Supplementary Information

S-Pechmann Dye: A Thiolactone-Containing Organic Dye with Pronounced Electron-Accepting Character and Its Solid-State Photophysical Properties

Aiko Fukazawa,^{*1} Makoto Adachi,¹ Ken Nakakura,¹ Shohei Saito,¹ and Shigehiro Yamaguchi^{*1,2,3}

¹Department of Chemistry, Graduate School of Science, Nagoya University, ²Research Center for Materials Science, Nagoya University, ³Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan

Contents

1. Experimental Details	S2
2. NMR Spectra	S4
3. X-ray Crystallographic Analysis of 2b	S 8
4. DFT Calculations	S10
5. References	S17

1. Experimental Detail

General. Melting points (mp) were determined with a Yanaco MP-S3 instrument (MP-S3) or a Stanford Research System OptiMelt MPA100 instrument (MPA100). ¹H and ¹³C{¹H} NMR spectra were recorded with a JEOL AL-400 spectrometers (400 MHz for ¹H and 100 MHz for ¹³C) in CD₂Cl₂ THF- d_8 , or CDCl₃. The chemical shifts were reported in ppm using the signals of CH₂Cl₂, THF, and CHCl₃ as an internal standard (CH₂Cl₂: δ 5.32 and 53.84 in ¹H and ¹³C NMR spectra, respectively; THF: δ 3.58 in ¹H NMR spectra; CHCl₃: δ 77.16 in ¹³C NMR spectra). Mass spectra were measured with a Bruker micrOTOF Focus spectrometer with the APCI ionization method. Cyclic voltammetry (CV) was performed on an ALS/chi-617A electrochemical analyzer. The CV cell consisted of a glassy carbon electrode, a Pt wire counter electrode, and an Ag/AgNO₃ reference electrode. The measurements were carried out under an argon atmosphere using a CH₂Cl₂ (for oxidation) or a THF solution (for reduction) of sample with a concentration of 1.0 mM and 0.10 M tetrabutylammonium hexafluorophosphate (Bu₄NPF₆) as a supporting electrolyte. The redox potentials were calibrated with a ferrocene/ferrocenium ion couple. UV/Vis absorption spectra were measured with a Shimadzu UV-3150 spectrometer with a resolution of 0.5 nm using dilute sample solutions in spectral grade solvents in a 1 cm square quartz cuvette. An emission spectrum was measured with Horiba SPEX Fluorolog 3 spectrofluorometer equipped with a Hamamatsu PMA R5509-73 and a cooling system C9940-01. The fluorescence quantum yield was determined using indocyanine green (IR-125) as an external standard ($\Phi_{\rm F} = 0.132$ in EtOH). A diffuse reflectance spectrum was measured with JASCO V-570 UV/VIS/NIR spectrophotometer equipped with a JASCO ISN-470 integrating sphere system. Thin layer chromatography was performed on plates coated with 0.25 mm thick silica gel 60F₂₅₄ (Merck). Column chromatography was performed using PSQ 100B (Fuji Silysia). Recycling preparative gel permeation chromatography (GPC) was performed using LC-918 (Japan Analytical Industry) equipped with a polystyrene gel column (JAIGEL 1H and 2H, Japan Analytical Industry) and CHCl₃ as the eluent. Anhydrous THF was purchased from Kanto Chemicals and further purified by Glass Contour Solvent Systems. All reactions were carried out under a nitrogen atmosphere.

5,5'-Bis(*tert*-butyldimethylsilyl)-2,2';4',3'';5'',2'''-quaterthiophene (4). To a solution of 2-bromo-5-(*tert*-butyldimethylsilyl)thiophene (688 mg, 2.48 mmol) in anhydrous THF (5.0 mL) was added *n*-BuLi in hexane (1.62 M, 1.55 mL, 2.51 mmol) dropwise at -78 °C over 5 min. After stirring for 2 h, ZnCl₂(tmeda) (629 mg, 2.49 mmol) was added. The resulting mixture was allowed to warm to room temperature and stirred for 1.5 h. To a resulting solution of 5-(*tert*-butyldimethylsilyl)-2-thienylzinc chloride, was added a solution of 5,5'-dibromo-3,3'-bithiophene **3**¹ (302 mg, 0.932 mmol) in anhydrous THF (5.0 mL) and PdCl₂(dppf)•CH₂Cl₂ (83.2 mg, 0.102 mmol), and the resulting mixture was stirred for 14 h. As the starting materials **3** was found to remain by ¹H

NMR of the reaction mixture, another portion of a solution of 5-(*tert*-butyldimethylsilyl)-2-thienylzinc chloride in THF (prepared by the reaction of 5-bromo-2-silyl-thiophene (371 mg, 1.34 mmol) and *n*-BuLi in hexane (1.62 M, 0.83 mL, 1.34 mmol) in anhydrous THF (5.0 mL)) and PdCl₂(dppf)•CH₂Cl₂ (85.8 mg, 0.105 mmol) was added and stirred for 12 h. The mixture was quenched with 10% NH₄Cl aq. (18 mL), and the aqueous layer was extracted with Et₂O and CHCl₃. The combined organic layer was dried over anhydrous Na₂SO₄. After concentration of the organic layer under reduced pressure, the resulting crude product was subjected to silica gel column chromatography (hexane/EtOAc (100/1) as eluent) to afford 412 mg (R_f = 0.27, 0.737 mmol, 79% yield) of **4** as yellow solids. Mp (MPA100): 171.7–172.4 °C. ¹H NMR (400 MHz, CD₂Cl₂): δ 0.33 (s, 12H), 0.96 (s, 18H), 7.19 (d, 2H, *J* = 3.4 Hz), 7.31 (d, 2H, *J* = 3.4 Hz), δ 7.32 (2H, *J* = 1.4 Hz), 7.45 (d, 2H, *J* = 1.4 Hz); ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ –4.82, 17.21, 26.54, 119.40, 123.04, 125.54, 136.46, 137.86, 137.97, 138.47, 142.59. HRMS (APCI): *m*/z calcd. for C₂₈H₃₈S₄Si₂: 558.1389 ([*M*]⁺). Obsd. 558.1406 ([*M*]⁺).

5,5'-Di(5''-tert-butyldimethylsilyl-2''-thienyl)-3,3'-bi[thiophen-3(2H)-ylidene]-2,2'-dione (2b). To a solution of 4 (201 mg, 0.360 mmol) in anhydrous THF (4.0 mL) was added t-BuLi in pentane (1.65 M, 0.46 mL, 0.76 mmol) dropwise at -78 °C over 6 min. After stirring for 3 h, the resulting solution was cannulated into a solution of B(OMe)₃ (0.35 mL, 0.33 g, 3.15 mmol) in anhydrous THF (3.0 mL) over 14 min at the same temperature. The resulting mixture was allowed to warm to room temperature gradually, and stirred for 16 h. The mixture was treated with 1N HCl aq. (2.9 mL) and then 30% H₂O₂ aq. (1.0 mL), stirred for 5 h, and quenched with Na₂SO₃ aq. (10 mL) at 0 °C. The aqueous layer was extracted with CHCl₃ (4 times), and the combined organic layer was dried over anhydrous Na₂SO₄. After concentration of the organic layer under reduced pressure, the resulting crude product was dissolved in CHCl₃ and filtered through a plug of silica gel. The resulting crude mixture was subjected to silica gel column chromatography (hexane/CHCl₃ (6.7/1) as eluent), and the blue-colored eluate was collected to give 39.9 mg of blue solids containing 2b. The crude product was further purified by preparative GPC followed by recrystallization from hexane/CH₂Cl₂ to give 30.4 mg of 2 (51.6 µmol, 14% yield) as black crystals with metallic luster. Mp (MP-S3): 291.4–292.2°C. ¹H NMR (400 MHz, THF- d_8): $\delta 0.37$ (s, 12H), 0.97 (s, 18H), 7.37 (d, 2H, J = 3.6 Hz), 7.57 (d, 2H, J = 3.6 3.6 Hz), 8.17 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃, 50 °C): δ –4.85, 17.15, 26.50, 117.72, 130.15, 135.28, 136.53, 142.51, 142.91, 145.20, 194.36. HRMS (APCI): m/z calcd. for $C_{28}H_{36}O_2S_4Si_2$: 588.1131 ([*M*]⁺). Obsd. 588.1125 ([*M*]⁺).

2. NMR Spectra

Figure S1. ¹H NMR spectrum of 4 (400 MHz, CD₂Cl₂).

Figure S2. ¹³C{¹H} NMR spectrum of 4 (100 MHz, CD_2Cl_2).

Figure S3. ¹H NMR spectrum of **2b** (400 MHz, THF- d_8).

Figure S4. ${}^{13}C{}^{1}H$ NMR spectrum of 2b (100 MHz, CDCl₃, VT 50 °C).

3. X-ray Crystallographic Analysis of 2b

X-ray Data Collection of 2b. Needle-shaped dark blue single crystals were grown by recrystallization from hexane/CHCl₃. Intensity data were collected at 123 K on a Rigaku Single Crystal CCD X-ray diffractometer (Saturn 70 with MicroMax-007) with MoK α radiation ($\lambda = 0.71070$ Å) and graphite monochromator. A total of 5112 reflections were measured with the maximum 2θ angle of 50.0°, of which 2544 were independent reflections ($R_{int} = 0.1162$). The structure was solved by direct methods (SHELXS-97) and refined by the full-matrix least-squares on F^2 (SHELXL-97).² All non-hydrogen atoms were refined anisotropically and all hydrogen atoms were placed using AFIX instructions. The crystal data are as follows: C₂₈H₃₆S₄Si₂; FW = 588.99, crystal size 0.20 × 0.02 × 0.01 mm³, triclinic, *P*-1 (#2), *a* = 6.472(6) Å, *b* = 7.017(6) Å, *c* = 16.835(16) Å, $\alpha = 82.70(4)^\circ$, $\beta = 84.68(4)^\circ$, $\gamma = 78.40(4)^\circ$, V = 741.0(11) Å³, Z = 1, $D_c = 1.320$ g cm⁻³, $\mu = 0.426$ mm⁻¹, $R_1 = 0.1126$ ($I > 2\sigma(I)$), $wR_2 = 0.3482$ (all data), GOF = 1.028. CCDC 923201.

Figure S5. Stacked two molecules in the crystal packing of 2b: (a) top view, (b) front view.

Figure S6. Crystal packing of **2b**: (a) view along *a* axis; (b) view along *b* axis.

4. DFT Calculations

Computational Method. The geometry optimizations of **1b**' and **2b**', and single-point calculations of $\mathbf{3}_0$ and $\mathbf{3}_s$ were performed using the B3LYP functional³ with the 6-31G(d) basis set,⁴ implemented in the Gaussian 09 program.⁵ For the geometry optimizations, a stationary point was optimized without any symmetry assumptions and characterized by frequency analysis at the same level of theory (the number of imaginary frequencies, NIMAG, was 0.) The Cartesian coordinates for **1b**', **2b**', **3**₀, and **3**_s are given in Tables S1–S4. Geometries of **3**₀ and **3**_s are derived from the optimized structures of **1b**' and **2b**', respectively by just removing the endocyclic oxygen and sulfur atoms and adding hydrogen atoms. The Kohn-Sham molecular orbitals of **1b**', **2b**', **3**₀, and **3**_s are illustrated in Figure S7. TD-DFT vertical excitation calculations⁶ of **1b**' and **2b**' were performed using the optimized geometry at the B3LYP/6-31G(d) level, implemented in the Gaussian 09 program.⁵ The excitation energies and the oscillator strengths are shown in Tables S5 and S6.

Evaluation of the Intermolecular Interactions for 2b in the Crystalline State. Single-point calculations for one molecule and two neighboring molecules in 2b are performed using the B3LYP functional³ with the 6-31G(d) basis set,⁴ implemented in the Gaussian 09 program.⁵ The geometries determined by X-ray crystallographic analysis of 2b were used as the initial geometries. The Kohn-Sham molecular orbitals of 2b are illustrated in Figure S8. Electronic coupling (*V*) calculations between neighboring molecules in the crystalline state were performed using PW91 functional with the DZP basis set implemented in the ADF2010 program,⁷ and the results were summarized in Table S7.

atom	x	у	Z.	atom	x	у	Z.
С	-0.20023429	-0.24484723	-0.61237966	0	-1.82264383	-1.96470551	0.05626076
С	-1.20152629	-1.33237672	-0.76043512	Si	-0.42581193	-0.06211018	8.42534256
С	0.19026601	0.11566408	-1.93252213	Si	0.42540212	0.06257791	-8.42531129
Н	0.90812624	0.87797019	-2.19638172	С	-0.06376990	-1.90360288	8.65566362
С	-0.51103818	-0.68133210	-2.79762725	Н	-0.40238526	-2.24606490	9.64130663
0	-1.35224929	-1.55873446	-2.12978879	Н	1.00934767	-2.11240114	8.57868384
С	0.20076294	0.24409971	0.61236680	Н	-0.57493001	-2.51271613	7.90085319
С	1.20217498	1.33151950	0.76042487	С	0.52458805	0.96451876	9.69594048
С	-0.18979833	-0.11634801	1.93250913	Н	0.22525178	0.68004217	10.71201948
Н	-0.90769940	-0.87861425	2.19637579	Н	0.32621953	2.03669905	9.58384719
С	0.51160373	0.68055300	2.79761733	Н	1.60689272	0.81056044	9.61719181
0	1.35293598	1.55784709	2.12977600	С	-2.28406152	0.25249573	8.57992820
С	1.29373151	1.63020226	4.99754605	Н	-2.65088913	-0.05786322	9.56614737
Н	1.97747701	2.35034519	4.56409606	Н	-2.85192152	-0.30457579	7.82548581

Table S1. The Cartesian Coordinates (Å) of the Optimized Structure for 1b'

C 1.07492325 1.45812739 6.38567013 C -0.52545800	-0.96337737 -9.69610944
H 1.58647022 2.04779328 7.13938448 H -1.60771904	-0.80927317 -9.61707296
С 0.15494663 0.47644369 6.70795474 Н -0.32725523	-2.03563897 -9.58448744
S -0.45552813 -0.25449700 5.24250623 H -0.22626136	-0.67854905 -10.71212875
C -1.29279596 -1.63125272 -4.99758562 C 0.06314442	1.90419465 -8.65437518
H -1.97616305 -2.35176780 -4.56415492 H 0.57581867	2.51300513 -7.90034666
С -0.53292385 -0.77121210 -4.22452136 Н -1.00979485	2.11311917 -8.57534018
C -1.07410536 -1.45900290 -6.38570490 H 0.39998914	2.24689782 -9.64054382
H -1.58535515 -2.04890725 -7.13943513 C 2.28361430	-0.25173058 -8.58096142
С -0.15463020 -0.47683567 -6.70795469 Н 2.85176061	0.30497748 -7.82647108
S 0.45548437 0.25435877 -5.24250132 H 2.64988208	0.05929534 -9.56718133
O 1.82334300 1.96380258 -0.05627109 H 2.51934193	-1.31466818 -8.45561896

Table S2. The Cartesian Coordinates (Å) of the Optimized Structure for 2b'

atom	x	у	Z.	atom	x	у	Ζ.
С	2.80048240	-1.15035578	0.00136702	0	0.68501080	2.54889454	0.01422875
С	1.92581703	-0.09192448	0.01163227	Si	-8.29275127	-0.60201771	0.00269678
Н	2.25540899	0.93853223	0.01234616	Si	8.29277006	0.60196737	0.00273769
С	0.54469899	-0.4338487	0.01508658	С	-9.69400644	0.63863783	-0.26023843
С	0.34732698	-1.91732176	0.01085730	Н	-9.59973081	1.16016378	-1.21958084
С	-0.54469707	0.43391100	0.01507061	Н	-9.72548867	1.39396794	0.53359555
С	-1.92581076	0.09196990	0.01169534	Н	-10.66159344	0.12228902	-0.25910824
Н	-2.25538825	-0.93849210	0.01251273	С	-8.26807061	-1.88309484	-1.38770730
С	-0.34734342	1.91738768	0.01070773	Н	-8.15378626	-1.40686875	-2.36814933
С	-2.80049122	1.15038856	0.00138096	Н	-9.20034931	-2.46106559	-1.40197825
С	-4.23541157	1.09544156	-0.00963725	Н	-7.44165550	-2.59332678	-1.26628377
С	-5.13380500	2.14894364	-0.05616119	С	-8.48422840	-1.46909698	1.67241972
Н	-4.82205929	3.18748159	-0.08936799	Н	-9.42137474	-2.03822305	1.71081553
С	-6.48621148	1.73271405	-0.06227308	Н	-8.49624707	-0.74792956	2.49761619
Н	-7.31662240	2.43017923	-0.10019251	Н	-7.66243359	-2.17073144	1.85725440
С	-6.66570036	0.3618482	-0.01852125	С	8.26849961	1.88255728	-1.38812415
С	4.23540305	-1.09542749	-0.00970749	Н	8.15460902	1.40596959	-2.36843669
С	5.13377889	-2.14893364	-0.05646279	Н	9.20074080	2.46059236	-1.40226362
Н	4.82201702	-3.18746119	-0.08984437	Н	7.44198312	2.59276579	-1.26725883
С	6.48619148	-1.73272178	-0.06255141	С	8.48383004	1.46961526	1.67221114
Н	7.31659208	-2.43019133	-0.10061456	Н	9.42104861	2.03861479	1.71071082
С	6.66570126	-0.36186642	-0.01855745	Н	8.49546971	0.74874047	2.49766846

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

S	1.98372905	-2.73240769	-0.00131989	Н	7.66208275	2.17144204	1.85652825
S	-1.98375806	2.73245050	-0.00141420	С	9.69405137	-0.63882147	-0.25942826
S	-5.10957259	-0.42799429	0.02885717	Н	9.59986771	-1.16083741	-1.21851420
S	5.10958549	0.42799051	0.02899548	Н	9.72545639	-1.39374614	0.53479391
0	-0.68503812	-2.54880982	0.01450892	Н	10.66163826	-0.12247275	-0.25848134

Table S3. The Cartesian Coordinates (Å) of the Optimized Structure for $\mathbf{3}_0$

atom	x	у	Z.	atom	x	у	z
С	-0.20023429	-0.24484723	-0.61237966	С	0.52458805	0.96451876	9.69594048
С	0.19026601	0.11566408	-1.93252213	Н	0.22525178	0.68004217	10.71201948
Н	0.90812624	0.87797019	-2.19638172	Н	0.32621953	2.03669905	9.58384719
С	0.20076294	0.24409971	0.61236680	Н	1.60689272	0.81056044	9.61719181
С	-0.18979833	-0.11634801	1.93250913	С	-2.28406152	0.25249573	8.57992820
Н	-0.90769940	-0.87861425	2.19637579	Н	-2.65088913	-0.05786322	9.56614737
С	1.29373151	1.63020226	4.99754605	Н	-2.85192152	-0.30457579	7.82548581
Н	1.97747701	2.35034519	4.56409606	Н	-2.51955629	1.31539332	8.45380198
С	0.53344153	0.77050354	4.22451184	С	-0.52545800	-0.96337737	-9.69610944
С	1.07492325	1.45812739	6.38567013	Н	-1.60771904	-0.80927317	-9.61707296
Н	1.58647022	2.04779328	7.13938448	Н	-0.32725523	-2.03563897	-9.58448744
С	0.15494663	0.47644369	6.70795474	Н	-0.22626136	-0.67854905	-10.71212875
S	-0.45552813	-0.25449700	5.24250623	С	0.06314442	1.90419465	-8.65437518
С	-1.29279596	-1.63125272	-4.99758562	Н	0.57581867	2.51300513	-7.90034666
Н	-1.97616305	-2.35176780	-4.56415492	Н	-1.00979485	2.11311917	-8.57534018
С	-0.53292385	-0.77121210	-4.22452136	Н	0.39998914	2.24689782	-9.64054382
С	-1.07410536	-1.45900290	-6.38570490	С	2.28361430	-0.25173058	-8.58096142
Н	-1.58535515	-2.04890725	-7.13943513	Н	2.85176061	0.30497748	-7.82647108
С	-0.15463020	-0.47683567	-6.70795469	Н	2.64988208	0.05929534	-9.56718133
S	0.45548437	0.25435877	-5.24250132	Н	2.51934193	-1.31466818	-8.45561896
0	1.82334300	1.96380258	-0.05627109	С	0.51160373	0.68055300	2.79761733
0	-1.82264383	-1.96470551	0.05626076	С	-1.20152629	-1.33237672	-0.76043512
Si	-0.42581193	-0.06211018	8.42534256	С	1.20217498	1.33151950	0.76042487
Si	0.42540212	0.06257791	-8.42531129	С	-0.51103818	-0.68133210	-2.79762725
С	-0.06376990	-1.90360288	8.65566362	Н	1.11501524	1.31136165	2.36626284
Н	-0.40238526	-2.24606490	9.64130663	Н	1.56377707	1.75877940	1.55715858
Н	1.00934767	-2.11240114	8.57868384	Н	-1.56309496	-1.75966716	-1.55716761
Н	-0.57493001	-2.51271613	7.90085319	Н	-1.11433224	-1.31225734	-2.36627900

atom	x	у	Z	atom	x	у	Z.
С	1.92581703	-0.09192448	0.01163227	С	-8.26807061	-1.88309484	-1.38770730
Н	2.25540899	0.93853223	0.01234616	Н	-8.15378626	-1.40686875	-2.36814933
С	0.54469899	-0.43384870	0.01508658	Н	-9.20034931	-2.46106559	-1.40197825
С	-0.54469707	0.43391100	0.01507061	Н	-7.44165550	-2.59332678	-1.26628377
С	-1.92581076	0.09196990	0.01169534	С	-8.48422840	-1.46909698	1.67241972
Н	-2.25538825	-0.93849210	0.01251273	Н	-9.42137474	-2.03822305	1.71081553
С	-4.23541157	1.09544156	-0.00963725	Н	-8.49624707	-0.74792956	2.49761619
С	-5.13380500	2.14894364	-0.05616119	Н	-7.66243359	-2.17073144	1.85725440
Н	-4.82205929	3.18748159	-0.08936799	С	8.26849961	1.88255728	-1.38812415
С	-6.48621148	1.73271405	-0.06227308	Н	8.15460902	1.40596959	-2.36843669
Н	-7.31662240	2.43017923	-0.10019251	Н	9.20074080	2.46059236	-1.40226362
С	-6.66570036	0.36184820	-0.01852125	Н	7.44198312	2.59276579	-1.26725883
С	4.23540305	-1.09542749	-0.00970749	С	8.48383004	1.46961526	1.67221114
С	5.13377889	-2.14893364	-0.05646279	Н	9.42104861	2.03861479	1.71071082
Н	4.82201702	-3.18746119	-0.08984437	Н	8.49546971	0.74874047	2.49766846
С	6.48619148	-1.73272178	-0.06255141	Н	7.66208275	2.17144204	1.85652825
Н	7.31659208	-2.43019133	-0.10061456	С	9.69405137	-0.63882147	-0.25942826
С	6.66570126	-0.36186642	-0.01855745	Н	9.59986771	-1.16083741	-1.21851420
S	-5.10957259	-0.42799429	0.02885717	Н	9.72545639	-1.39374614	0.53479391
S	5.10958549	0.42799051	0.02899548	Н	10.66163826	-0.12247275	-0.25848134
0	-0.68503812	-2.54880982	0.01450892	С	-2.80049122	1.15038856	0.00138096
0	0.68501080	2.54889454	0.01422875	Н	-2.37650524	2.13280165	0.00201739
Si	-8.29275127	-0.60201771	0.00269678	С	2.80048240	-1.15035578	0.00136702
Si	8.29277006	0.60196737	0.00273769	Н	2.37648346	-2.13276322	0.00209252
С	-9.69400644	0.63863783	-0.26023843	С	-0.34734342	1.91738768	0.01070773
Н	-9.59973081	1.16016378	-1.21958084	Н	-1.05010434	2.72422163	0.00391949
Н	-9.72548867	1.39396794	0.53359555	С	0.34732698	-1.91732176	0.01085730
Н	-10.66159344	0.12228902	-0.25910824	Н	1.05007716	-2.72416514	0.00407901

Table S4. The Cartesian Coordinates (Å) of the Optimized Structure for $\mathbf{3}_s$

Figure S7. Kohn-Sham molecular orbitals of 1b', 2b', 3_0 , and 3_s calculated at the B3LYP/6-31G(d) level (isovalue = 0.03).

	8	J	
excited state	transition energy [eV]	main CI coefficient	oscillator strength
	(wavelength [nm])		f
1	2.20(564)	0.71785 (HOMO→LUMO)	1.3054
2	3.06 (405)	0.62611 (HOMO–1→LUMO)	0.0000
		–0.30154 (HOMO→LUMO+1)	
3	3.47 (358)	0.69843 (HOMO–5→LUMO)	0.0000
4	3.57 (347)	0.68787 (HOMO–3→LUMO)	0.0000
5	3.58 (347)	0.69141 (HOMO–2→LUMO)	0.0119
6	3.65 (341)	0.49837 (HOMO–4→LUMO)	0.0210
		–0.48860 (HOMO→LUMO+2)	
7	3.80 (326)	0.57310 (HOMO→LUMO+1)	0.0000
8	3.83 (324)	0.69552 (HOMO-7→LUMO)	0.0000
9	4.00 (310)	0.48915 (HOMO–4→LUMO)	0.5556
		0.48168 (HOMO→LUMO+2)	

Table S5. Excitation Energies of Pechmann Dye 1b^{'a}

^{*a*}Calculated at the B3LYP/6-31G(d) level using TD-DFT method.

Table S6. Excitation Energies of S-Pechmann Dye 2b^{'a}

excited state	transition energy [eV]	main CI coefficient	oscillator strength
	(wavelength [nm])		f
1	1.95 (635)	0.71412 (HOMO→LUMO)	0.8682
2	2.59 (479)	0.31568 (HOMO-2→LUMO)	0.0000
		0.61968 (HOMO–1→LUMO)	
3	2.79 (444)	0.69634 (HOMO–4→LUMO)	0.0001
4	3.06 (405)	0.68155 (HOMO–3→LUMO)	0.3231
5	3.09 (401)	0.58863 (HOMO-2→LUMO)	0.0000
		0.27458 (HOMO→LUMO+1)	
6	3.27 (379)	0.69491 (HOMO–7→LUMO)	0.0000
7	3.36 (369)	0.69865 (HOMO–5→LUMO)	0.0157
8	3.36 (369)	0.69870 (HOMO–6→LUMO)	0.0000
9	3.63 (342)	0.67717 (HOMO→LUMO+2)	0.5971

^aCalculated at the B3LYP/6-31G(d) level using TD-DFT method.

Figure S8. Kohn-Sham molecular orbitals of one molecule and two neighboring molecules of **2b** calculated at the B3LYP/6-31G(d) level.

Table S7. The Electronic Coupling (V) between Neighboring Molecules in 1b'

The electronic coupling V (meV) between neighboring molecules (HOMO)

	V (meV)	V (eV)	H1 (eV)	H2 (eV)	J (eV)	S
t1	116.5	0.116517528912	-0.005440122403	-0.005440134161	0.000245719892	-0.000646601159
t2	8.8	0.008805198924	-0.005470202942	-0.005470203716	0.000016938297	-0.000040458303
t3	2.4	-0.002438106729	-0.005542125541	-0.005542137918	-0.000006654973	0.000020704617

The electronic coupling V (meV) between neighboring molecules (LUMO)

	V (meV)	V (eV)	H1 (eV)	H2 (eV)	J (eV)	S
t1	80.6	-0.080604623950	-0.004459078203	-0.004459069959	-0.000143221692	0.000382219115
t2	6.9	-0.006919800777	-0.004497496741	-0.004497505142	-0.000012048301	0.000031029444
t3	1.3	0.001371853578	-0.004580002502	-0.000014087953	0.000003743007	-0.000014087953

5. References

- (1) The synthesis of 5,5'-dibromo-3,3'-bithiophene **3** will be reported elsewhere.
- (2) G. M. Sheldrick, *SHELX-97, Program for the Refinement of Crystal Structures*; University of Gottingen: Gottingen, Germany, 1997.
- (3) a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098. b) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785. c) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648.
- (4) a) R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys., 1971, 54, 724. b) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys., 1972, 56, 2257. c) P. C. Hariharan, J. A. Pople, Theor. Chim. Acta, 1973, 28, 213. d) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J.A. Pople, J. Chem. Phys., 1982, 77, 3654.
- (5) Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
- (6) a) E. K. U. Gross, J. F. Dobson, M. Petersilka, *In Density Functional Theory*; R. F. Nalewajski, Ed.; Springer: Heidelberg, 1996. b) M. E. Casida, *In Recent Advances in Density Functional Methods*; D. P. Chong, Ed.; World Scientific: Singapore, 1995; Vol. 1, pp 155–193.
- (7) ADF 2012, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.