Supporting Information

Synthesis and characterization of a luminescence

metallosupramolecular hyperbranched polymer

Bingran Yu, Shuwen Guo, Lipeng He, and Weifeng Bu*

Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China, E-mail: buwf@lzu.edu.cn

General Considerations. All reaction operations were performed under an anhydrous Ar atmosphere. Anhydrous toluene and tetrahydrofuran (THF) were distilled over Na and benzophenone. Dichloromethane was dried over CaH₂. All chemicals were used as received without any further treatment. ¹H NMR and ¹³C NMR spectra were recorded on Varian 600 NMR or Bruker 400 NMR spectrometers with tetramethylsilane (TMS) as an internal standard. High resolution ESI-MS were obtained on a Bruker APEX II FT-MS mass spectrometer. DLS measurements were performed on a Brookhaven BI-200SM spectrometer. TEM images were performed with a FEI Tecnai F30 operating at 300 kV. UV-vis Absorption spectra were recorded by using a Shimadzu 2550 spectrophotometer. Luminescence measurements were made on a Hitachi F-7000 spectrofluorimeter with a xenon lamp as the excitation source.

4: 255 mg (0.50 mmol) of **3**¹ was dissolved in acetone of 20 mL. 217 mg (0.50 mmol) cis-[Pt(DMSO)₂Cl₂]² was added to the solution and the mixture was stirred in dark for 12 h at 20 °C. Evaporation of the yellow solution gave the pale yellow microcrystalline precipitate. After filtration, 0.25 g of yellow crystal was obtained by washing with acetone, ether and then drying in the air atmosphere at 20 °C. Yield: 72%. ¹H NMR (400 MHz, CDCl₃, Me₄Si) δ 3.54 (s, 8H), 3.87 (t, *J*_{HH} = 4.4 Hz, 4H), 3.98 (t, ³*J*_{HH} = 4.4 Hz, 4H), 4.12 (t, ³*J*_{HH} = 4.4 Hz, 4H), 4.59 (t, ³*J*_{HH} = 4.4 Hz, 4H), 6.84-6.88 (m, 4H), 7.71 (dd, ³*J*_{HH} = 8.4 Hz, ³*J*_{HH} = 5.2Hz, 2H,), 8.89 (dd, ³*J*_{HH} = 8.4 Hz, ⁵*J*_{HH} = 0.8 Hz, 2H) 9.40 (d, ³*J*_{HH} = 5.2 Hz, 2H). Anal. Calcd for C₃₀H₃₄Cl₂N₂O₈Pt: C 44.13; H 4.20; N 3.43. Found: C 44.55; H 4.31; N 3.73. ESI-MS calcd for

 $[C_{30}H_{34}ClN_2O_8Pt]^+$ 780.1651, found 780.1646.

5: A Schlenk tube was charged with **4** (0.100 g, 0.12 mmol), 4-ethynylbenzaldehyde³ (39 mg, 0.30 mmol), CuI (6 mg), and 10 mL of a solvent mixture of CH₂Cl₂/NEt₃ (9:1 v/v). The resultant heterogeneous solution was allowed to stir for 24 h at 40 °C. The solvent was removed under a reduced pressure. The crude product was recrystallized from dichloromethane and methanol. **5** was isolated as a brown solid (109 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃, Me₄Si), δ 3.75 (s, 8H), 3.84 (t, ³*J*_{HH} = 4.4 Hz, 4H), 3.96 (t, ³*J*_{HH} = 4.0 Hz, 4H), 4.10 (t, ³*J*_{HH} = 4.4 Hz, 4H), 4.54 (t, ³*J*_{HH} = 4.4 Hz, 4H), 6.85 (m, 4H), 7.70 (d, ³*J*_{HH} = 8.0 Hz, 4H), 7.79 (d, ³*J*_{HH} = 8.0 Hz, 4H), 7.85 (dd, ³*J*_{HH} = 8.4 Hz, ³*J*_{HH} = 4.8 Hz, 2H), 8.96 (dd, ³*J*_{HH} = 8.4 Hz, ⁵*J*_{HH} = 1.2 Hz, 2H), 9.70 (d, ³*J*_{HH} = 4.8 Hz, 2H) 9.96 (s, 2H). Anal. Calcd for C₄₈H₄₄N₂O₁₀Pt·0.5CH₂Cl₂: C, 55.67; H, 4.33; N, 2.68. Found: C, 55.43; H, 4.10; N, 2.18. ESI-MS calcd for [C₄₈H₄₄N₂O₁₀Pt+Na]⁺ 1026.2541, found 1026.2571.

6: A Schlenk tube was charged with **5** (0.05 g, 0.050 mmol), ZnCl₂ (10 mg), benzylamine (0.22 g, 2.0 mmol) and 20 mL of CH₂Cl₂/MeOH (9:1 v/v) and the resultant solution was allowed to stir for 40 h at room temperature. The product was isolated on a medium-porosity glass frit; washed with small amounts of methanol, ethanol, and diethyl ether; recrystallized from a methanol/CH₂Cl₂ mixture; washed with methanol and diethyl ether; and dried under vacuum. **6** was isolated as a brown solid (48 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃, Me₄Si), δ 3.75 (s, 8H), 3.84 (t, ³*J*_{HH} = 4.4 Hz, 4H), 3.96 (m, 4H), 4.10 (t, ³*J*_{HH} = 4.4 Hz, 4H), 4.54 (m, 4H), 4.83 (s, 4H), 6.85 (m, 4H), 7.35 (m, 10H), 7.60 (d, ³*J*_{HH} = 8.4 Hz, 4H), 7.70 (d, ³*J*_{HH} = 8.4 Hz, 2H), 9.78 (d, ³*J*_{HH} = 4.0 Hz, 2H). Anal. Calcd for C₆₂H₅₈N₄O₈Pt·CH₂Cl₂: C, 59.71; H, 4.77; N, 4.42. Found: C, 59.34; H, 4.49; N, 4.69. ESI-MS calcd for [C₆₂H₅₈N₄O₈Pt+H]⁺ 1182.3981, found 1182.3973.

1: A Schlenk tube was charged with **6** (0.05 g, 0.042 mmol), sodium triacetoxyborohydride (65 mg, 0.30 mmol), and 20 mL of dichloromethane. The resultant solution was stirred for 48 h. The solution was then poured over water and extracted with dichloromethane, dried with MgSO₄, filtered, and evaporated to

dryness to give the desired product. The crude product was recrystallized from dichloromethane and methanol. **1** was isolated as a brown solid (34 mg, 70% yield). ¹H NMR (400 MHz, CD₂Cl₂, Me₄Si), δ 3.65 (m, 8H), 3.84 (t, ³*J*_{HH} = 4.4 Hz, 4H), 3.76 (s, 4H), 3.77 (s, 4H), 3.88 (m, 4H), 4.01 (t, ³*J*_{HH} = 4.8 Hz, 4H), 4.54 (m, 4H), 4.49 (s, 4H), 6.80 (m, 4H), 7.20-7.45 (m, 10H), 7.81 (m, 2H), 7.92 (d, ³*J*_{HH} = 8.4 Hz, 2H), 9.75 (m, 2H). Anal. Calcd for C₆₂H₆₂N₄O₈Pt·CH₂Cl₂: C, 59.50; H, 5.07; N, 4.41. Found: C, 59.36; H, 4.48; N, 4.74. ESI-MS calcd for [C₆₂H₆₂N₄O₈Pt+Na]⁺ 1209.2514, found 1209.2558.

2: A Schlenk tube was charged with **4** (0.100 g, 0.12 mmol), ethynylbenzene (31 mg, 0.30 mmol), CuI (6 mg), and 10 mL of a solvent mixture of CH₂Cl₂/NEt₃ (9:1 v/v). The resultant heterogeneous solution was allowed to stir for 24 h at 40 °C, The solvent was removed under a reduced pressure. The crude product was recrystallized from dichloromethane and methanol. **2** was isolated as a brown solid (97 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃, Me₄Si), δ 3.75 (s, 8H), 3.86 (t, ³*J*_{HH} = 4.0 Hz, 4H), 3.93 (m, 4H), 4.10 (t, ³*J*_{HH} = 4.4 Hz, 4H), 4.53 (m, 4H), 6.86 (m, 4H), 7.2-7.4 (m, 10H), 7.59 (d, ³*J*_{HH} = 8.0 Hz, 2H), 7.78 (m, 2H), 8.89 (d, ³*J*_{HH} = 8.4 Hz, 2H). Anal. Calcd for C₄₆H₄₄N₂O₈Pt·0.8CH₂Cl₂: C, 55.33; H, 4.52; N, 2.76. Found: C, 55.58; H, 4.05; N, 2.46. ESI-MS calcd for [C₄₈H₄₄N₂O₁₀Pt+2Na]²⁺ 496.6267, found 496.6275.

Fig. S1 Reduced viscosity as a concentration function of **1** (a) and TFA-**1** (b) in their dichloromethane solutions at 18 °C. DLS plots of **1** (in CH₂Cl₂, 1.0×10^{-3} molL⁻¹, c), TFA-**1** produced by adding 2.2 equiv of TFA into the solution of **1** (d), **1** obtained by treating 2.4 equiv of P₁-*t*-Bu to TFA-**1** (e). TEM images of TFA-**1** as drop cast onto carbon-coated copper grids at the concentrations of 1×10^{-3} (f) and 5×10^{-5} mol/L (g).

Fig. S2 ¹H NMR spectra (600 MHz CD₂Cl₂) of the mixture of **2** and **7** with a molar ratio of 1:1 at a concentration of 1×10^{-3} mol/L (b), after addition of 1.1 equiv of P₁-*t*-Bu (c), the original spectrum of **7** in CD₃CN (a), and the original spectrum of **2** in CD₂Cl₂ (d).

Fig. S3 The experimental (a) and theoretical (b) ESI-MS spectra of $[2 \cdot 7]^+$.

Fig. S4 Fluorescence spectral changes of **1** (a) and **2** (b) upon addition with tetrabutylammonium (TBA) salts in dichloromethane.

Fig. S5 (a) Perspective view of **8**•CH₂Cl₂ (50% probability ellipsoids). (b) The weak C-H… π (C=C) interactions occurred between the two acidic protons of the CH₂Cl₂ molecule and the bis(acetylide).

Fig. S6 Perspective view of 8 (50% probability ellipsoids).

Fig. S7 The experimental (a) and theoretical (b) ESI-MS spectra of $[2 \cdot CH_2 Cl_2 \cdot 2H]^{2+}$.

Table S1. X-ray crystallographic data for 8•CH2Cl2 and 8.		
	8 •CH ₂ Cl ₂	8
formula	$C_{35}H_{36}Cl_2N_2\ Pt$	$C_{34}H_{34}N_2Pt$
fw	750.65	665.72
temp	100(10)	292 (10)
crystal system	triclinic	triclinic
space group	P-1	P-1
<i>a</i> , Å	10.3930(4)	10.5062(8)
<i>b</i> , Å	10.4002(4)	10.8025(5)
<i>c,</i> Å	15.2797(7)	14.7466(7)
α,°	109.735(4)	78.098(4)
β ,°	90.674(3)	79.170(5)
γ,°	97.278(3)	82.432(5)
<i>V</i> , Å ³	1539.41(11)	1600.95(17)
Z	2	2
density(calcd) g·cm ⁻³	1.619	1.381
Absorb .coeff. mm ⁻¹	4.758	4.404
<i>F</i> (000)	744	660
θ range	3.02-25.68	3.14-28.50
	-7 <h<12< td=""><td>-31<h<28< td=""></h<28<></td></h<12<>	-31 <h<28< td=""></h<28<>
index ranges	-12 <k<12< td=""><td>-15<k<13< td=""></k<13<></td></k<12<>	-15 <k<13< td=""></k<13<>
	-18< l< 18	-32<1<38
data/restr./param	5842/0/ 367	6055/0/340
GOF	1.028	0.976
final R indices	0.0643	0.0802
$[I > 2\sigma(I)]$	0.1376	0.1936
CCDC number	923693	923694

References

- T. Lazarides, T. A. Miller, J. C. Jeffery, T K. Ronson, H Adams and M. D. Ward, *Dalton Trans.*, 2005, 40, 528.
 V. Y. Kukushkin, A. J. L. Pombeiro, C. M. P. Ferreira, L. I. Elding and R. J. Puddephatt *Inorg. Synth.*, 2002, 33, 189.
- 3 X. Wang, V. Ervithayasuporn, Y. Zhang and Y. Kawakami, Chem. Commun. 2011, 47, 1282-1284.