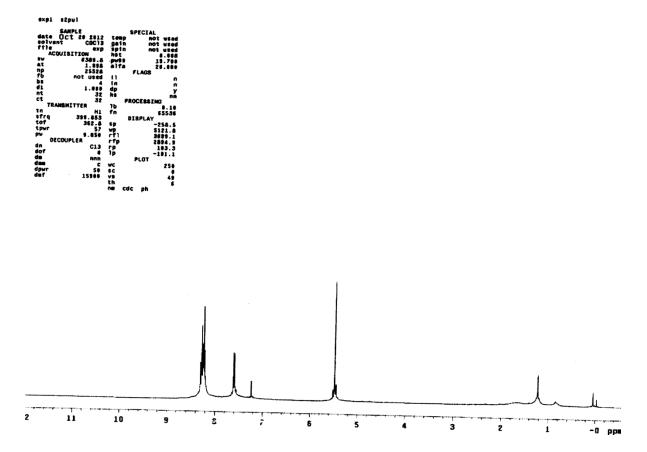


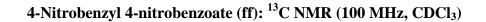
4-Chlorobenzyl 4-chlorobenzoate (dd): HRMS

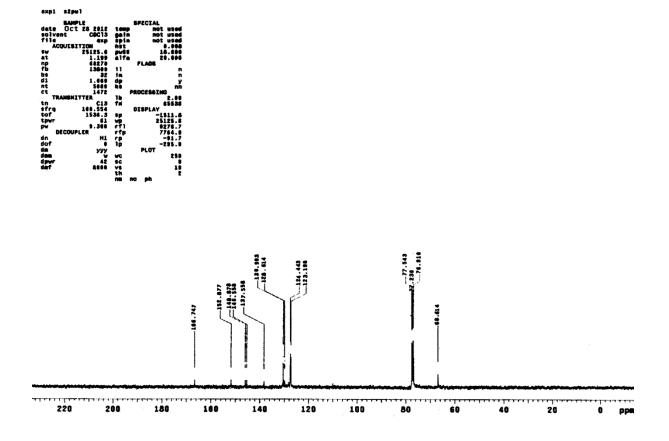


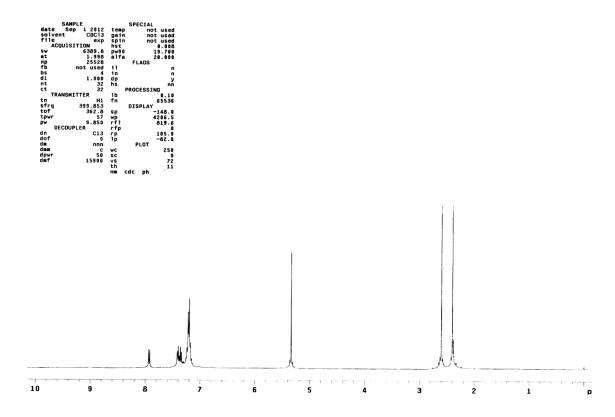
4-Bromobenzyl 4-bromobenzoate (ee): ¹H NMR (400 MHz, CDCl₃)

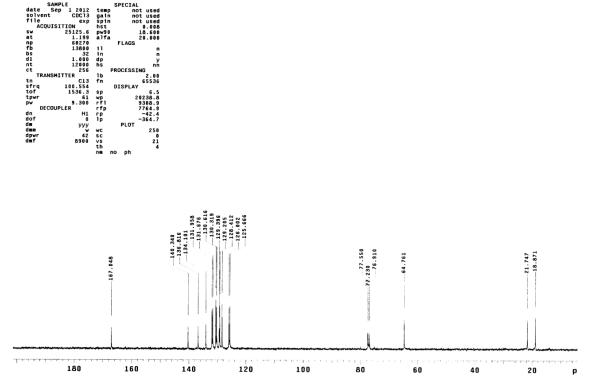


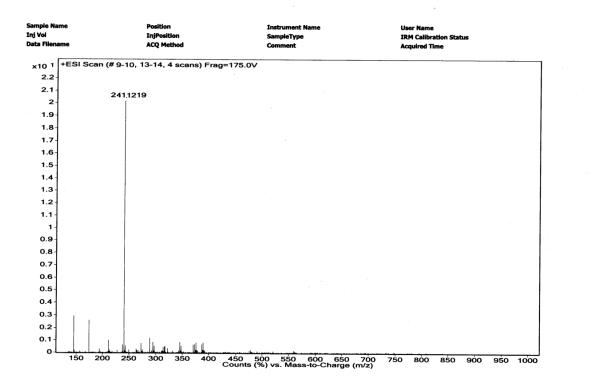

4-Bromobenzyl 4-bromobenzoate (ee): ¹³C NMR (75 MHz, CDCl₃)

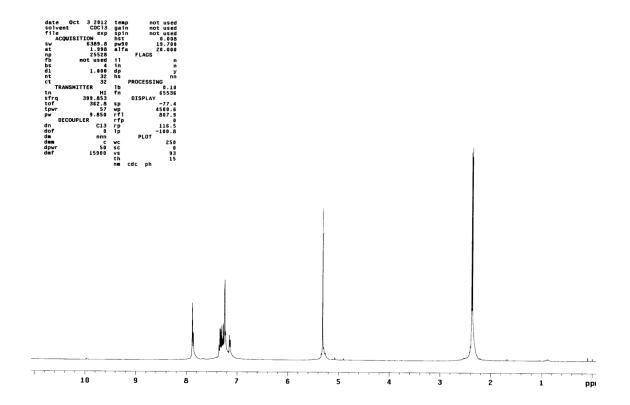


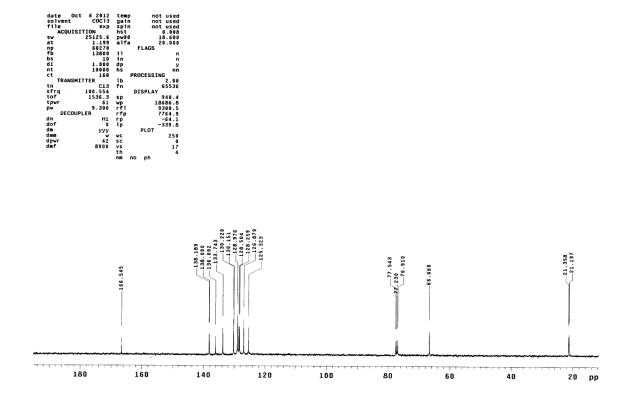

4-Bromobenzyl 4-bromobenzoate (ee): HRMS

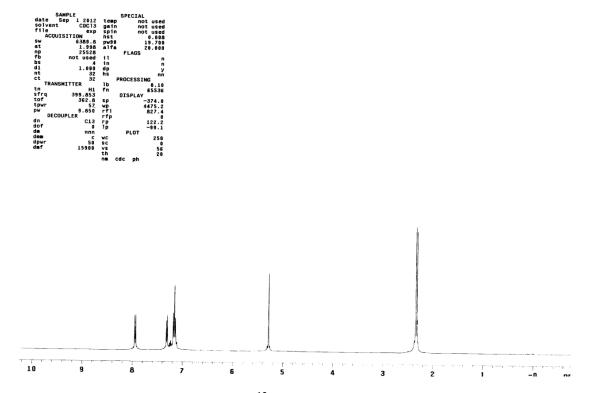

4-Nitrobenzyl 4-nitrobenzoate (ff): ¹H NMR (400 MHz, CDCl₃)

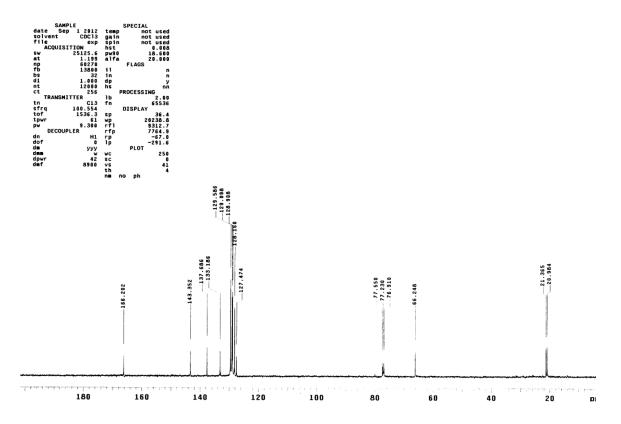


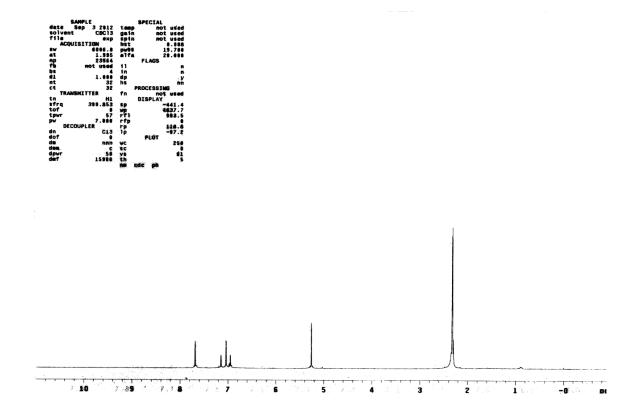

2-Methylbenzyl 2-methylbenzoate (gg): ¹H NMR (400 MHz, CDCl₃)

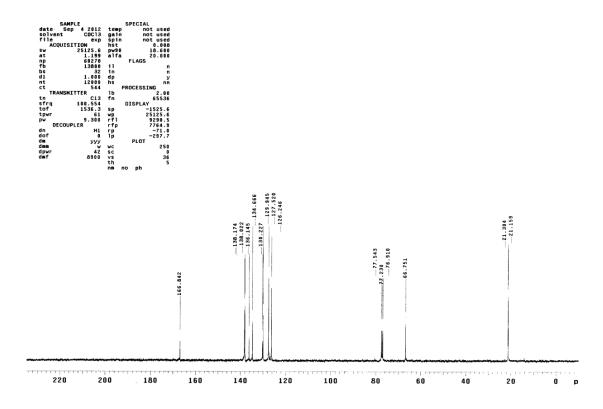

2-Methylbenzyl 2-methylbenzoate (gg): ¹³C NMR (100 MHz, CDCl₃)

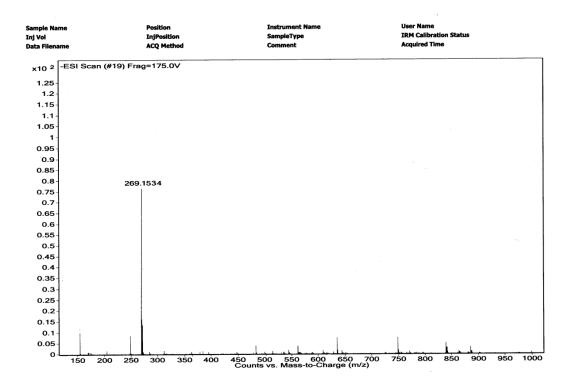

2-Methylbenzyl 2-methylbenzoate (gg): HRMS


3-Methylbenzyl 3-methylbenzoate (hh): ¹H NMR (400 MHz, CDCl₃)

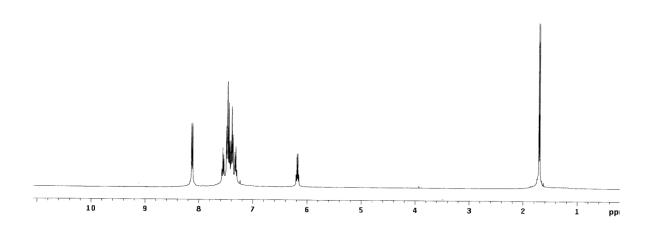

3-Methylbenzyl 3-methylbenzoate (hh): ¹³C NMR (100 MHz, CDCl₃)

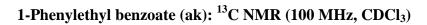

4-Methylbenzyl 4-methylbenzoate (ii): ¹H NMR (400 MHz, CDCl₃)

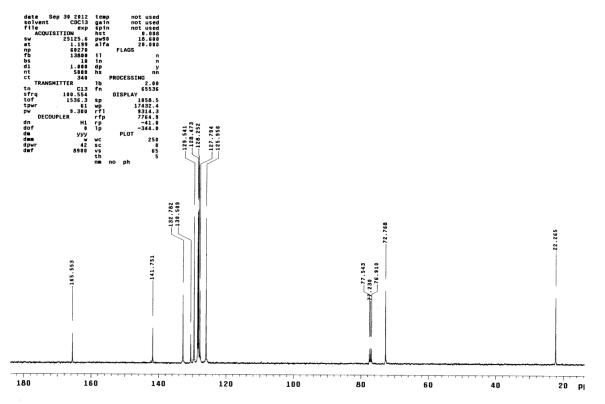

4-Methylbenzyl 4-methylbenzoate (ii): ¹³C NMR (100 MHz, CDCl₃)


3,5-Dimethylbenzyl 3,5-dimethylbenzoate (jj): ¹H NMR (400 MHz, CDCl₃)

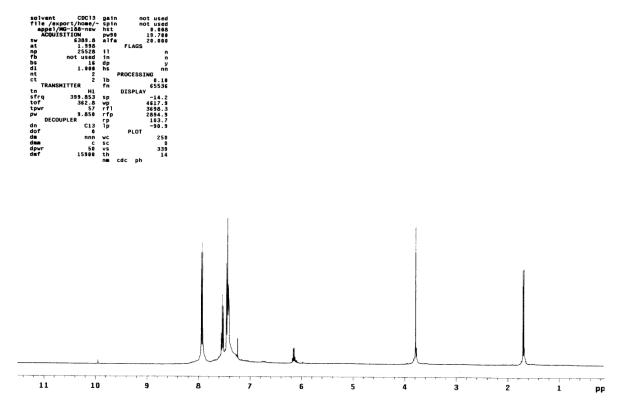
3,5-Dimethylbenzyl 3,5-dimethylbenzoate (jj): ¹³C NMR (100 MHz, CDCl₃)

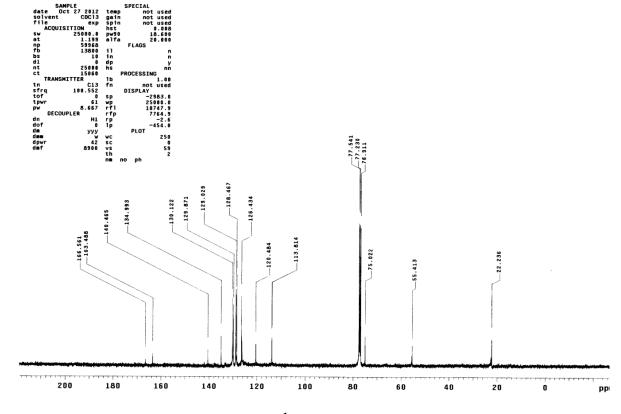


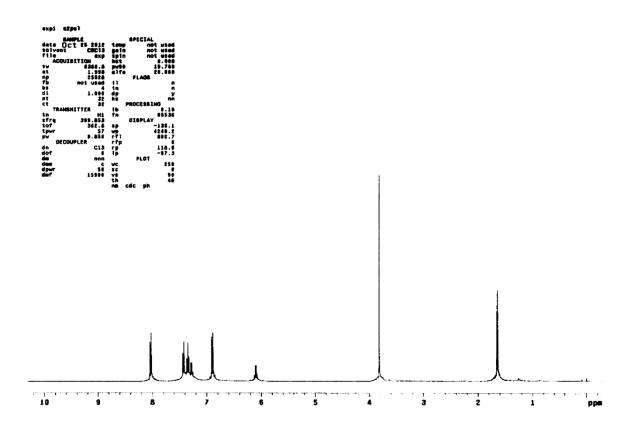

3,5-Dimethylbenzyl 3,5-dimethylbenzoate (jj): HRMS

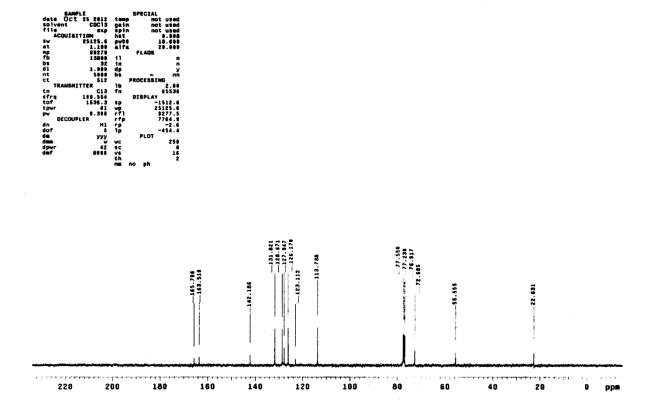


1-Phenylethyl benzoate (ak): ¹H NMR (400 MHz, CDCl₃)

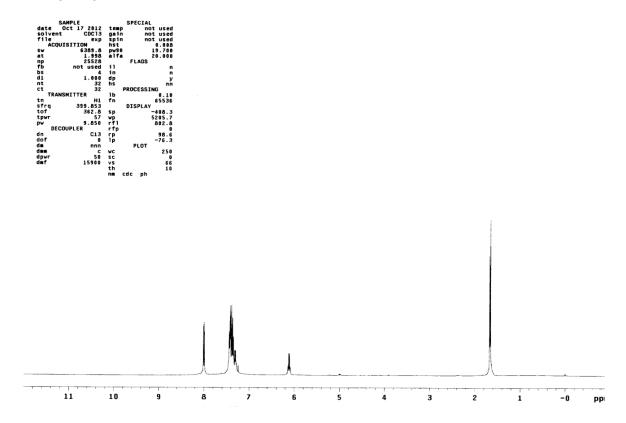


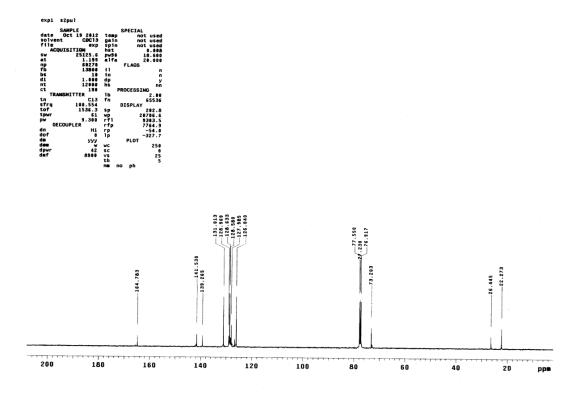


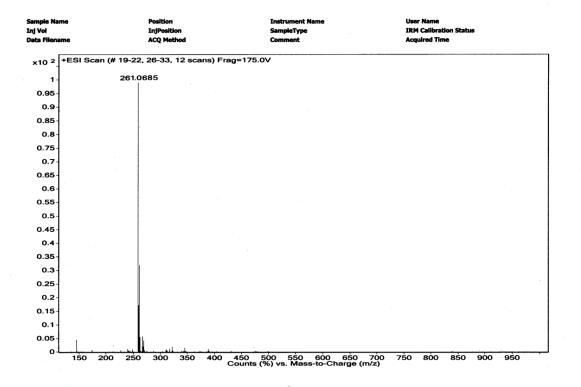

1-Phenylethyl 3-methoxybenzoate (bk): ¹H NMR (400 MHz, CDCl₃)

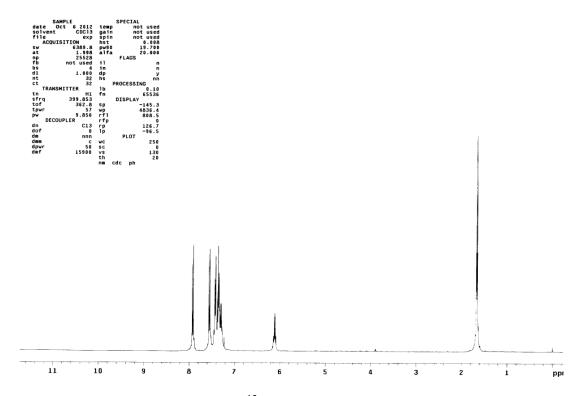


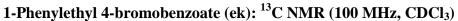
1-Phenylethyl 3-methoxybenzoate (bk): ¹³C NMR (100 MHz, CDCl₃)

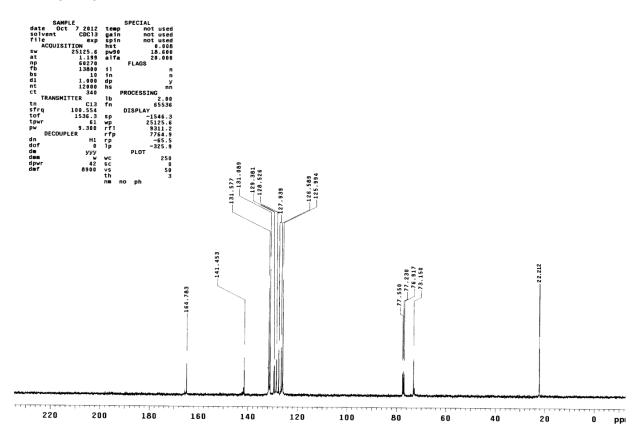

1-Phenylethyl 4-methoxybenzoate (ck): ¹H NMR (400 MHz, CDCl₃)

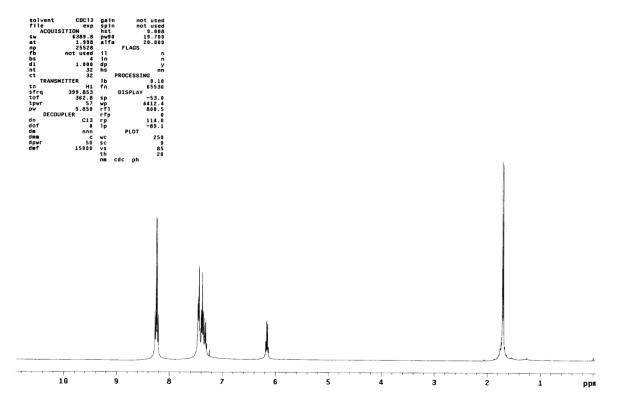

1-Phenylethyl 4-methoxybenzoate (ck): ¹³C NMR (100 MHz, CDCl₃)

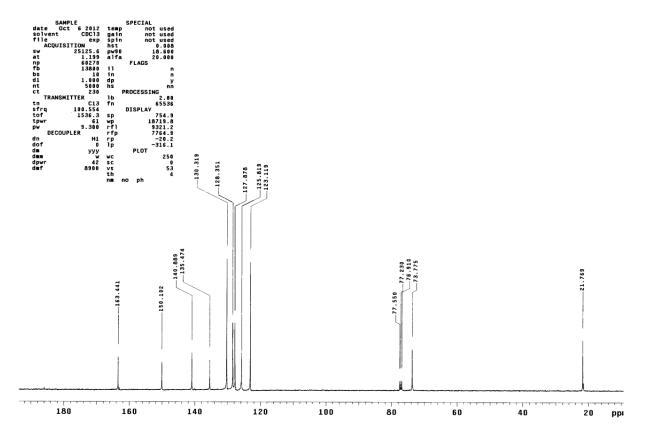

1-Phenylethyl 4-chlorobenzoate (dk): ¹H NMR (400 MHz, CDCl₃)

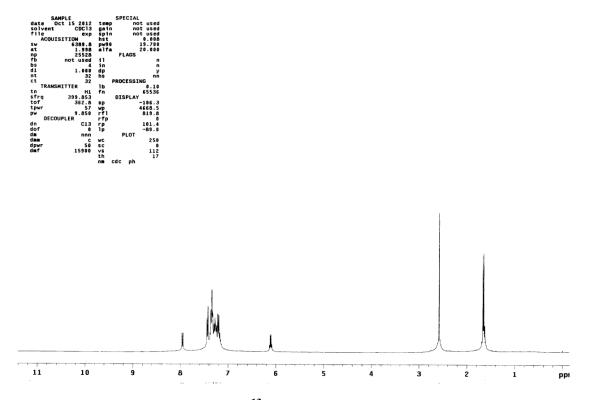

1-Phenylethyl 4-chlorobenzoate (dk): ¹³C NMR (100 MHz, CDCl₃)

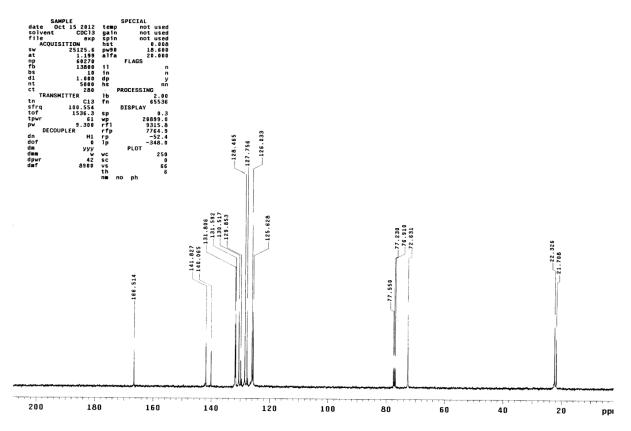


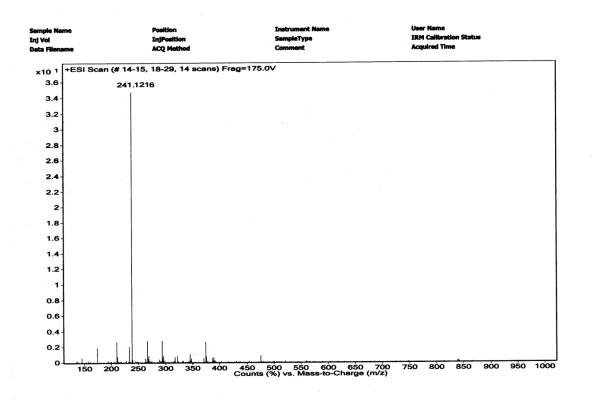

1-Phenylethyl 4-chlorobenzoate (dk): HRMS

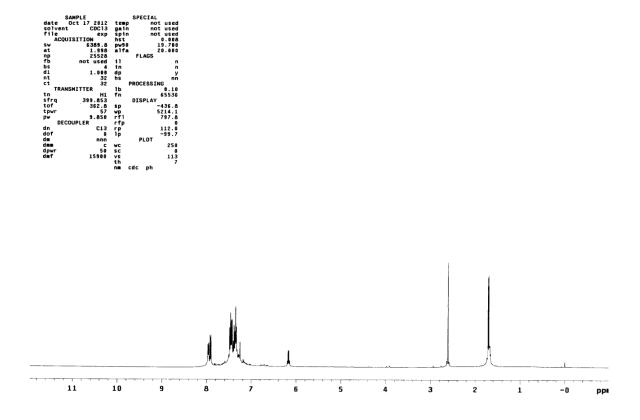

1-Phenylethyl 4-bromobenzoate (ek): ¹H NMR (400 MHz, CDCl₃)

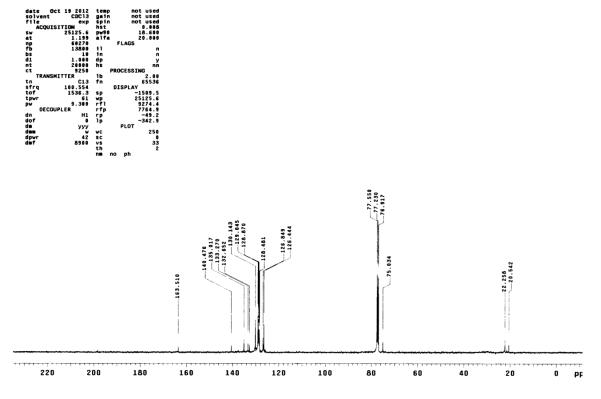


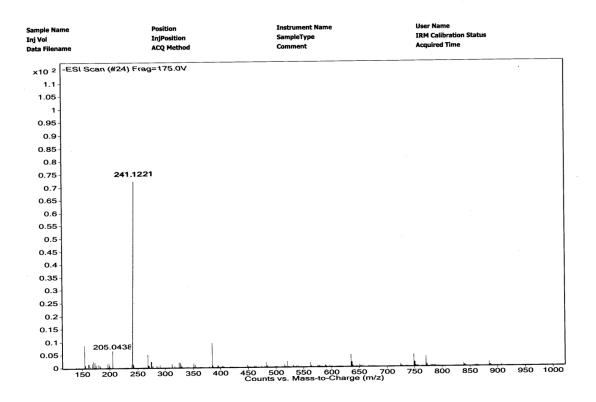

1-Phenylethyl 4-nitrobenzoate (fk): ¹H NMR (400 MHz, CDCl₃)

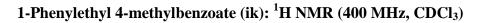

1-Phenylethyl 4-nitrobenzoate (fk): ¹³C NMR (100 MHz, CDCl₃)

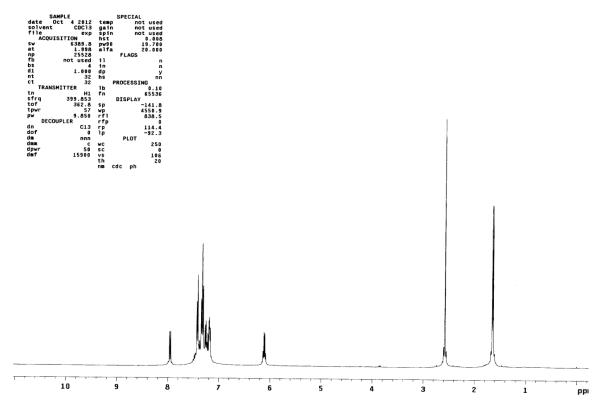

1-Phenylethyl 2-methylbenzoate (gk): ¹H NMR (400 MHz, CDCl₃)

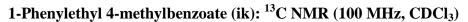

1-Phenylethyl 2-methylbenzoate (gk): ¹³C NMR (100 MHz, CDCl₃)

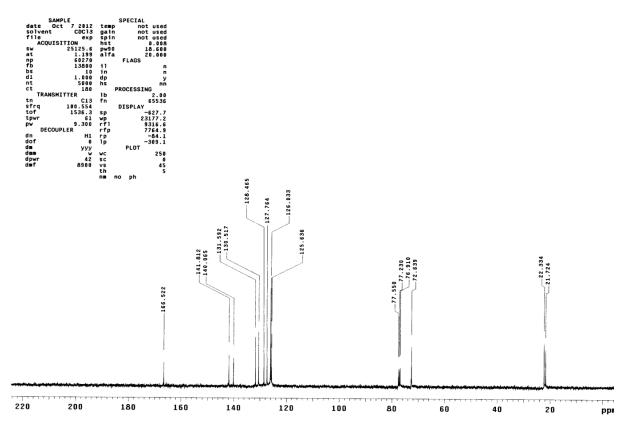

1-Phenylethyl 2-methylbenzoate (gk): HRMS

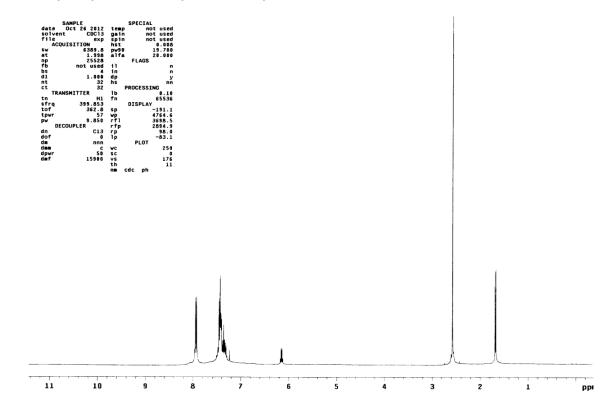

1-Phenylethyl 3-methylbenzoate (hk): ¹H NMR (400 MHz, CDCl₃)

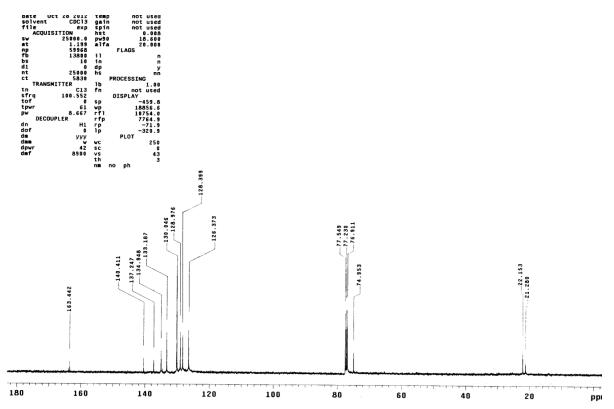


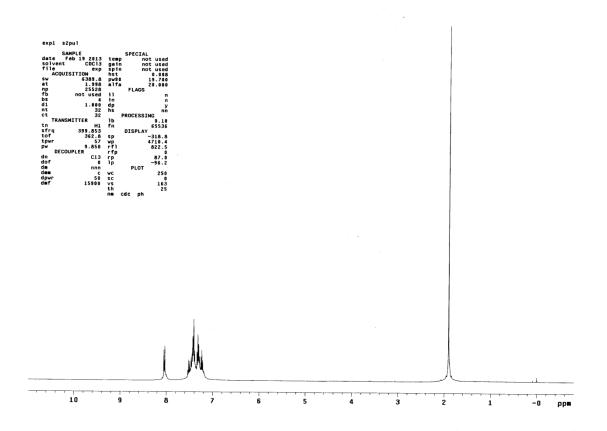

1-Phenylethyl 3-methylbenzoate (hk): ¹³C NMR (100 MHz, CDCl₃)



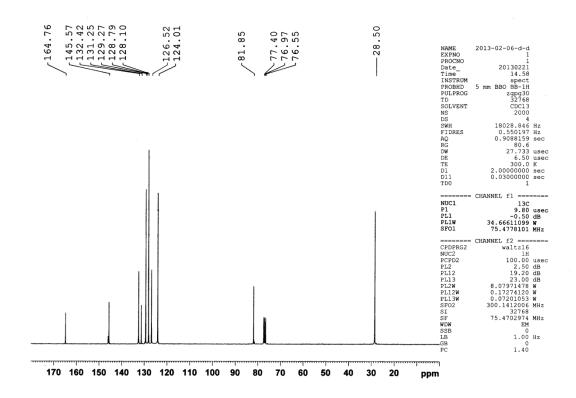

1-Phenylethyl 3-methylbenzoate (hk): HRMS

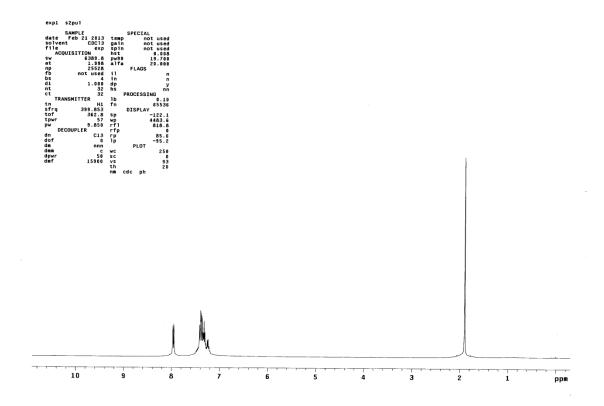


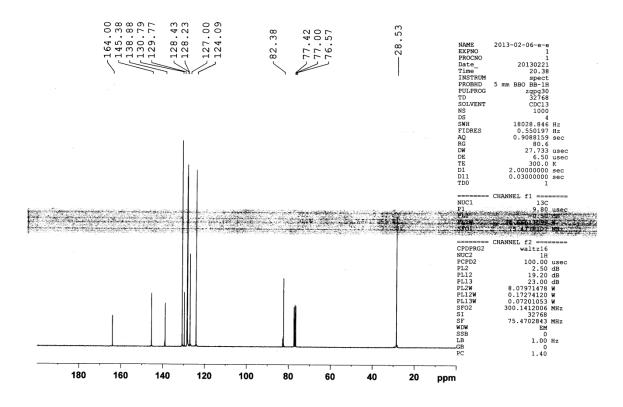




1-Phenylethyl 3,5-dimethylbenzoate (jk): ¹H NMR (400 MHz, CDCl₃)


1-Phenylethyl 3,5-dimethylbenzoate (jk): ¹³C NMR (100 MHz, CDCl₃)


2-Phenylpropan-2-yl benzoate (al): ¹H NMR (400 MHz, CDCl₃)


2-Phenylpropan-2-yl benzoate (al): ¹³C NMR (75 MHz, CDCl₃)

2-Phenylpropan-2-yl 4-chlorobenzoate (dl): ¹H NMR (400 MHz, CDCl₃)

2-Phenylpropan-2-yl 4-chlorobenzoate (dl): ¹³C NMR (75 MHz, CDCl₃)

