Supporting Information

Molecular Amino-Phosphonate Cobalt-Lanthanide Clusters

Eufemio Moreno Pineda, Floriana Tuna, Robin Pritchard, Andrew Regan, Richard E. P. Winpenny* and Eric J. L. McInnes^{*}

School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK. Fax: 44 -161-275-4606; E-mail: eric.mcinnes@manchester.ac.uk

Experimental Details

Synthesis of starting materials

Unless stated otherwise, all reagents and solvents were purchased from Aldrich Chemicals and used without further purification. $[Co_2(\mu - OH_2)(O_2C'Bu)_4(HO_2C'Bu)_4]^6$ **6** was prepared according to established methods. $[Ln_2(O_2C'Bu)_6(HO_2C'Bu)_6]^7$ (Ln = Gd, 7; Tb, **8**, Dy, **9**) were synthesized by refluxing Ln_2O_3 (3.62 g, 10 mmol) and excess pivalic acid (30 g, 300 mmol) at 160 °C for 5 hrs to form a clear solution. Followed by cooling the solution to room temperature and white precipitate came out. 50 ml toluene was added to dissolve the access pivalic acid and filtered in vacuum and 50 ml *n*-hexane were used to wash the product (yield ca. 13 g, 87 %).

Synthesis of (1-amino-1-cyclohexyl)phosphonic acid⁵

$$= \frac{1 \text{ NH}_3/\text{EtOH for 3h}}{\text{PO}_3\text{Eto}_2}$$

Diethyl 1-aminocyclohexylphosphonate: a solution of cyclohexanone (9.1 mL, 0.088 mol), diethyl phosphite (11.2 mL, 0.087 mol) and 52 mL of NH₃/EtOH (2M, 0.1 mol) was heated in an ampule to 100 °C for 7 hours. Excess NH₃ and EtOH were removed under reduced pressure. The resultant oil was a mixture of diethyl 1-aminocyclohexylphosphonate and diethyl phosphite. The oily product (22 g) was dissolved in acetone (38 mL) and a solution of oxalic acid (5.4 g, 60 mmol) in acetone (13.7 mL) was added. The mixture was refrigerated overnight and the precipitated product was separated by filtration and washed with cold acetone (3 x 25 mL). The dry product was treated with a saturated solution of NaHCO₃ and extracted with DCM until the extracted DCM became colourless. The solution was concentrated under reduced pressure to afford pure diethyl 1-aminocyclohexylphosphonate (13.13 g, 84 %).

1-aminocyclohexylphosphonate acid: diethyl 1aminocyclohexylphosphonate (3 g, 13 mmol) and HCl 6M (45 mL) were heated in an ampule for 3 hours at 120 °C. then the solution was evaporated until the odour of HCl

disappeared. The product was then dissolved in H₂O and precipitated with MeCN to give 1-aminocyclohexylphosphonic acid (2.0 g, 88 %). The product contains one molecule of water of crystallization. Elemental analysis, calcd (%) for $C_6H_{14}NPO_3$ • H₂O: C36.55, H 8.18, N 7.10, P 15.71; Found: C 36.53, H 7.92, N 7.05, P 15.57.

Synthesis of compound 1 to 2

1 was obtained by mixing 6 (0.036 g, 0.04 mmol), 7 (0.165 g, 0.1 mmol), Et₃N (0.1 ml, 1 mmol) and H₂O₃PC₆H₁₀NH₂ (0.036 g, 0.2 mmol) in MeCN (8 ml) were stirred at room temperature for a few minutes. The resulting slurry was transferred into a 10 mL Teflon-lined autoclave, which was heated at 150 °C for 12 hrs. and then cooled to room temperature at a rate of 0.05 °C min⁻¹. Pink block-shape crystals were collected (yield 10 mg, 10 %, based on 7). EA for Co₄Gd₁₀P₁₂N₁₀O₆₆C₁₂₄H₂₃₆, found (calc); C 28.96 (29.18), H 4.67 (4.66), Co 4.34 (4.62), Gd 29.65 (30.81), N 2.65 (2.74) and P 7.21 (7.28). 2 was obtained by mixing 6 (0.036 g, 0.04 mmol), 9 (0.165 g, 0.1 mmol), Et₃N (0.1 ml, 1 mmol) and H₂O₃PC₆H₁₀NH₂ (0.036 g, 0.2 mmol) in MeCN (8 ml) were stirred at room temperature for a few minutes. The resulting slurry was transferred into a 10 mL Teflon-lined autoclave, which was heated at 150 °C for 12 hrs. and then cooled to room temperature at a rate of 0.05 °C min⁻¹. Pink block-shape crystals were collected (yield 10 mg, 10 %, based on 9). EA for $Co_4Dy_{10}P_{12}N_{10}O_{66}C_{124}H_{236}$, found (calc); C 28.47 (28.89), H 4.53 (H 4.61), Co 4.48 (4.57), Dy 31.23 (31.52), N 2.65 (2.72) and P 7.18 (7.21).

Synthesis of compound 3 to 5

3 to 5 were synthesized from similar reaction, replacing the lanthanide source. 6 (0.095 g, 0.1 mmol), 7, 8 or 9 (0.075 mmol), Et₃N (0.1 ml, 0.7 mmol), Na₃PO₃ (0.05g, 0.3 mmol) and H₂O₃PC₆H₁₀NH₂ (0.018 g, 0.1 mmol) in MeCN (8 ml) were stirred at room temperature for a few minutes. The resulting slurry was transferred into a 10 mL Teflon-lined autoclave, which was heated at 150 °C for 12 hrs. and then cooled to room temperature at a rate of 0.05 °C min⁻¹. Block-shape purple crystals for 18.50 % based on were collected. EA 3 (vield 20 mg, 7) Co₆Gd₄Na₂O₄₆N₆P₆C₉₆H₁₈₆, found (calc for **3** with loss of 2 MeCN and gain of 2 H₂O); C 32.52 (34.16), H 5.12 (5.55), Co 10.44 (10.48), Gd 17.90 (18.64), P 5.63 (5.51), N 3.12 (2.49) and Na 1.37 (1.36). EA for 4 (yield 18 mg, 16.6 % based on 8) Co₆Tb₄Na₂O₄₆N₆P₆C₉₆H₁₈₆, found (calc for 4 with loss of 2 MeCN and gain of 2 H₂O); C 32.72 (34.09), H 5.35 (5.54), Co 10.85 (10.46), Tb 18.31 (18.79), P 5.21 (5.49), N 3.20 (2.5) and Na 1.23 (1.35). EA for 5 (yield 16 mg, 14.6% based on 9) Co₆Dy₄Na₂O₄₄N₈P₆C₁₀₀H₁₈₈, found (calc); C 35.23 (34.89), H 5.28 (5.50), Co 10.98 (10.27), Dy 18.46 (18.88), P 5.71 (5.39), N 2.98 (3.25) and Na 1.41 (1.33).

Crystallography

The data of **1** to **5** were collected on a Bruker SMART CCD diffractometer with MoK α radiation ($\lambda = 0.71073$ Å). The data of 5 were collected on a oxford SMART CCD diffractometer with MoK α radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods and refined on *F2* using SHELXTL. CCDC 922115-922117 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge *via* www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).

Crystal data for 1 $[C_{124}H_{214}Co_4Gd_{10}N_{10}O_{66}P_{12}\cdot 3(C_2H_3N)]$: $M_r = 5226.25$, triclinic, space group *P-1*, T = 100.15 K, a = 18.2190 (2), b = 22.4563 (3), c = 27.5752 (4) Å, $\alpha = 70.1022$ (12), $\beta = 84.55267$ (11), $\gamma = 79.3776$ (12)°, V = 10420.1 (2) Å³, Z = 2, $\rho = 1.666$ g cm⁻³, total data 84001, independent reflections 42000 (R_{int} = 0.083), $\mu = 3.61$ mm⁻¹, 1975 parameters, $R_I = 0.095$ for $I \ge 2\sigma(I)$ and $wR_2 = 0.218$. CCDC 922116

Crystal data for **2** $[C_{124}H_{228}Co_4Dy_{10}N_{10}O_{66}P_{12} \cdot C_4N_2H_6]$: $M_r = 5229.68$, triclinic, space group *P-1*, T = 100.15 K, a = 17.0917 (3), b = 20.9589 (3), c = 30.4298 (4) Å, $\alpha = 108.0775$ (13), $\beta = 101.8103$ (13), $\gamma = 92.1947$ (12)°, V = 10082.3 (3) Å³, Z = 2, $\rho = 1.725$ g cm⁻³, total data 79235, independent reflections 40171 (R_{int} = 0.062), $\mu = 4.14$ mm⁻¹, 1877 parameters, $R_I = 0.087$ for $I \ge 2\sigma(I)$ and $wR_2 = 0.194$. CCDC 922115

Crystal data for **3** $[C_{100}H_{186}Co_6Gd_4N_8Na_2O_{44}P_6 \cdot 2(C_2H_3N)]$: $M_r = 3501.06$, triclinic, space group $P2_{I/n}$, T = 100.15 K, a = 15.8683 (5), b = 27.0973 (8), c = 19.4683 (6) Å, $\beta = 112.274$ (13)°, V = 7746.5 (4) Å³, Z = 2, $\rho = 1.501$ g cm⁻³, total data 42633, independent reflections 15760 (R_{int} = 0.060), $\mu = 2.45$ mm⁻¹, 771 parameters, $R_I = 0.055$ for $I \ge 2\sigma(I)$ and $wR_2 = 0.139$. CCDC 922117

Crystal data for 4 (unite cell) [Co₆Tb₄P₆N₉O₄₃C₁₀₀H₁₈₈]: monoclinic, space group $P2_1/n$, T = 100.15 K, a = 15.8615(4), b = 27.2388(6), c = 19.440(5) Å, $\gamma = 111.837(3)^\circ$, V = 7797.9(3) Å³.

Crystal data for **5** (unite cell) [Co₆Dy₄P₆N₁₀O₄₄C₁₀₄H₁₉₂]: monoclinic, space group $P2_1/n$, T = 100.15 K, a = 15.810(3), b = 27.065(6), c = 19.386(4) Å, $\beta = 111.888(5)$, V = 7697.12 Å³.

Figure S1. Polyhedral representation of $Co_4Dy_{10}P_{12}$. Scheme: Dy, purple; Co, blue; P, green; O, orange; C, grey; N, cyan.

Figure S2. a) Full structure and polyhedral representation of $Co_6Gd_4P_6$ cluster; b) Polyhedral representation of $Co_6Gd_4P_6$. Scheme: Gd, purple; Co, blue; P, green; O, orange; C, grey; N, cyan; (H omitted for clarity).

Magnetic measurements

The magnetic properties of polycrystalline samples of **1-5** were performed with a Quantum Design MPMS-XL7 SQUID. The samples were ground, placed in a gel capsule and fixed with a small amount of eicosanoid acid to avoid movement during the measurement. The data were corrected for diamagnetism from the gel capsule, diamagnetic contribution from the eicosanoid acid and diamagnetic contribution calculated from Pascal constants.

Figure S3. a) Molar magnetic susceptibility (χT) vs. *T* plot for 1-5 under 1 kG DC field.

Figure S4. a) $M/N_{\mu\beta}$ magnetization of 1 at different temperatures; b) Magnetic Entropy change of 1.

Figure S5. a) $M/N_{\mu\beta}$ magnetization of 3 at different temperatures; b) Magnetic Entropy change of 3.