Supporting Information for:

High-performance Hydrogen gas sensor using ultrathin polypyrrole-coated CNT nanohybrids

Seon Joo Park, Oh Seok Kwon, and Jyongsik Jang

^aWorld Class University program of Chemical Convergence for Energy & Environment, School of

Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea

Comparison data (Table S1)	.2
Sensing mechanism	4
Reference	5

Comparison data

Table S1. Comparison data of conventional hydrogen gas sensors

Type of sensor	M^1	$T (^{o}C)^{2}$	$T(s)^3$	Ref.
Pd-Ni hydrogen sponge	100 ppm*	Room	1	S 1
Pd-NP-graphene nano-composite	0.1 - 1 %	1	_	S2
Pd/SnO ₂ films	0.02 - 1 %	200	< 300	S3
SnO ₂ nanobelt	0.2 %	25	36	S4
Pd-functionalized FBAR	0.3 – 2 %	Room	40	S5
Pt/Al ₂ O ₃ thick film	25 ppm	28 - 100	>45	S6
AAO nanowells	0.05% (500 ppm)	Room	120 (0.2 %)	S7
Thin Pd film	200 – 1500 ppm	20 - 80	180 (50 °C)	S 8
			(0 (85 °C)	
Nonononous Nh O	0.06 1.0/	22 100	00(83 C)	50
Cormonium none aluster films	0.00 - 1%	22 - 100	88 (1 %)	59
Defination nano-cluster films	0.03 - 5%	25	< 600	<u>S10</u>
Pt-decorated bead-like tin oxide nanowires	$1 - 0 \frac{7}{0}$	200		511
Pd/Ni composite ilim	1 - 4 %	23	240-300 (4 %)	<u>S12</u>
$2 \text{nO}/\text{In}_2\text{O}_3$ core/shell-NanoRods	5 to 500 ppm	Room	< 300	515
A sub-10 nm width in Pa thin films	10 ppm 20 mm	Room	a lew seconds	<u>S14</u>
Pd -loaded ShO ₂ electrospun hanolibers	20 pp0	KOOIII	4-15	515
An CoN Dt MSM consor	40 ppm	25.00	- 150	<u>S10</u>
Au-Gan-Pt MISM sensor	50 ppm	23-90	130	S1/ S19
Pd-wO ₃ thick Films	50 ppm	220	< 240 (50 ppm)	518
CdO thin films	50 ppm	100	180 - 240	S19
Pd-doped_PEG-400-added SnO ₂ thin film	50 ppm	225	35	<u>S20</u>
PdeSiO ₂ thin-film mixture	100 ppm	225	525	<u>S20</u>
B-Ga ₂ O ₂ thin film	100 ppm	400	-	<u>S21</u>
A leaf-like carbon nanotube/	200 ppm	Room	312	<u>S22</u>
nickel (CNT/Ni) composite	200 ppm	Room	512	525
film modified with Pd NPs)				
TiO ₂ thin films	300 ppm	300	130-150	S24
-	11		(800°C)	
Pd NPs/ ZnO nanorod arrays	500 ppm	Room	184	S25
			(Room temp.)	
NiO thin films	1000 ppm	175	153	S26
Pd-functionalized WO ₃ -NWs	1000 ppm	300	86	S27
BaTiO ₃ -based PTC thermistor	100 ppm	124	-	S28
TiO_2 -SnO ₂ nanomaterials	50 ppm	250-350	63 (250 °C)	S29
Pd- Ag mesowires	0.3 %	Room	-	S30
CNTs with Pd NPs	30 ppm	Room	65 (1 %)	S31
Pd-functionalized multi-layer	40 ppm	Room	21	S32
graphene nanoribbon betworks		• • • •		~~~
Ceramic suspensions	100 ppm	280	-	<u>S33</u>
Nanoporous carbon-supported Pd sensor	250 ppm	23	90 (2 %)	<u>S34</u>
Pd nanoparticle-decorated SnO_2 nanowire	2500 ppm	100	240	S35
Au NP-doped TiO_2 semiconductor thin films	8.5 ppm	300	9.6	\$36
Au- and Pt-NP-functionalized tungsten	100 nnm	100 - 300	120 400	S 37
oxide nanoneedles	100 bbm	100 200	120 - 480	001
ZnO-modified SnO ₂ nanorod	10 ppm	350	-	S38
Urchin-like CuO particles	300 ppb	200	305 (500 ppm, 150	S39
_	**		°Ĉ)	

Pt-SnO ₂ /RGO nanostructure	0.5 %	50	2-6	S40
Pd/Ni alloys	0.08 %	Room	0.05 (2 %)	S41
Self-assembled Pd nanospheres	0.3 %	Room	-	S42
Single Pd nanowire	5 ppm	Room	150 (0.5 %)	S43
Combination of electropolymerization	1 %	-	-	S44
between Pd and polyphenol at microgap				
electrode arrays				
Single Pd nanowires	5 ppm	20	500	S45
Pd nanotube arrays	100 ppm (1.3)	Room	400 (100 ppm)	S46
Networks of ultrasmall Pd/Cr nanowires	1 %	Room	10 - 100	S47
Pd/TiO ₂ nanofibrous membranes	0.3 %	Room	-	S48
Pt-Ni NPs on nitrogen-doped CNTs	0.06 %	60	-	S49
Graphene/polyaniline nanocomposite	0.06 %	24	< 180	S50
Pt-polyaniline nanofibers	1 %	_	< 600	S51
SnO_2 nanowire	10 ppm	Room – 900	< 250	S52
ZnO nanowires grown on	5 %	Room	500	S53
the AlGaN/GaN heterostructure				
V ₂ Pd-decorated as-grown VO ₂	10 sccm	35	420	S54
0				
nanowire				
Pd nanotubes	500 ppm	Room	< 20	S55
Pd nanoarrays	0.3 %	-	70 (3 %)	S56
Pd-coated rough Si nanowires	5 ppm	Room	3 (2 %)	S57
Pd-coated nanomechanical beam resonator	0.02 %	-	5	S58
Highly ordered Pd nanodot patterns	0.1 %	Room	7	S59
Pd-decorated porous In ₂ O ₃	0.05 %	25	28	S60
Platinum nanowire	10 ppm	Room	1000 - 2000	S61
Palladium nanowires	10 %	Room	2	S62
Ultrasmall Pd/Cr nanowires	3 %	Room	-	S63
Pd-contacted few-layer graphene	100 ppm	Room	30	S64
Palladium nanowire	1 ppm	21	360	S65
Pd nanotubes	100 ppm	Room	400	S66
Pd nanoparticles/Polypyrrole/CNT	1 ppm	Room	1	This
nanohybrids				work

1. Minimum detectable level

Temperature (°C)
 Real-time response time (s)
 * ppm: parts per million

Sensing mechanism of Pd NPs

Generally, the sensing mechanism of Pd NPs to hydrogen gas can be explained by the well-known dissolution and dissociation of hydrogen molecules into atomic hydrogen at the Pd NPs, leading to the decrease of the work function of Pd NPs. Therefore, the electron can be easily transferred to the CPPy skin-coated CNT nanohybrids.^{S67,S68}

References

- E. Lee, J. Lee, J.-S. Noh, W. Kim, T. Lee, S. Maeng, W. Lee, *Int. J. Hydrogen Energ.* 2012, 37, 14702.
- S2. X. Chen, F. M. Yasin, P. K. Eggers, R. A. Boulos, X. Duan, R. N. Lamb, K. S. Iyer, C. L. Raston, *RSC Adv.* 2013, 3, 3213.
- S3. C. Liewhiran, N. Tamaekong, A. Wisitsoraat, A.Tuantranont, S. Phanichphant, Sensor Actuat. B-Chem. 2013, 176, 893.
- S4. Y. Cheng, R. Yang, J.-P. Zheng, Z. L. Wang, P. Xiong, Mater. Chem. Phys. 2012, 137, 372.
- S5. D. Chen, J. J. Wang, D. H. Li, Y. Xu, Sensor Actuat. B-Chem. 2011, 159, 234.
- W. Shin, K. Tajima, Y. Choi, N. Izu, I. Matsubara, N. Murayama, Sensor Actuat. B-Chem. 2005, 108, 455.
- S7. F. Rumiche, H. H. Wang, W. S. Hu, J. E. Indacochea, M. L. Wang, *Sensor Actuat.B-Chem.* 2008, 134, 877.
- S8. J. Bodzenta, B. Burak, Z. Gacek, W. P. Jakubik, S.Kochowski, M. Urbanczyk, Sensor Actuat. B -Chem. 2008, 87, 82.
- S9. R. A. Rani, A. S. Zoolfakar, J. Z. Ou, M. R. Field, M.Austin, K. Kalantar-zadeh, Sensor Actuat. B-Chem. 2013, 176, 149.
- S10. D. M. Machenzie, S. A. Brown, J. Appl. Phys. 2012, 112, 074514.
- S11. N. V. Duy, N. D. Hoa, N. V. Hieu, Sensor Actuat. B-Chem. 2012, 173, 211.
- S12. J. Dai, M. Yang, X. Yu, K. Cao, J. Liao, Sensor Actuat. B-Chem. 2012, 174, 253.
- S13. B. -R. Huang, J. -C. Lin, Sensor Actuat. B-Chem. 2012, 174, 389.

S14. H. Jung, B. Jang, W. Kim, J. -S. Noh, W. Lee, Sensor Actuat. B-Chem. 2013, 178, 689.

- S15. Z. Wang, Z. Li, T. Jiang, X. Xu, C. Wang, ACS Appl. Mater. Inter. 2013, DOI: 10.1021/am3028553.
- S16. L. P. Oleksenko, N. P. Maksymovych, A. I. Buvailo, I. P. Matushko, N. Dollahon, Sensor Actuat. B-Chem. 2012, 174, 39.
- S17. C. Lo, S. -W. Tan, C. -Y. Wei, J. -H. Tsai, K. -Y. Hsu, W. -S. Lour, *Int. J. Hydrogen Energ.* 2012, 37, 18579.
- S18. A. Boudiba, C. Zhang, P. Umek, C. Bittencourt, R. Synders, M. -G. Olivier, M. Debliquy, Int. J. Hydrogen Energ. 2013, 38, 2565.
- S19. P. Dhivya, A. K. Prasad, M. Sridharan, Int. J. Hydrogen Energ. 2012, 37, 18575.
- S20. B. Zhu, C. Yin, Z. Zhang, C. Tao, L. Yang, Sensor Actuat. B-Chem. 2013, 178, 418.
- S21. C. Lo, S. -W. Tan, C. -Y. Wei, J. -H. Tsai, W. -S. Lour, Int. J. Hydrogen Energ. 2013, 38, 313.
- S22. S. Nakagomi, T. Sai, Y. Kokubun, Int. J. Hydrogen Energ. 2013,

DOI: 10.1016/j.snb.2013.01.020.

- S23. T. -C. Lin, B. -R. Huang, Sensor Actuat. B-Chem. 2012, 162, 108.
- S24. A. A. Haidry, J. Puskelova, T. Plecenik, P. Durina, J. Gregus, M. Truchly, T. Roch, M. Zahoran, M.Vargova, P. Kus, A. Plecenik, G. Plesch, *Appl. Surf. Sci.* 2012, **259**, 270.
- S25. C. -M. Chang, M. -H. Hon, I. -C. Leu, ACS Appl. Mater. Inter. 2013, 5, 135.
- S26. A. M. Soleimanpour, A. H. Jayatissa, Mater. Sci. Eng. C 2012, 32, 2230.
- S27. F. Chavez, G. F. Periz-Sanchez, O. Goiz, P. Zaca-Moran, R. Pena-Sierra, A. Morales-Acevedo, C. Felipe, M. Soledad-Priego, *Appl. Surf. Sci.* 2013, DOI : 10.1016/j.apsusc.2013.01.145.

- S28. M. Yuasa, T. Nagano, N. Tachibana, T. Kida, K. Shimanoe, J. Am. Ceram. Soc. 2013, 1, 1.
- S29. B. Lyson-Sypein, A. Czapla, M,Lubecka, E. Kusior, K. Zakrzewska, M. Radecka, A. Kusior, A. G. Balogh, S. Lauterbach, H. -J. Kleebe, *Sensor Actuat. B-Chem.* 2013, DOI:10.1016/j.snb.2013.01.047.
- S30. C. Fournier, K. Rajoua, M. -L. Doublet, F. Favier, ACS Appl. Mater. Inter. 2013, 5, 310.
- S31. Y. Sun, H. H. Wang, Adv. Mater. 2007, 19, 2818.
- S32. J. L. Johnson, A. Behnam, S. J. Pearton, A. Ural, Adv. Mater. 2010, 22, 4877.
- S33. M. Heule, L. J. Gauckler, Adv. Mater. 2001, 13, 1790.
- S34. D. Ding, Z. Chen, Adv. Mater. 2007, 19, 1996.
- S35. S. Mubeen, M. Moskovits, Adv. Mater. 2011, 23, 2306.
- S36. D. Buso, M. Post, C. Cantalini, P. Mulvaney, A. Martucci, Adv. Funct. Mater. 2008, 18, 38436.
- S37. S. Vallejos, P. Umek, T. Stoycheva, F. Annanouch, E. Llobet, X. Correig, P. D. Marco, C. Bittencourt, C. Blackman, *Adv. Funct. Mater.* 2013, 23, 1313.
- S38. H. Huang, H. Gong, C. L. Chow, J. Gou, T. J; White, M. S. Tse, O. K. Tan, *Adv. Funct. Mater.* 2011, 21, 2680.
- S39. D. P. Volanti, A. A. Felix, M. O. Orlandi, G. Whitfield, D.-J. Yang, E. Longo, H. L. Tuller, J. A. Varela, Adv. Funct. Mater. DOI: 10.1002/adfm.201202332.
- S40. P. A. Russo, N. Donato, S. G. Leonardi, S. Baek, D. E. Conte, G. Neri, N. Pinna, Angew. Chem. Int. Ed. 2012, 51, 11053.
- S41. J. Lee, W. Shim, E. Lee, J. -S. Noh, W. Lee, Angew. Chem. Int. Ed. 2011, 123, 5413.
- S42. J. Zou, K. S. Iyer, C. L. Raston, Small 2010, 21, 2358.

S43. F. Yang, D. K. Taggart, R. M. Penner, Small 2010, 13, 1422.

- S44. R. Dasari, F. P. Zamborini, J. Am. Chem. Soc. 2008, 130, 16138.
- S45. F. Yang, S. -C. Kung, M. Cheng, J. C. Hemminger, R. M. Penner, ACS Nano 2010, 4, 5233.
- S46. M. A. Lim, D. H. Kim, C. -O. Park, Y. W. Lee, S. W Han, Z. Li, R. S. Williams, I. Park, ACS Nano 2012, 6, 598.
- S47. X. -Q. Zeng, Y. -L. Wang, H. Deng, M. L. Latimer, Z. -L. Xiao, J. Pearson, T. Xu, H. -H. Wang,
 U. Welp, G. W. Crabtree, W. -K. Kwok. ACS Nano 2012, 5, 7443.
- S48. W. Jia, L. Su, Y. Ding, A. Schempf, Y. Wang, Y. Lei, J. Phys. Chem. C 2009, 113, 16402.
- S49. A. Z. Sadek, C. Zhang, Z. Hu, J. G. Partridge, D. G. McCulloch, W. Wlodarski, K. Kalantar-zadeh, J. Phys. Chem. C 2010, 114, 238.
- S50. L. AlMashat, K. Shin, K. Kalantar-zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, S. J. Ippolito, W. Wlodarski, *J. Phys. Chem. C* 2010, **114**, 16168.
- S51. L. Al-Mashat, K. Shin, K. Kalantar-zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, S. J. Ippolito, W. Wlodarski, J. Phys. Chem. C 2010, 114, 16168.
- S52. B. Wang, L. F. Zhu, Y. H. Yang, N. S. Xu, G. W. Yang, J. Phys. Chem. C 2008, 112, 6643.
- S53. S. K. Jha, C. P. Liu, Z.H. Chen, K. J. Chen, I. Bello, J. A. Zaptien, W. Zhang, S. -T. Lee, J. Phys. Chem. C 2010, 114, 7999.
- S54. J. W. Byon, M. -B. Kim, M. H. Kim, S. Y. Kim, S. H. Lee, B. C. Lee, J. M. Baik, J. Phys. Chem. C 2012, 116, 226.
- S55. S. Yu, U. Welp, L. Z. Hua, A. Rydh, W. K. Kwok, H. H. Wang, Chem. Mater. 2005, 17, 3445.
- S56. J. Zou, B. Zdyrko, I. Luzinov, C. L. Raston, K. S. Iyer, Chem. Comm. 2012, 48, 1033.

- S57. J. -S. Noh, H. Kim, B. S. Kim, E. Lee, H. H. Cho, W. Lee, J. Mater. Chem. 2011, 21, 15935.
- S58. J. Henriksson, L. G. Villanueva, J. Brugger, Nanoscale 2012, 4, 5059.
- S59. L. G. Villanueva, F. Fargier, T. Kiefer, M. Ramonda, J. Brugger, F. Favier, *Nanoscale*, 2012, 4, 1964.
- S60. B. Liu, D. Cai, Y. Liu. H. Li, C. Weng, G. Zeng, Q. Li, T. Wang, Nanoscale 2013, 5, 2505.
- S61. F. Yang, K. C. Donavan, S.-C. Kung, R. M. Penner, Nano Lett. 2012, 12, 2924.
- S62. F. Yanh, D. K. Taggart, R. M. Penner, Nano Lett. 2012, 9, 2177.
- S63. X.-Q. Zeng, Y.-L. Wang, H. Deng, M. L. Latimer, Z.-L. Xiao, J. Pearson, T. Xu, H.-H. Wang, U. Welp, G. W. Crabtree, W.-K. Kwok, ACS Nano 2011, 5, 7443.
- S64. M. Ganzhorn, A. Vijayaraghavan, S. Dehm, F. Hennrich, A. A. Green, M. Fichtner, A. Voigt, M. Rapp, H. v. Lohneysen, M. C. Hersam, M. M. Kappes, R. Krupke, ACS Nano 2011, 5, 1670.
- S65. F. Yang, D. Jung, R. M. Penner, Anal. Chem. 2011, 83, 9472.
- S66. M. A. Lim, D. H. Kim, C.-O. Park, Y. W. Lee, S. W. Han, Z. Li, R. S. Williams, I. Park, ACS Nano 2012, 6, 598.
- S67. J. L. Johnson, A. Behnam, S. J. Pearton, A. Ural, Adv. Mater. 2010, 22, 4877.
- S68. F. Favier, E. C. Walter, M. P. Zach, T. Benter, R. M. Penner, Science 2001, 293, 2227.