Supporting Information

Nickel-catalyzed [3 + 2] cycloaddition of diynes with methyleneaziridines via C–C bond cleavage

Bin Pan, Chunxiang Wang, Dongping Wang, Fan Wu, and Boshun Wan*

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. E-mail: bswan@dicp.ac.cn

Table of Contents

1. General information	S3
2. Experiment Procedures and Characterization Data	S3
2.1 The Preparation of 2-Methyleneaziridines	S3
2.2 Optimization of Solvent and Temperature	S4
2.3 General Procedure for Ni(0)-Catalyzed [3 + 2] Cycloadditions	S5
2.4 Reference	S10
3. Copy of NMR Spectra	S11
4. Copy of X-ray of 3da	S48

1. General information

 $Ni(cod)_2$ was ordered from Aldrich. 2-Methyleneaziridines **1a~1g** were prepared according to literature procedures¹⁻³. Diynes were prepared according to literature procedures⁴⁻⁷.

Commercially available reagents were used throughout without further purification. All solvents were purified according to the standard procedures.

All reactions were carried out under an atmosphere of argon using standard Schlenk techniques, unless otherwise noted. ¹H NMR and ¹³C NMR spectra were recorded on Bruker DRX–400 or Bruker DRX–500 spectrometers (400 MHz or 500 MHz for ¹H NMR, 100 MHz or 125 MHz for ¹³C NMR, see details of each compound) using CDCl₃, CD₃COCD₃ or C₆D₆ as solvent. Tetramethylsilane (δ =0), CDCl₃ (7.27ppm), CD₃COCD₃ (2.05ppm) or C₆D₆ (7.16ppm) serves as the internal standard for ¹H NMR and CDCl₃ (77.16ppm), CD₃COCD₃ (29.84ppm) or C₆D₆ (128.06ppm) for ¹³C NMR. Coupling constants (*J*) are reported in Hz and refer to apparent peak multiplications. Chromatography was performed on silica gel (300–400 mesh). TLC analysis was performed using glass-backed plates coated with 0.2 mm silica.

2. Experiment Procedures and Characterization Data

2.1 The Preparation of 2-Methyleneaziridines

General Method A¹: Preparation of Allylic Amines 4. To a stirred solution of amines (9.5mmol) and 2,3-dibromo-1-propene (10.4mmol) in DMF (20ml) was added K_2CO_3 (19.0mmol) at room temperature, and stirring was continued for 1 h. The reaction mixture was worked up by adding water (30 ml), extracting with CH₂Cl₂ (4×20 ml), washing the combined organic phases with brine (30 ml), and drying with Na₂SO₄. The crude product obtained after removal of CH₂Cl₂ contained much DMF. It was purified by chromatography on a silica gel column eluting with a mixture of petroleum ether/CH₃CO₂Et to give Allylic Amines 4.

General Method B²⁻³: Synthesis of 2-Methyleneaziridines 1. A three-necked flask was fitted with a cold-finger condenser and a gas inlet. The system was purged with dry ammonia then sodium amide (2.5 eq.) was added and the system again flushed with ammonia. After ammonia (50ml) was condensed into the flask. After cooling to -78° C, the allylamine **4** (50% w/v in diethyl ether) was added slowly to the mixture, which was subsequently stirred for 1 h. The mixture was diluted with diethyl ether (10ml) and quenched by the dropwise addition of water (5ml) (CAUTION). After the ammonia had evaporated, diethyl ether (50ml) was added and the mixture was stirred

for 2 min. The organic phase was separated and washed 0.1M acetic acid (5×50ml), then 10% NaOH (2×50ml) and finally brine (50ml), then dried (MgSO₄). Removal of the solvent under reduced pressure and subsequent bulb-to-bulb distillation yielded the product.

1-(2-methoxybenzyl)-2-methyleneaziridine 1d.

Sodium amide (732mg, 18.7mmol) in ammonia (50ml) and subsequent reaction with corresponding amine 4 (2.40 g, 9.4mmol) for 1 h at -78 °C as described in General Method B, followed by workup and bulb-to-bulb distillation gave 1d (1.15g, 70%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.46 (d, J=7.4, 1H), 7.31 (dd, J=10.7, 1H), 7.00 (t, J=7.4, 1H), 6.91 (d, J=8.2, 1H), 4.88 - 4.66 (m, 2H), 3.87 (s, 3H), 3.76 (s, 2H), 2.19 (s, 2H); ¹³C (125 MHz, CDCl₃) 157.3, 137.4, 129.5, 128.5, 126.8, 120.5, 110.2, 83.5, 57.5, 55.4,

30.9; HRMS calcd for $C_{11}H_{13}$ NONa $[M+Na]^+$ 198.0895, found 198.0888.

1-(3-methoxybenzyl)-2-methyleneaziridine 1e.

Sodium amide (853mg, 21.9mmol) in ammonia (70 ml) and subsequent reaction with corresponding amine 4 (2.80 g, 10.9mmol) for 1 h at -78 °C as described in General Method B, followed by workup and bulb-to-bulb distillation gave 1e (1.55g, 81%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.30 (dd, J=9.2, 6.4, 1H), 7.00 – 6.93 (m, 2H), 6.90 – 6.84 (m, 1H), 4.77 (d, *J*=1.0, 2H), 3.85 (s, 3H), 3.71 (s, 2H), 2.18 (s, 2H); ¹³C (126 MHz, CDCl₃) 159.8, 139.9, 137.1, 129.5, 120.6, 113.7, 113.1, 83.7, 62.9, 55.3, 30.8; HRMS calcd for $C_{11}H_{14}NO [M+H]^+$ 176.1075, found 176.1069.

2.2 Optimization of Solvent and Temperature

Entry	Solvent	Temp. (°C)	Isolated yield (%)
1	DMF	rt	20
2	DCE	rt	3
3	CH ₃ CN	rt	24
4	THF	rt	36
5	Benzene	rt	40
6	Toulene	rt	49
7	1,4-dioxane	rt	60
8	1,4-dioxane	10	30
9	1,4-dioxane	60	34
10	1,4-dioxane	80	11

2.3 General Procedure for Ni(0)-Catalyzed [3+2] Cycloadditions

Under an argon atmosphere, 2-Methyleneaziridines **1** (0.5mmol), dyines **2** (0.2mmol), Ni(cod)₂ (10mol %) and 1,4-dioxane (1ml) were added into a Schlenk tube. The reaction mixture was stirred at room temperature and monitored by TLC or GC. When the reaction was over, the solvent was removed under reduced pressure and the residue was purified by a flash column chromatography (1% Et_3N was added in eluent).

Experimental data for cycloadducts

Dimethyl 2-((1-benzyl-4,5-dimethyl-1H-pyrrol-3-yl)methyl)-2-(but-2-yn-1-yl)malonate (3aa)

Colorless oil, ¹H NMR (400 MHz, Acetone-d₆) δ 7.39 – 7.16 (m, 3H), 7.00 (d, *J* = 7.2 Hz, 2H), 6.46 (s, 1H), 5.01 (s, 2H), 3.69 (s, 6H), 3.22 (s, 2H), 2.72 (d, *J* = 2.5 Hz, 2H), 1.98 (d, *J* = 9.7 Hz, 6H), 1.77 (t, *J* = 2.5 Hz, 3H).; ¹³C (100MHz, Acetone-d₆) 171.2, 140.2, 129.3, 127.8, 127.1, 125.0, 119.8, 115.6, 115.3, 79.4, 75.2, 59.4, 52.6, 50.6, 28.2, 23.3, 9.8, 9.7, 3.2; HRMS calcd for C₂₃H₂₇NO₄Na [M+Na]⁺ 404.1838, found 404.1828.

Dimethyl 2-(but-2-yn-1-yl)-2-((4,5-dimethyl-1-(4-methylbenzyl)-1H-pyrrol-3-yl)methyl)malonate (3ba)

Colorless oil, ¹H NMR (400 MHz, Acetone-d₆) δ 7.11 (d, *J* = 7.1 Hz, 2H), 6.87 (d, *J* = 7.1 Hz, 2H), 6.39 (s, 1H), 4.95 (s, 2H), 3.66 (s, 6H), 3.13 (s, 2H), 2.63 (s, 2H), 2.28 (s, 3H), 1.95 (s, 3H), 1.90 (s, 3H), 1.75 (s, 3H); ¹³C (100 MHz, Acetone-d₆) 171.3, 137.3, 137.2, 129.9, 127.2, 125.0, 119.8, 115.5, 115.2, 79.3, 75.1, 59.4, 52.6, 50.5, 28.1, 23.2, 21.0, 9.8, 9.6, 3.2; HRMS calcd for C₂₄H₂₉NO₄Na [M+Na]⁺ 418.1994, found 418.2004.

Dimethyl 2-(but-2-yn-1-yl)-2-((1-(4-chlorobenzyl)-4,5-dimethyl-1H-pyrrol-3-yl)methyl)malonate (3ca)

Yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 8.3 Hz, 2H), 6.86 (d, J = 8.2 Hz, 2H), 6.34 (s, 1H), 4.92 (s, 2H), 3.73 (s, 6H), 3.24 (s, 2H), 2.74 (d, J = 2.3 Hz, 2H), 1.98 (s, 3H), 1.96 (s, 3H), 1.81 (t, J = 2.1 Hz, 3H); ¹³C (100 MHz,

CDCl₃) 171.0, 137.4, 133.0, 128.9, 127.6, 124.7, 118.8, 115.6, 115.3, 79.0, 74.4, 58.8, 52.5, 49.8, 27.5, 22.9, 9.8, 9.4, 3.6; HRMS calcd for C₂₃H₂₆NO₄NaCl [M+Na]⁺ 438.1448, found 438.1438.

$Dimethyl\ 2-(but-2-yn-1-yl)-2-((1-(2-methoxybenzyl)-4,5-dimethyl-1H-pyrrol-3-yl)methyl)malonate\ (3da)$

White solid, mp $124 - 125^{\circ}$ C, ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, J = 7.4 Hz, 1H), 6.89 (d, J = 7.5 Hz, 2H), 6.42 (d, J = 7.0 Hz, 1H), 6.36 (s, 1H), 4.94 (s, 2H), 3.89 (s, 3H), 3.72 (s, 6H), 3.25 (s, 2H), 2.76 (s, 2H), 2.03 (s, 3H), 1.99 (s, 3H), 1.81 (s, 3H); ¹³C (100 MHz, CDCl₃) 171.2, 156.3, 128.2, 127.4, 127.2, 124.9, 120.9, 119.0, 117.9, 109.8, 78.9, 74.6, 58.9, 55.3, 52.5, 45.6, 27.7, 22.9, 9.7, 9.5, 3.7; HRMS calcd for C₂₄H₂₉NO₅Na [M+Na]⁺ 434.1943, found 434.1947.

$Dimethyl\ 2-(but-2-yn-1-yl)-2-((1-(3-methoxybenzyl)-4,5-dimethyl-1H-pyrrol-3-yl)methyl)malonate\ (3ea)$

Yellow oil, ¹H NMR (400 MHz, Acetone-d₆) δ 7.23 (t, *J* = 7.9 Hz, 1H), 6.81 (dd, *J* = 8.2, 2.3 Hz, 1H), 6.60 (d, *J* = 7.6 Hz, 1H), 6.53 (s, 1H), 6.44 (s, 1H), 5.00 (s, 2H), 3.76 (s, 3H), 3.69 (s, 6H), 3.17 (s, 2H), 2.67 (d, *J* = 2.6 Hz, 2H), 1.98 (s, 3H), 1.93 (s, 3H), 1.77 (s, 3H); ¹³C (100 MHz, Acetone-d₆) 171.3, 142.0, 130.4, 125.1, 119.9, 119.3, 115.6, 115.3, 113.4, 112.6, 76.4, 75.2, 59.4, 55.4, 52.7, 50.7, 28.2, 23.3, 9.8, 9.6, 3.2; HRMS calcd for C₂₄H₂₉NO₅Na [M+Na]⁺ 434.1943, found 434.1940.

Dimethyl 2-(but-2-yn-1-yl)-2-((1-(4-methoxybenzyl)-4,5-dimethyl-1H-pyrrol-3-yl)methyl)malonate (3fa)

Colorless oil, ¹H NMR (400 MHz, CDCl₃) δ = 6.89 (q, *J*=8.8, 4H), 6.34 (s, 1H), 4.90 (s, 2H), 3.81 (s, 3H), 3.73 (s, 6H), 3.25 (s, 2H), 2.75 (d, *J*=2.4, 2H), 2.02 (s, 3H), 1.97 (s, 3H), 1.82 (t, *J*=2.3, 3H); ¹³C (100 MHz, CDCl₃) 171.2, 158.9, 130.8, 127.7, 124.7, 118.8, 115.3, 114.9, 114.2, 78.9, 74.5, 58.9, 55.4, 52.5, 50.0, 27.6, 22.9, 9.9, 9.5, 3.7; HRMS calcd for C₂₄H₂₉NO₅Na [M+Na]+ 434.1943, found 434.1946.

Dimethyl 2-(but-2-yn-1-yl)-2-((1-cyclohexyl-4,5-dimethyl-1H-pyrrol-3-yl)methyl)malonate (3ga)

Colorless oil, ¹H NMR (400 MHz, Acetone-d₆) $\delta = 6.58$ (s, 1H), 4.01 (t, *J*=11.1, 1H), 3.92 (s, 6H), 3.33 (s, 2H), 2.81 (s, 2H), 2.30 (s, 3H), 2.12 (s, 4H), 2.08 (s, 2H), 2.00 (d, *J*=1.1, 3H), 1.98 – 1.38 (m, 7H); ¹³C (125 MHz, Benzene-d₆) 171.2, 115.2, 114.5, 114.3, 103.8, 79.0, 75.5, 59.5, 55.0, 52.1, 34.6, 28.6, 26.1, 25.7, 23.5, 9.9, 9.7, 3.4; HRMS calcd for C₂₂H₃₁NO₄Na [M+Na]⁺ 396.2151, found 396.2146.

4-(hex-4-yn-1-yl)-1-(4-methoxybenzyl)-2,3-dimethyl-1H-pyrrole (3fb)

Yellow oil, ¹H NMR (500 MHz, Acetone-d₆) $\delta = 6.95$ (d, *J*=8.8, 2H), 6.83 (d, *J*=8.7, 2H), 6.39 (s, 1H), 4.88 (s, 2H), 3.74 (s, 3H), 2.41 (t, *J*=7.4, 2H), 2.10 (dtd, *J*=7.3, 4.9, 2.6, 2H), 1.97 (s, 3H), 1.87 (s, 3H), 1.71 (t, *J*=2.6, 3H), 1.66 – 1.59 (m, 2H); ¹³C (125 MHz, Acetone-d₆) 159.8, 132.4, 128.6, 125.0, 121.6, 117.9, 114.7, 114.2, 79.9, 75.9, 55.5, 50.2, 30.9, 25.4, 18.8, 9.8, 9.6, 3.3; HRMS calcd for C₂₀H₂₅NONa [M+Na]⁺ 318.1834, found 318.1823.

1-benzyl-4-(hex-4-yn-1-yl)-2,3-dimethyl-1H-pyrrole (3ab)

Yellow oil, ¹H NMR (400 MHz, C₆D₆) δ = 7.08 (dd, *J*=8.0, 5.3, 7H), 7.03 – 6.88 (m, 10H), 6.68 (d, *J*=7.4, 2H), 6.28 (s, 1H), 4.97 (d, *J*=4.2, 4H), 4.33 (s, 2H), 3.76 (s, 2H), 3.20 (s, 2H), 2.04 (s, 3H), 1.71 (s, 3H), 1.39 (t, *J*=2.2, 3H); ¹³C (100 MHz, C₆D₆) 139.8, 128.8, 127.2, 126.4, 124.5, 121.6, 117.6, 114.3, 79.9, 75.7, 50.2, 30.6, 25.3, 18.9, 9.8, 9.7, 3.5; HRMS calcd for C₁₉H₂₃NNa [M+Na]⁺ 288.1728, found 288.1740.

Diethyl 2-((1-benzyl-4,5-dimethyl-1H-pyrrol-3-yl)methyl)-2-(but-2-yn-1-yl)malonate (3ac)

Yellow oil, ¹H NMR (400 MHz, CD₂Cl₂) δ = 7.43 – 7.28 (m, 3H), 7.04 (d, *J*=7.4, 2H), 6.43 (s, 1H), 5.02 (s, 2H), 4.29 – 4.15 (m, 4H), 3.22 (s, 2H), 2.73 (d, *J*=2.5, 2H), 2.08 (s, 3H), 2.01 (s, 3H), 1.86 (t, *J*=2.5, 3H), 1.31 (t, *J*=7.1, 6H); ¹³C (100 MHz, CD₂Cl₂) 170.4, 138.9, 128.5, 127.0, 126.3, 124.4, 118.8, 115.1, 114.9, 78.5, 74.4, 61.1, 58.4, 50.2, 27.1, 22.5, 13.7, 9.4, 9.0, 3.1; HRMS calcd for C₂₆H₃₃NO₅Na [M+Na]⁺ 432.2151, found 432.2158.

Dibenzyl 2-((1-benzyl-4,5-dimethyl-1H-pyrrol-3-yl)methyl)-2-(but-2-yn-1-yl)malonate (3ad)

Yellow oil, ¹H NMR (400 MHz, C₆D₆) δ = 7.08 (dd, *J*=8.0, 5.3, 7H), 7.03 – 6.88 (m, 10H), 6.68 (d, *J*=7.4, 2H), 6.28 (s, 1H), 4.97 (d, *J*=4.2, 4H), 4.33 (s, 2H), 3.76 (s, 2H), 3.20 (s, 2H), 2.04 (s, 3H), 1.71 (s, 3H), 1.39 (t, *J*=2.2, 3H); ¹³C (100 MHz, C₆D₆) 170.4, 139.4, 136.3, 128.8, 128.6, 128.4, 128.2, 127.2, 126.4, 124.5, 119.6, 115.8, 115.5, 79.3, 75.4, 67.0, 59.7, 50.3, 28.3, 23.5, 9.9, 9.7, 3.4; HRMS calcd for C₃₅H₃₅NO₄Na [M+Na]⁺ 556.2464, found 556.2467.

1-benzyl-4-((but-2-ynyloxy)methyl)-2,3-dimethyl-1H-pyrrole (3ae)

Yellow oil, ¹H NMR (400 MHz, C₆D₆) δ 6.99 – 6.89 (m, 3H), 6.69 (d, *J* = 7.3 Hz, 2H), 6.40 (s, 1H), 4.62 (s, 2H), 4.36 (s, 2H), 4.15 (d, *J* = 2.2 Hz, 2H), 2.10 (s, 3H), 1.72 (s, 3H), 1.46 (s, 3H); ¹³C (125 MHz, Acetone-d6) 139.3, 128.5, 128.1, 127.0, 126.4, 120.1, 117.8, 114.5, 81.0, 76.0, 63.1, 55.7, 49.9, 8.7, 8.5, 2.3; HRMS calcd for C18H21NONa [M+Na]+ 290.1521, found 290.1524.

N-((1-benzyl-4,5-dimethyl-1H-pyrrol-3-yl)methyl)-N-(but-2-ynyl)-4-methylbenzenesulfonamide (3af)

Colorless oil, ¹H NMR (500 MHz, Acetone-d₆) δ 7.82 – 7.76 (m, 2H), 7.42 (dd, J = 8.5, 0.5 Hz, 2H), 7.33 – 7.27 (m,

2H), 7.24 (d, J = 7.3 Hz, 1H), 7.01 (dd, J = 7.9, 0.9 Hz, 2H), 6.62 (s, 1H), 5.03 (s, 2H), 4.15 (s, 2H), 3.86 (q, J = 2.3 Hz, 2H), 2.44 (s, 3H), 1.99 (s, 3H), 1.98 (s, 3H), 1.47 (t, J = 2.4 Hz, 3H); ¹³C (125 MHz, Acetone-d₆) 143.1, 139.2, 136.7, 129.1, 128.5, 128.0, 127.0, 126.3, 125.4, 120.5, 114.6, 114.2, 81.2, 71.7, 49.9, 41.7, 34.9, 20.5, 8.8, 8.5, 2.1; HRMS calcd for C₂₅H₂₈N₂O₂NaS [M+Na]⁺ 443.1769, found 443.1773.

Dimethyl 2-((1-benzyl-4,5-dimethyl-1H-pyrrol-3-yl)methyl) -2-(3-(trimethylsilyl)prop-2-yn-1-yl)malonate (3ai)

Colorless oil, ¹H NMR (400 MHz, CDCl₃) δ = 7.40 – 7.20 (m, 4H), 6.96 (d, *J*=7.1, 2H), 6.33 (s, 1H), 4.95 (s, 2H), 3.72 (s, 6H), 3.26 (s, 2H), 2.81 (s, 2H), 2.01 (s, 3H), 1.98 (s, 3H), 0.17 (s, 9H); ¹³C (100 MHz, CDCl₃) 170.8, 138.8, 128.8, 127.3, 126.5, 124.9, 118.9, 115.4, 115.0, 102.8, 88.3, 59.0, 52.6, 50.5, 27.6, 23.9, 9.9, 9.5, 0.1; HRMS calcd for C₂₅H₃₃NO₄NaSi [M+Na]⁺ 462.2077, found 462.2071.

$1-benzyl-2, 3-dimethyl-4-(((3-(trimethylsilyl)prop-2-yn-1-yl)oxy)methyl)-1H-pyrrole\ (3aj)$

Yellow oil, ¹H NMR (400 MHz, Acetone-d₆) δ = 6.94 (d, *J*=8.8, 2H), 6.86 (d, *J*=8.8, 2H), 6.37 (s, 1H), 4.92 (s, 2H), 3.76 (s, 3H), 3.68 (s, 6H), 3.16 (s, 2H), 2.82 (s, 2H), 2.70 (s, 2H), 1.97 (s, 3H), 1.92 (s, 3H), 0.14 (s, 9H); ¹³C (100 MHz, Acetone-d₆) 140.1, 129.4, 127.9, 127.3, 125.8, 121.2, 118.3, 115.5, 104.1, 90.5, 64.1, 56.8, 50.8, 9.7, 9.5, 0.0; HRMS calcd for C₂₀H₂₇NONaSi [M+Na]⁺ 348.1760, found 348.1757.

Dimethyl 2-((1-benzyl-4,5-dimethyl-1H-pyrrol-3-yl)methyl)-2-(but-2-enyl)malonate (3al)

Yellow oil, ¹H, ¹³C NMR see part 3 Note: (Z/E)-1-bromo-2-butene was used to prepare the 1,6-eneyne (**2l**)

2.4 Reference

- (1) L. Bhat, A. G. Steinig, R. Appelbe, A. Meijere, Eur. J. Org. Chem. 2001, 1673.
- (2) J. Ince, T. M. Ross, M. Shipman, A. M. Z. Slawin, Tetrahedron. 1996, 52, 7037.
- (3) J. J. Shiers, M. Shipman, J. F. Hayes, A. M. Z. Slawin, J. Am. Chem. Soc. 2004, 126, 6868.
- (4) K. Tanaka, K. Takeishi, K. Noguchi, J. Am. Chem. Soc. 2006, 128, 4586.
- (5) M. Takimoto, T. Mizuno, M. Morib, Y. Sato, Tetrahedron. 2006, 62, 7589.
- (6) C. Sperger, L. H. S. Strand, A. Fiksdahl, Tetrahedron. 2010, 66, 7749.
- (7) M. Ishizaki, O. Hoshino, Tetrahedron. 2000, 56, 8813.
- (8) P. A. Wender, J. P. Christy, J. Am. Chem. Soc. 2007, 129, 13402.
- (9) P. A. Wender, J. P. Christy, A. B. Lesser, M. T. Gieseler, Angew. Chem. Int. Ed. 2009, 48, 7687.

3. Copy of NMR Spectra

(IIIdd)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

S47

4. Copy of X-ray of 3da

General						
Code	3da					
Systematic name	dimethyl 2-(but-2-yn-1-yl)-2-((1-(2-methoxybenzyl)-4,5-dimethyl-1H-pyrrol-3-yl)methyl)malonate					
Creation method	SHELXL-97					
	Phase data					
Formula sum	C24H29NO5					
Formula weight	411.48 g/mol					
Crystal system	triclinic					
Space-group	P -1 (2)					
Cell parameters	a=8.2459(8) Å b=8.7253(8) Å c=17.0434(15) Å a=98.293(7)° β =101.048(7)° γ =107.799(7)°					
Cell ratio	a/b=0.9451 b/c=0.5119 c/a=2.0669					
Cell volume	1118.59(18) Å ³					
Z	2					
Calc. density	1.2216 g/cm ³					
RAII	0.0892					
Pearson code	aP118					
Formula type	NO5P24Q29					
Wyckoff sequence	i59					

Atomic parameters								
Atom	Ox.	Wyck.	Site	S.O.F.	x/a	y/b	z/c	U [Ų]
02		2i	1		0.4659(2)	0.8876(2)	0.31837(11)	
04		2i	1		0.9124(2)	0.9044(2)	0.32766(11)	
03		2i	1		0.6798(2)	0.9807(2)	0.43396(11)	
N1		2i	1		0.8431(2)	0.3932(3)	0.19097(12)	
C11		2i	1		0.5923(3)	0.3363(3)	0.22918(14)	
05		2i	1		0.9503(2)	0.7669(3)	0.42605(12)	
C15		2i	1		0.5852(3)	0.6377(3)	0.26109(14)	
H15A		2i	1		0.45870	0.58470	0.24990	0.0510

H15B	2i	1	0.60710	0.71850	0.22730	0.0510
C16	2i	1	0.6551(3)	0.7297(3)	0.35213(14)	
C17	2i	1	0.5865(3)	0.8725(3)	0.36400(14)	
C22	2i	1	0.8552(3)	0.8000(3)	0.37453(15)	
C9	2i	1	0.8162(3)	0.5388(3)	0.21081(14)	
H9A	2i	1	0.89000	0.64150	0.20800	0.0530
01	2i	1	1.1641(3)	0.2507(3)	0.05967(12)	
C20	2i	1	0.4082(4)	0.5500(3)	0.40200(15)	
C12	2i	1	0.7046(3)	0.2669(3)	0.20084(14)	
C19	2i	1	0.5987(3)	0.6157(3)	0.41075(15)	
H19A	2i	1	0.64080	0.52390	0.40130	0.0570
H19B	2i	1	0.65550	0.67660	0.46670	0.0570
C10	2i	1	0.6630(3)	0.5098(3)	0.23552(13)	
C1	2i	1	0.9137(3)	0.3214(3)	0.05900(15)	
C21	2i	1	0.2555(4)	0.4936(3)	0.39749(15)	
C8	2i	1	0.9785(3)	0.3713(4)	0.15125(14)	
H8A	2i	1	1.01910	0.28750	0.17120	0.0600
H8B	2i	1	1.07780	0.47370	0.16610	0.0600
C2	2i	1	0.7616(3)	0.3366(4)	0.01706(17)	
H2A	2i	1	0.69510	0.37970	0.04620	0.0710
C14	2i	1	0.4217(3)	0.2431(3)	0.24628(17)	
H14A	2i	1	0.40510	0.12750	0.23630	0.0850
H14B	2i	1	0.32650	0.26080	0.21100	0.0850
H14C	2i	1	0.42440	0.28130	0.30240	0.0850
C4	2i	1	1.0121(4)	0.2577(3)	0.01339(17)	
C23	2i	1	0.0686(4)	0.4237(4)	0.39420(18)	
H23C	2i	1	0.03600	0.34920	0.34200	0.0780
H23A	2i	1	-0.00770	0.48460	0.37960	0.0780
H23B	2i	1	0.03080	0.34200	0.42520	0.0780
C3	2i	1	0.9552(4)	0.2081(4)	-0.07014(18)	
НЗА	2i	1	1.02010	0.16380	-0.09980	0.0810
C13	2i	1	0.6921(4)	0.0920(4)	0.18133(19)	
H13A	2i	1	0.79370	0.08500	0.16340	0.0980
H13B	2i	1	0.58790	0.03070	0.13860	0.0980
H13C	2i	1	0.68680	0.04690	0.22930	0.0980
C18	2i	1	0.6443(4)	1.1324(4)	0.4496(2)	
H18A	2i	1	0.71720	1.19860	0.50180	0.1080
H18B	2i	1	0.52280	1.10820	0.44990	0.1080
H18C	2i	1	0.66910	1.19150	0.40750	0.1080
C5	2i	1	0.7051(4)	0.2898(4)	-0.06677(19)	
H5A	2i	1	0.60260	0.30260	-0.09400	0.0870
C6	2i	1	0.8012(5)	0.2241(4)	-0.10997(19)	
H6A	2i	1	0.76220	0.19010	-0.16670	0.0910
C7	2i	1	1.2792(5)	0.1985(6)	0.0179(2)	
H7A	2i	1	1.37830	0.19620	0.05720	0.1460

H7B	2i	1	1.31950	0.27410	-0.01570	0.1460		
H7C	2i	1	1.21710	0.09020	-0.01600	0.1460		
C39	2i	1	1.1014(3)	0.9803(5)	0.3445(2)			
H39A	2i	1	1.12980	1.05350	0.30830	0.1290		
H39B	2i	1	1.15300	0.89630	0.33620	0.1290		
H39C	2i	1	1.14680	1.04140	0.40020	0.1290		
Anisotropic displacement parameters, in Å ²								
Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃		
02	0.0513(11)	0.0654(13)	0.0655(12)	0.03/1/10)	0 0058(0)	0.0108(10)		

02	0.0315(11)	0.000 (15)	0.00000(12)	0.0311(10)	0.0050(5)	0.0100(10)
04	0.0373(10)	0.0626(12)	0.0738(13)	0.0137(8)	0.0210(9)	0.0222(10)
03	0.0578(11)	0.0587(12)	0.0598(12)	0.0315(9)	0.0026(9)	-0.0072(9)
N1	0.0419(11)	0.0494(13)	0.0461(12)	0.0175(10)	0.0190(9)	0.0081(9)
C11	0.0385(12)	0.0450(14)	0.0411(13)	0.0122(11)	0.0137(10)	0.0082(11)
05	0.0458(11)	0.0793(15)	0.0742(13)	0.0271(10)	0.0042(10)	0.0238(11)
C15	0.0396(13)	0.0484(14)	0.0421(13)	0.0187(11)	0.0116(10)	0.0116(11)
C16	0.0352(12)	0.0464(14)	0.0422(13)	0.0165(10)	0.0119(10)	0.0105(11)
C17	0.0390(13)	0.0468(15)	0.0456(14)	0.0168(11)	0.0180(11)	0.0120(12)
C22	0.0384(13)	0.0468(15)	0.0484(14)	0.0197(11)	0.0120(11)	0.0065(12)
C9	0.0464(14)	0.0433(14)	0.0432(13)	0.0136(11)	0.0186(11)	0.0080(11)
01	0.0685(13)	0.1088(18)	0.0664(13)	0.0502(13)	0.0347(11)	0.0152(12)
C20	0.0578(17)	0.0540(16)	0.0454(14)	0.0221(13)	0.0220(12)	0.0186(12)
C12	0.0476(14)	0.0457(14)	0.0420(13)	0.0164(11)	0.0152(11)	0.0086(11)
C19	0.0501(15)	0.0565(16)	0.0431(14)	0.0223(12)	0.0150(11)	0.0169(12)
C10	0.0404(13)	0.0466(14)	0.0366(12)	0.0162(11)	0.0123(10)	0.0077(11)
C1	0.0439(14)	0.0519(15)	0.0447(14)	0.0113(11)	0.0186(11)	0.0096(12)
C21	0.0567(17)	0.0549(16)	0.0495(15)	0.0209(13)	0.0253(12)	0.0171(13)
C8	0.0414(14)	0.0651(18)	0.0469(15)	0.0219(12)	0.0173(11)	0.0074(13)
C2	0.0472(15)	0.074(2)	0.0533(17)	0.0170(14)	0.0124(13)	0.0106(14)
C14	0.0506(16)	0.0512(16)	0.0697(18)	0.0122(12)	0.0271(13)	0.0129(14)
C4	0.0579(17)	0.0560(17)	0.0555(17)	0.0152(13)	0.0264(13)	0.0090(13)
C23	0.0536(17)	0.077(2)	0.0697(19)	0.0219(15)	0.0212(14)	0.0249(16)
C3	0.077(2)	0.067(2)	0.0525(18)	0.0131(16)	0.0305(16)	0.0030(15)
C13	0.0712(19)	0.0530(18)	0.080(2)	0.0254(14)	0.0325(16)	0.0139(15)
C18	0.069(2)	0.0598(19)	0.085(2)	0.0343(16)	0.0123(17)	-0.0095(16)
C5	0.0576(18)	0.086(2)	0.0585(19)	0.0090(16)	0.0057(15)	0.0161(17)
C6	0.082(2)	0.074(2)	0.0464(17)	-0.0049(18)	0.0154(17)	0.0054(15)
C7	0.089(3)	0.133(4)	0.101(3)	0.063(2)	0.059(2)	0.020(2)
C39	0.0375(16)	0.093(3)	0.121(3)	0.0056(16)	0.0281(17)	0.026(2)