Supporting Information

Tandem oxidation/oxidative C–H/C–H cross-coupling: synthesis of arylquinones from hydroquinones

Shuai Zhang, Feijie Song,* Dongbing Zhao and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China Fax: 86-28-85412203; E-mail: jsyou@scu.edu.cn

Table of contents

I. General remarks	S3
II. Optimization of the tandem reaction of hydroquinones with arenes	S3
III. General procedure for the synthesis of arylquinones	S4
IV. General procedure for the synthesis of heteroarylquinones	S4
V. Experimental data for the described substances	S5
VI. Mechanistic study	S18
VII. Confirmation of the structure of product 4c by its derivation	S21
VIII. References	S22
IX. Copies of ¹ H, ¹³ C NMR and ¹ H- ¹ H NOESY spectra	S24

I. General remarks

NMR spectra were obtained on a Bruker AMX-400. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ (CDCl₃: δ = 7.26 ppm). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ as the internal standard (CDCl₃: δ = 77.00 ppm). High-resolution mass spectra (HRMS) were obtained with a Waters-Q-TOF-Premier (ESI). Melting points were determined with XRC-1 and are uncorrected.

Unless otherwise noted, all the reactions were carried out under air. All reagents were obtained from commercial suppliers and used without further purification.

II. Optimization of the tandem reaction of hydroquinones with arenes

A flame-dried sealable tube with a magnetic stir bar was charged with 1,4-naphthalenediol (67 mg, 0.4 mmol), palladium species, PivOH, oxidant, and DMSO (100 μ L, 1.4 mmol), and benzene (3.0 mL) under an N₂ atmosphere. The tube was sealed and the reaction mixture was stirred at 140 °C for 24 h. After being cooled to ambient temperature, the reaction solution was diluted with 10 mL of CH₂Cl₂, filtered through a plug of silica gel, and washed with 30 mL of CH₂Cl₂. The filtrate was collected and concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) to provide the desired product **3a**.

Table S1. Screening of the Pd-catalyzed cross-coupling of 1,4-naphthalenediol 1a with benzene $2a^a$

	OH + 1a OH 2a	Catalyst, Oxidant PivOH, DMSO 140 °C, 24 h	Ph (
Entry	Catalyst (mol%)	Oxidant (equiv)	PivOH (equiv)	Yield of 3a
1	none	Ag ₂ CO ₃ (3.0)	PivOH (2.0)	0^b
2	$Pd(OAc)_2(5)$	Ag ₂ CO ₃ (3.0)	PivOH (1.0)	18%
3	$PdCl_{2}(5)$	Ag ₂ CO ₃ (3.0)	PivOH (1.0)	74%

4	$Pd(acac)_2(5)$	Ag ₂ CO ₃ (3.0)	PivOH (1.0)	90%
5	$Pd(acac)_2(5)$	Ag ₂ CO ₃ (3.0)	PivOH (2.0)	97%
6	$Pd(acac)_2$ (2.5)	Ag ₂ CO ₃ (3.0)	PivOH (2.0)	79%
7	$Pd(acac)_2(5)$	Ag ₂ CO ₃ (3.0)	none	trace
8 ^c	$Pd(acac)_2(5)$	Ag ₂ CO ₃ (3.0)	PivOH (2.0)	85%
9	$Pd(acac)_2(5)$	Ag ₂ CO ₃ (1.2)/O ₂	PivOH (2.0)	20%
10	$Pd(acac)_2(5)$	Ag ₂ O (3.0)	PivOH (2.0)	33%
11	$Pd(acac)_2(5)$	AgOAc (6.0)	PivOH (2.0)	88%
12	$Pd(acac)_2(5)$	$Cu(OAc)_2$ (3.0)	PivOH (2.0)	0^b
13	$Pd(acac)_2(5)$	O ₂	PivOH (2.0)	0^b
14	$Pd(acac)_2(5)$	$PhI(OAc)_2$ (3.0)	PivOH (2.0)	29%
15	$Pd(acac)_2(5)$	$Ag_2CO_3 (1.5)/$ Cu(OAc) ₂ (1.5)	PivOH (2.0)	48%
16 ^{<i>d</i>}	$Pd(acac)_2(5)$	Ag_2CO_3 (1.5)	PivOH (2.0)	90%

^{*a*} Reaction conditions: 1,4-naphthalenediol **1a** (0.4 mmol), benzene **2a** (3.0 mL), palladium species, PivOH, oxidant, and DMSO (1.4 mmol) at 140 °C for 24 h. Isolated yield on **1a**. ^{*b*} 1,4-Naphthoquinone **5a** was obtained as the single product. ^{*c*} No DMSO was added. ^{*d*} 1,4-Naphthoquinone **5a** instead of 1,4-naphthalenediol **1a** was used as the starting material.

III. General procedure for the synthesis of arylquinones

A flame-dried sealable tube with a magnetic stir bar was charged with hydroquinone (0.4 mmol), Pd(acac)₂ (6.1 mg, 0.02 mmol), Ag₂CO₃ (331 mg, 1.2 mmol), PivOH (82 mg, 0.8 mmol), DMSO (100 µL, 1.4 mmol) and arene (3.0 mL) under air. The tube was sealed and the reaction mixture was stirred at 140 °C for 24 h. After being cooled to ambient temperature, the reaction solution was diluted with 10 mL of CH₂Cl₂, filtered through a plug of silica gel, and washed with 30 mL of CH₂Cl₂. The filtrate was collected and concentrated and the residue was purified by column chromatography on silica gel to provide the desired product.

IV. General procedure for the synthesis of heteroarylquinones

A flame-dried sealable tube with a magnetic stir bar was charged with 1,4-naphthalenediol (67 mg, 0.4 mmol), $Pd(acac)_2$ (6.1 mg, 0.02 mmol), Ag_2CO_3 (331

mg, 1.2 mmol), PivOH (82 mg, 0.8 mmol), DMSO (100 μ L, 1.4 mmol), heteroarenes (0.8 mmol) and DCE (3.0 mL) under air. The tube was sealed and the reaction mixture was stirred at 140 °C for 24 h. After being cooled to ambient temperature, the reaction solution was diluted with 10 mL of CH₂Cl₂, filtered through a plug of silica gel, and washed with 30 mL of CH₂Cl₂. The filtrate was collected and concentrated and the residue was purified by column chromatography on silica gel to provide the desired product.

V. Experimental data for the described substances

2-Phenyl-1,4-naphthoquinone (3a)¹

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **3a** as a yellow solid (91 mg, 97% yield). M.p.: 108-110 °C ¹H NMR (CDCl₃, 400 MHz): δ = 7.09 (s, 1H), 7.48-7.49 (m, 3H), 7.56-7.58 (m, 2H), 7.79 (t, *J* = 4.4 Hz, 2H), 8.11-8.14 (m, 1H), 8.18-8.20 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 125.9, 127.0, 128.4, 129.4, 130.0, 132.0, 132.4, 133.4, 133.8, 133.9, 135.2, 148.1, 184.3, 185.1 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₀NaO₂ [M+Na]⁺ 257.0578, found 257.0582.

2-*m*-Tolyl-1,4-naphthoquinone (3b)² and 2-*p*-tolyl-1,4-naphthoquinone (3b')² Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded the mixture of **3b** and **3b'** as a yellow solid (93 mg, 94% yield). The ratio of **3b/3b'** was 1.9/1 as determined by ¹H NMR. ¹H NMR (CDCl₃, 400 MHz, a mixture of two isomers): δ = 2.43 (s, CH₃, major + minor isomer), 7.07 (s, CH, major + minor isomer), 7.28-7.30 (m, CH, major + minor isomer), 7.36-7.38 (m, CH, major

isomer), 7.49 (d, J = 8.0 Hz, C<u>H</u>, minor isomer), 7.77-7.78 (m, C<u>H</u>, major + minor isomer), 8.11-8.13 (m, C<u>H</u>, major + minor isomer), 8.18-8.20 (m, C<u>H</u>, major + minor isomer) ppm. ¹³C NMR (CDCl₃, 100 MHz, a mixture of two isomers): $\delta = 21.38$, 21.42, 125.88, 125.92, 126.5, 127.0, 128.4, 129.2, 129.4, 130.0, 130.5, 130.8, 132.0, 132.1, 132.4, 132.5, 133.3, 133.7, 133.76, 133.77, 133.83, 134.5, 135.1, 138.1, 140.4, 148.0, 148.3, 184.4, 184.5, 185.16, 185.18 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₂NaO₂ [M+Na]⁺ 271.0735, found 271.0736.

The structures of **3b** and **3b'** were confirmed by their characteristic peaks shown as follows. The ratio of **3b/3b'** = (1.79/3)/(0.62/2) = 1.9/1.

2-(3,4-Dimethylphenyl)-1,4-naphthoquinone (3c)

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **3c** as a yellow solid (90 mg, 86% yield). M.p.: 151-153 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.33 (s, 6H), 7.06 (s, 1H), 7.24 (d, *J* = 8.0 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.36 (s, 1H), 7.77 (t, *J* = 4.0 Hz, 2H), 8.10-8.13 (m, 1H), 8.17-8.19 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 19.7, 19.8, 125.8, 126.9, 127.0, 129.8, 130.5, 130.9, 132.1, 132.5, 133.7, 133.7, 134.4, 136.7, 139.1, 148.1, 184.6, 185.2 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₄NaO₂ [M+Na]⁺ 285.0891, found 285.0889.

2-(2,5-Dimethylphenyl)-1,4-naphthoquinone (3d)

Purification by column chromatography on silica gel (petroleum ether/ $CH_2Cl_2 = 1/1$,

v/v) afforded **3d** as a yellow solid (64 mg, 61% yield). M.p.: 80-81 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.18 (s, 3H), 2.35 (s, 3H), 6.92 (s, 1H), 7.00 (s, 1H), 7.17 (s, 2H), 7.77-7.79 (m 2H), 8.13-8.17 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 19.8, 20.8, 126.0, 126.9, 129.7, 130.1, 130.2, 132.0, 132.2, 133.0, 133.6, 133.8, 135.2, 136.7, 150.7, 184.0, 185.1 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₅O₂ [M+H]⁺ 263.1072, found 263.1073.

2-(2-Methoxy-5-methylphenyl)-1,4-naphthoquinone (3e)

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 2/1 to 4/3, v/v) afforded **3e** as a yellow solid (67 mg, 60% yield). M.p.: 98-100 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.33 (s, 3H), 3.76 (s, 3H), 6.89 (d, *J* = 8.4 Hz, 1H), 7.01 (s, 1H), 7.05 (d, *J* = 2.0 Hz, 1H), 7.22 (dd, *J* = 8.4 Hz, 2.0 Hz, 1H), 7.73-7.77 (m, 2H), 8.09-8.17 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.4, 55.8, 111.2, 123.0, 125.9, 126.9, 129.8, 130.9, 131.4, 132.1, 132.5, 133.5, 133.6, 136.6, 148.2, 155.1, 183.6, 185.2 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₄NaO₃ [M+Na]⁺ 301.0841, found 301.0838.

The structure of compound **3e** was further confirmed by ¹H-¹H NOESY analysis.

2-(Benzo[d][1,3]dioxol-5-yl)-1,4-naphthoquinone (3f)³

Purification by column chromatography on silica gel (petroleum ether/ $CH_2Cl_2 = 2/1$, v/v) afforded **3f** as a yellow solid (40 mg, 36% yield). M.p.: 179-181 °C. ¹H NMR

(CDCl₃, 400 MHz): $\delta = 6.04$ (s, 2H), 6.90 (d, J = 8.0 Hz, 1H), 7.02 (s, 1H), 7.10 (d, J = 1.2 Hz, 1H), 7.12 (dd, J = 8.0 Hz, 1.2 Hz, 1H), 7.74-7.79 (m, 2H), 8.09-8.11 (m, 1H), 8.16-8.18 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 101.6$, 108.5, 109.8, 124.1, 125.9, 127.0, 127.2, 132.0, 132.5, 133.8, 134.1, 147.4, 147.8, 149.4, 184.5, 185.1 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₀NaO₄ [M+Na]⁺ 301.0477, found 301.0474.

2-(Benzo[d][1,3]dioxol-4-yl)-1,4-naphthoquinone (3f')

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 2/1, v/v) afforded **3f'** as a yellow solid (38 mg, 34% yield). M.p.: 186-188 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 6.02 (s, 2H), 6.917 (d, *J* = 3.2 Hz, 1H), 6.920 (d, *J* = 6.0 Hz, 1H), 7.04 (dd, *J* = 6.0 Hz, 3.2 Hz, 1H), 7.25 (s, 1H), 7.75-7.79 (m, 2H), 8.10-8.12 (m, 1H), 8.16-8.18 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 101.1, 110.0, 115.4, 121.6, 123.2, 126.0, 127.0, 131.9, 132.4, 133.8, 133.9, 136.6, 143.7, 146.1, 147.8, 183.4, 185.1 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₀NaO₄ [M+Na]⁺ 301.0477, found 301.0478.

2-(4-(Dimethylamino)phenyl)-1,4-naphthoquinone (3g)

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **3g** as a black solid (45 mg, 40% yield). M.p.: 128-130 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 3.04 (s, 6H), 6.75 (d, *J* = 8.8 Hz, 2H), 7.02 (s, 1H), 7.60 (d, *J* = 9.2 Hz, 2H), 7.71-7.76 (m, 2H), 8.08-8.10 (m, 1H), 8.15-8.17 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 40.1, 111.7, 120.5, 125.7, 126.9, 131.0, 131.1, 132.3, 132.9, 133.3, 133.5, 147.4, 151.7, 185.2, 185.5 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₅NNaO₂ [M+Na]⁺ 300.1000, found 300.0999.

2-(4-Chloro-3,5-dimethylphenyl)-1,4-naphthoquinone(3h)and2-(3-chloro-2,4-dimethylphenyl)-1,4-naphthoquinone(3h')

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded the mixture of **3h** and **3h'** as a yellow solid (82 mg, 69% yield). The ratio of **3h/3h'** was 1.3:1 as determined by ¹H NMR. ¹H NMR (CDCl₃, 400 MHz, a mixture of two isomers): δ = 2.24 (s, CH₃, minor isomer), 2.436 (s, CH₃, minor isomer), 2.444 (s, CH₃, major isomer), 6.91 (s, CH, minor isomer), 6.99 (d, CH, *J* = 7.6 Hz, minor isomer), 7.05 (s, CH, major isomer), 7.16 (d, *J* = 7.6 Hz, CH, minor isomer), 7.30 (s, CH, major isomer), 7.77-7.80 (m, CH, major + minor isomer), 8.10-8.19 (m, CH, major + minor isomer) ppm. ¹³C NMR (CDCl₃, 100 MHz, a mixture of two isomers): δ = 19.0, 20.8, 21.0, 125.9, 126.1, 126.9, 126.98, 127.05, 128.0, 129.2, 131.1, 131.99, 132.04, 132.4, 132.9, 133.8, 133.86, 133.92, 134.0, 134.6, 135.0, 135.6, 136.5, 136.8, 136.9, 137.7, 147.3, 150.1, 183.9, 184.3, 184.95, 185.03 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₃ClNaO₂[M+Na]⁺ 319.0502, found 319.0504.

The structures of **3h** and **3h'** were confirmed by their characteristic peaks shown as follows. The ratio of **3h/3h'** = (1.10/2)/0.42 = 1.3/1.

2-(4-Chlorophenyl)-1,4-naphthoquinone

and

 $(3i)^{2}$

2-(3-chlorophenyl)-1,4-naphthoquinone (3i')²

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded the mixture of **3i** and **3i'** as a yellow solid (80 mg, 74% yield). The ratio of **3i/3i'** was 1.1/1 as determined by ¹H NMR. ¹H NMR (CDCl₃, 400 MHz, a mixture of two isomers): δ = 7.059 (s, C<u>H</u>, minor isomer), 7.063 (s, C<u>H</u>, major isomer), 7.38-7.45 (m, C<u>H</u>, major + minor isomer), 7.52 (d, *J* = 8.4 Hz, C<u>H</u>, major isomer), 7.57 (s, C<u>H</u>, minor isomer), 7.78-7.79 (m, C<u>H</u>, major + minor isomer), 8.10-8.12 (m, C<u>H</u>, major + minor isomer), 8.16-8.18 (m, C<u>H</u>, major + minor isomer) ppm. ¹³C NMR (CDCl₃, 100 MHz, a mixture of two isomers): δ = 126.00, 126.03, 127.0, 127.1, 127.5, 128.7, 129.4, 129.7, 130.0, 130.7, 131.7, 131.9, 132.0, 132.19, 132.24, 133.9, 133.96, 133.97, 134.02, 134.4, 135.0, 135.2, 135.6, 136.4, 146.7, 146.8, 183.9, 184.1, 184.8, 184.9 ppm. HRMS (ESI⁺): calcd for C₁₆H₉ClNaO₂ [M+Na]⁺ 291.0189, found 291.0195.

The structures of **3i** and **3i'** were confirmed by their characteristic peaks shown as follows. The ratio of 3i/3i' = (1.10/2)/0.48 = 1.1/1.

2-(3,4-Dichlorophenyl)-1,4-naphthoquinone (3j)

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **3j** as a yellow solid (80 mg, 66% yield). M.p.: 203-204 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 7.07 (s, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.70 (s, 1H), 7.80 (t, *J* = 4.4 Hz, 2H), 8.11-8.14 (m, 1H), 8.17-8.19 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 126.1, 127.1, 128.6, 130.5, 131.3, 132.0, 132.1, 132.9, 133.1, 134.1, 134.5, 135.6, 145.7, 183.8, 184.7 ppm. HRMS (ESI⁺): calcd for C₁₆H₉Cl₂O₂ [M+H]⁺ 302.9980, found 302.9980.

2-(2,5-Difluorophenyl)-1,4-naphthoquinone (3k)

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **3k** as a yellow solid (44 mg, 41% yield). M.p.: 129-131 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 7.08 (s, 1H), 7.12-7.15 (m, 3H), 7.78-7.80 (m, 2H), 8.11-8.13 (m, 1H), 8.15-8.18 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 117.0, 117.1, 117.2, 117.3, 117.6, 117.67, 117.74, 117.8, 117.86, 117.91, 118.0, 118.1, 122.4, 122.5, 122.6, 122.7, 126.2, 127.1, 131.9, 132.0, 134.0, 134.1, 137.80, 137.82, 143.2, 154.75, 154.79, 157.0, 157.1, 157.22, 157.25, 159.46, 159.50, 182.7, 184.5 ppm. HRMS (ESI⁺): calcd for C₁₆H₉F₂O₂ [M+H]⁺ 271.0571, found 271.0572.

2-(3,5-Bis(trifluoromethyl)phenyl)-1,4-naphthoquinone (3l)

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **31** as a yellow solid (41 mg, 28% yield). M.p.: 122-124 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 7.16 (s, 1H), 7.80-7.85 (m, 2H), 7.99 (s, 1H), 8.04 (s, 2H), 8.13-8.15 (m, 1H), 8.19-8.21 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 119.0, 121.7, 123.4-123.6 (m), 124.4, 126.3, 127.2, 129.6, 131.5, 131.8, 131.9, 132.0, 132.1,

132.5, 134.36, 134.39, 135.3, 136.6, 145.2, 183.4, 184.3 ppm. HRMS (ESI⁺): calcd for $C_{18}H_8F_6NaO_2[M+Na]^+$ 393.0326, found 393.0325.

2-(2,4-Dimethyl-3-nitrophenyl)-1,4-naphthoquinone(3m)and2-(3,5-dimethyl-4-nitrophenyl)-1,4-naphthoquinone (3m')

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded the mixture of **3m** and **3m'** as a yellow solid (88 mg, 72% yield). The ratio of **3m/3m'** was 3.6:1 as determined by ¹H NMR. ¹H NMR (CDCl₃, 400 MHz, a mixture of two isomers): δ = 2.13 (s, CH₃, major isomer), 2.35 (s, CH₃, major isomer), 2.37 (s, CH₃, minor isomer), 6.93 (s, CH, major isomer), 7.05 (s, CH, minor isomer), 7.20 (d, *J* = 8.0 Hz, CH, major isomer), 7.23 (d, *J* = 8.0 Hz, CH, major isomer), 7.32 (s, CH, minor isomer), 7.77-7.82 (m, CH, major + minor isomer), 8.10-8.18 (m, CH, major + minor isomer) ppm. ¹³C NMR (CDCl₃, 100 MHz, a mixture of two isomers): δ = 15.6, 17.3, 17.5, 126.1, 126.3, 127.06, 127.09, 127.9, 128.7, 129.79, 129.85, 130.5, 130.6, 131.87, 131.92, 132.0, 132.1, 133.3, 134.11, 134.14, 135.0, 136.0, 137.5, 146.5, 148.6, 152.6, 183.5, 183.8, 184.63, 184.65 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₄NO₄ [M+H]⁺ 308.0923, found 308.0919.

The structures of **3m** and **3m'** were confirmed by their characteristic peaks shown as follows. The ratio of 3m/3m' = 1.04/(0.57/2) = 3.6/1.

5-(3,4-Dimethylphenyl)-2,3-dimethyl-1,4-benzoquinone (3n)

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **3n** as an orange solid (68 mg, 71% yield). M.p.: 107-108 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.11 (s, 3H), 2.14 (s, 3H), 2.34 (s, 6H), 6.82 (s, 1H), 7.21-7.24 (m, 2H), 7.28 (s, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 12.0, 12.6, 19.6, 19.7, 126.7, 129.6, 130.2, 130.7, 131.6, 136.5, 138.7, 140.5, 141.1, 145.6, 186.8, 187.5 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₇O₂ [M+H]⁺ 241.1229, found 241.1236.

5-(2,5-Dimethylphenyl)-2,3-dimethyl-1,4-benzoquinone (30)

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **30** as a yellow solid (55 mg, 57% yield). M.p.: 68-69 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.09 (s, 6H), 2.12 (s, 3H), 2.32 (s, 3H), 6.64 (s, 1H), 6.90 (s, 1H), 7.13 (s, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 12.1, 12.6, 19.8, 20.8, 129.7, 129.8, 130.1, 132.9, 133.4, 134.0, 135.1, 140.7, 141.1, 148.1, 186.3, 187.6 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₇O₂ [M+H]⁺ 241.1229, found 241.1228.

5-(3,4-Dichlorophenyl)-2,3-dimethyl-1,4-benzoquinone (3p)

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **3p** as a yellow solid (59 mg, 53% yield). M.p.: 131-134 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.08 (s, 3H), 2.10 (s, 3H), 6.80 (s, 1H), 7.30 (d, *J* = 8.4 Hz, 1H), 7.49 (d, *J* = 8.4 Hz, 1H), 7.58 (s, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 12.2, 12.7, 128.4, 130.4, 131.1, 132.7, 132.8, 133.0, 134.2, 141.1, 141.3, 143.3, 186.0,

187.0 ppm. HRMS (ESI⁺): calcd for $C_{14}H_{11}Cl_2O_2 [M+H]^+$ 281.0136, found 281.0135.

2-(1-Methyl-1*H*-indol-3-yl)-1,4-naphthoquinone (3q)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1, v/v) afforded **3q** as a black solid (25 mg, 22% yield). M.p.: 176-178 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 3.84 (s, 3H), 7.28-7.33 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.38 (s, 1H), 7.68-7.72 (m, 2H), 7.96 (d, *J* = 7.6 Hz, 1H), 8.08-8.13 (m, 3H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 33.4, 107.3, 110.1, 120.6, 121.7, 122.9, 125.6, 126.2, 126.7, 128.5, 132.2, 132.8, 133.1, 133.6, 135.7, 137.3, 141.8, 185.1, 185.7 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₄NO₂ [M+H]⁺ 288.1025, found 288.1025.

The position of quinonyl substitutent on indole ring was confirmed by ¹H-¹H NOESY spectrum.

2-(5-Butylfuran-2-yl)-1,4-naphthoquinone (3r)

Purification by column chromatography on silica gel (petroleum ether/ethyl ether = 25/1, v/v) afforded **3r** as a dark red solid (35 mg, 31% yield). M.p.: 68-70 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.96$ (t, J = 7.2 Hz, 3H), 1.36-1.46 (m, 2H), 1.65-1.72 (m, 2H), 2.71 (t, J = 7.6 Hz, 2H), 6.24 (d, J = 3.6 Hz, 1H), 7.24 (s, 1H), 7.55 (d, J = 3.2 Hz, 1H), 7.72-7.74 (m, 2H), 8.07-8.13 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 13.8$, 22.3, 28.0, 29.9, 109.6, 120.7, 125.9, 126.58, 126.63, 132.2, 132.4, 133.4, 133.8, 135.3, 145.2, 161.0, 183.5, 184.9 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₇O₃

[M+H]⁺ 281.1178, found 281.1175.

2-Phenyl-1,4-benzoquinone (4a)⁴

Hydroquinone was used as the starting material. Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **4a** as a yellow solid (21 mg, 28% yield). M.p.: 104-106 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 6.82-6.89 (m, 3H), 7.46-7.48 (m, 5H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 128.5, 129.2, 130.0, 132.6, 136.1, 137.0, 145.8, 186.5, 187.5 ppm. HRMS (ESI⁺): calcd for C₁₂H₈NaO₂ [M+Na]⁺ 207.0422, found 207.0420.

2,6-Diphenyl-1,4-benzoquinone (4b)

Hydroquinone was used as the starting material. Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **4b** as a orange red solid (37 mg, 36% yield). M.p.: 132-134 °C (lit:⁵ 138 °C). ¹H NMR (CDCl₃, 400 MHz): δ = 6.93 (s, 2H), 7.46-7.47 (m, 6H), 7.51-7.53 (m, 4H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 128.6, 129.3, 130.1, 132.5, 133.2, 145.6, 187.0 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₃O₂ [M+H]⁺ 261.0916, found 261.0910.

2,5-Diphenyl-1,4-benzoquinone (4b')

Hydroquinone was used as the starting material. Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **4b'** as a yellow solid (25 mg, 24% yield). M.p.: 208-210 °C (lit:⁶ 214 °C). ¹H NMR (CDCl₃, 400 MHz): $\delta = 6.98$ (s, 2H), 7.47-7.48 (m, 6H), 7.54-7.56 (m, 4H) ppm. ¹³C NMR

(CDCl₃, 100 MHz): δ = 128.5, 129.3, 130.1, 132.5, 133.1, 145.6, 187.0 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₃O₂ [M+H]⁺ 261.0916, found 261.0918.

2-tert-Butyl-6-phenyl-1,4-benzoquinone (4c)

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **4c** as orange oil (62 mg, 64% yield). ¹H NMR (CDCl₃, 400 MHz): δ = 1.33 (s, 9H), 6.67 (s, 1H), 6.77 (s, 1H), 7.44 (s, 5H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 29.3, 35.6, 128.3, 129.3, 129.7, 131.4, 131.5, 133.5, 147.8, 156.3, 186.7, 188.2 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₇O₂ [M+H]⁺ 241.1229, found 241.1228.

The structure of **4c** was further confirmed by its transformation to and identification of **4c-2** (*vide infra*).

2-tert-Butyl-5-phenyl-1,4-benzoquinone (4c')

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **4c'** as an orange solid (30 mg, 31% yield). M.p.: 89-91 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 1.33 (s, 9H), 6.69 (s, 1H), 6.78 (s, 1H), 7.44-7.49 (m, 5H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 29.2, 35.1, 128.5, 129.2, 129.9, 132.1, 132.4, 134.7, 144.3, 155.8, 187.7, 187.8 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₇O₂ [M+H]⁺ 241.1229, found 241.1225.

2-Methoxy-5-phenyl-1,4-benzoquinone (4d)⁷

Purification by column chromatography on silica gel (petroleum ether/ $CH_2Cl_2 = 1/1$, v/v) afforded **4d** as an orange yellow solid (65 mg, 76% yield). M.p.: 192-194 °C. ¹H

NMR (CDCl₃, 400 MHz): δ = 3.87 (s, 3H), 6.05 (s, 1H), 6.81 (s, 1H), 7.43-7.48 (m, 5H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 56.3, 108.0, 128.4, 129.5, 130.1, 130.8, 132.7, 146.5, 158.6, 182.2, 186.6 ppm. HRMS (ESI⁺): calcd for C₁₃H₁₁O₃ [M+H]⁺ 215.0708, found 215.0708.

2,3-Dimethyl-5-phenyl-1,4-benzoquinone (4e)

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **4e** as a yellow solid (75 mg, 88% yield). M.p.: 42-44 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.08 (s, 3H), 2.11 (s, 3H), 6.81 (s, 1H), 7.41-7.47 (m, 5H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 12.1, 12.7, 128.4, 129.2, 129.7, 132.4, 133.3, 140.8, 141.2, 145.7, 186.7, 187.6 ppm. HRMS (ESI⁺): calcd for C₁₄H₁₃O₂ [M+H]⁺ 213.0916, found 213.0920.

(5-Methyl-3,6-dioxo-2-phenylcyclohexa-1,4-dienyl)methyl pivalate (4f)

Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **4f** as yellow oil (54 mg, 43% yield). ¹H NMR (CDCl₃, 400 MHz): δ = 1.16 (s, 9H), 2.14 (s, 3H), 4.76 (s, 2H), 6.74 (s, 1H), 7.18-7.20 (m, 2H), 7.41-7.42 (m, 3H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 15.9, 27.1, 38.7, 58.6, 128.1, 129.4, 129.5, 131.2, 133.4, 137.6, 146.0, 146.9, 177.6, 186.5, 186.7 ppm. HRMS (ESI⁺): calcd for C₁₉H₂₀NaO₄ [M+Na]⁺ 335.1259, found 335.1264.

The structure of compound 4f was further confirmed by ¹H-¹H NOESY analysis.

(4,5-Dimethyl-3,6-dioxo-2-phenylcyclohexa-1,4-dienyl)methyl pivalate (4g) Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded 4g as yellow oil (52 mg, 40% yield). ¹H NMR (CDCl₃, 400 MHz): δ = 1.15 (s, 9H), 2.09 (s, 3H), 2.12 (s, 3H), 4.76 (s, 2H), 7.17-7.20 (m, 2H), 7.39-7.41 (m, 3H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 12.5, 12.6, 27.1, 38.7, 58.7, 128.0, 129.2, 129.4, 131.8, 137.1, 141.0, 141.2, 146.7, 177.6, 186.2, 186.6 ppm. HRMS (ESI⁺): calcd for C₂₀H₂₂NaO₄ [M+Na]⁺ 349.1416, found 349.1420.

The structure of compound 4g was further confirmed by ¹H-¹H NOESY analysis.

VI. Mechanistic study

(i). Arylation of 1,4-naphthoquinone 5a with benzene in the presence of TEMPO

A flame-dried sealable tube with a magnetic stir bar was charged with 1,4-naphthoquinone (64 mg, 0.4 mmol), Pd(acac)₂ (6.1 mg, 0.02 mmol), Ag₂CO₃ (331 mg, 1.2 mmol), PivOH (82 mg, 0.8 mmol), DMSO (100 μ L, 1.4 mmol), TEMPO (12.5 mg, 0.08 mmol) and benzene (3.0 mL) under air. The tube was sealed and the

reaction mixture was stirred at 140 °C for 24 h. After being cooled to ambient temperature, the reaction solution was diluted with 10 mL of CH₂Cl₂, filtered through a plug of silica gel, and washed with 30 mL of CH₂Cl₂. The filtrate was collected and concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) to provide **3a** in 78% yield (73 mg).

(ii). The competition reaction between *o*-xylene and 1,2-dichlorobenzene

A flame-dried sealable tube with a magnetic stir bar was charged with 1,4-naphthoquinone (64 mg, 0.4 mmol), Pd(acac)₂ (6.1 mg, 0.02 mmol), Ag₂CO₃ (166 mg, 0.6 mmol), PivOH (82 mg, 0.8 mmol), DMSO (100 μ L, 1.4 mmol), *o*-xylene (1.5 mL) and 1,2-dichlorobenzene (1.5 mL) under air. The tube was sealed and the reaction mixture was stirred at 140 °C for 24 h. After being cooled to ambient temperature, the reaction solution was diluted with 10 mL of CH₂Cl₂, filtered through a plug of silica gel, and washed with 30 mL of CH₂Cl₂. The filtrate was collected and concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl ether = 6/1, v/v) afforded **3c** (70 mg, 67% yield) and **3j** (9 mg, 7% yield) respectively.

(iii). Intermolecular kinetic isotope effect

A flame-dried sealable tube with a magnetic stir bar was charged with

1,4-naphthalenediol (67 mg, 0.4 mmol), Pd(acac)₂ (6.1 mg, 0.02 mmol), Ag₂CO₃ (331 mg, 1.2 mmol), PivOH (82 mg, 0.8 mmol), DMSO (100 μ L, 1.4 mmol), benzene (1.5 mL) and benzene-*d*₆ (1.5 mL) under air. The tube was sealed and the reaction mixture was stirred at 140 °C for 6 h. After being cooled to ambient temperature, the reaction solution was diluted with 10 mL of CH₂Cl₂, filtered through a plug of silica gel, and washed with 30 mL of CH₂Cl₂. The filtrate was collected and concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **3a** and **3a**-*d*₅ as an inseparable mixture (75 mg, 80% yield). The ratio of **3a/3a**-*d*₅ was 1.39/0.61 as determined by ¹H NMR (*k*_H/*k*_D = 2.3).

(iv). Arylation of 1,4-naphthoquinone in the presence of stoichiometric amounts of Pd(acac)₂

A flame-dried sealable tube with a magnetic stir bar was charged with 1,4-naphthoquinone (32 mg, 0.2 mmol), Pd(acac)₂ (61 mg, 0.2 mmol), PivOH (41 mg,

0.4 mmol), DMSO (50 μ L, 0.7 mmol) and benzene (1.5 mL) under air. The tube was sealed and the reaction mixture was stirred at 140 °C for 24 h. After being cooled to ambient temperature, the reaction solution was diluted with 10 mL of CH₂Cl₂, filtered through a plug of silica gel, and washed with 30 mL of CH₂Cl₂. The filtrate was collected and concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **3a** in 92% yield (43 mg).

VII. Confirmation of the structure of product 4c by its derivation⁸

To a solution of 2-tert-butyl-6-phenyl-1,4-benquinone 4c (160 mg, 0.66 mmol) in ethyl acetate (5.0 mL) was added a 10% Na₂S₂O₄ aqueous solution (5.0 mL). The mixture was stirred vigorously at room temperature for 2 h under nitrogen. The mixture was extracted with ethyl acetate for three times and the combined organic phases were washed with brine, dried over anhydrous MgSO₄, and evaporated to give the crude product 4c-1. 4c-1 was then dissolved in DMF (2.0 mL) and NaH (66 mg, 1.65 mmol) was added under nitrogen. MeI (103 µL, 1.65 mmol) was subsequently added slowly at 0 °C. The resulting solution was then warmed to and stirred at room temperature for overnight. The reaction solution was diluted with 10 mL of EtOAc, washed with brine for three times, dried over MgSO₄, and evaporated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1, v/v) to afford 4c-2 as light yellow oil (120 mg, 67% yield). The structure of 4c-2 was determined by ¹H, ¹³C, and ¹H-¹H NOESY NMR analysis. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.43$ (s, 9H), 3.22 (s, 3H), 3.80 (s, 3H), 6.70 (s, 1H), 6.89 (s, 1H), 7.34 (t, J) = 7.2 Hz, 1H), 7.43 (t, J = 7.2 Hz, 2H), 7.57 (d, J = 7.2 Hz, 2H) ppm. ¹³C NMR $(CDCl_3, 100 \text{ MHz}): \delta = 30.7, 35.3, 55.4, 60.5, 113.0, 127.0, 128.4, 129.0, 135.8,$ 139.9, 144.3, 151.2, 154.6 ppm.

The structure of compound **4c-2** was further confirmed by ¹H-¹H NOESY analysis.

VIII. References

- 1 M. T. Molina, C. Navarro, A. Moreno and A. G. Csákÿ, Org. Lett., 2009, 11, 4938.
- 2 M. L. N. Rao, and S. Giri, *RSC Adv.*, 2012, **2**, 12739.
- 3 K. M. Dawood, *Tetrahedron*, 2007, **63**, 9642.
- 4 H. Miyamura, M. Shiramizu, R. Matsubara and S. Kobayashi, *Angew. Chem., Int. Ed.*, 2008, 47, 8093.
- 5 F. Minisci, A. Citterio, E. Vismara, F. Fontana and S. D. Bernardinis, *J. Org. Chem.*, 1989, **54**, 728.
- 6 P. R. Shildneck and R. Adams, J. Am. Chem. Soc., 1931, 53, 2373.
- 7 R. A. de Oliveira, E. V. Gusevskaya and F. Carazza, J. Braz. Chem. Soc., 2002, 13, 110.
- 8 L. A. Carpino, S. A. Triolo and R. A. Berglund. J. Org. Chem., 1989, 54, 3303.

IX. Copies of ¹H, ¹³C NMR and ¹H-¹H NOESY spectra

fl (ppm)

S42

fl (ppm)

f1 (ppm)

fl (ppm)