A New Photoclick Reaction Strategy: Photo-induced Catalysis of the Thiol-Michael Addition via a Caged Primary Amine

Weixian Xi¹, Matthias Krieger¹, Christopher J. Kloxin², Christopher N. Bowman¹*

¹Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309-0424

²Department of Materials Science & Engineering and Department of Chemical & Biomolecular Engineering, University of Delaware 150 Academy Street, Newark, Delaware 19716

SUPPORTING INFORMATION

Table of Contents

General Information	page S-2
Experimental	pages S-2 – S-5
References	pages S-7
NMR Spectra	pages S-8– S-12

General Information:

Unless otherwise noted, all reactions were run under air. All chemical reagents were obtained commercially without further purification. ¹H and ¹³C NMR spectra were recorded on Bruker Avance-III 400 spectrometers. Mass spectral and analytical data were obtained *via* the PE SCIEX/ABI API QSTAR Pulsar Hybrid LC/MS/MS, Applied Biosystems operated in the central analytical laboratory, University of Colorado at Boulder. Infrared (IR) spectra were recorded on a Thermo Nicolet Avatar 370 FT-IR spectrometer.

Experimental:

1. General Procedure

1.1 Synthesis (a) and Photolysis (b) of NPPOC-Hexylamine

a. 2-(2-Nitrophenyl)propyl chloroformate (2mmol, 587mg) in 10ml CH₂Cl₂ was added dropwise to a stirred solution of hexylamine (2mmol, μl)and DIPEA (4mmol, μl)in 20 ml CH₂Cl₂ at 0°C. The reaction was stirred at room temperature for 8 hours. The mixture was washed with Brine (30ml x 3) and dried with anhydrous Na₂SO₄. The crude product was purified by silica gel column chromatography using Hexane: EtOAc (1:1) to give a pure product (445mg, 76%) as light yellow oil.

¹H NMR (400 MHz, Chloroform-d) δ 7.81 – 7.70 (m, 1H), 7.57 (ddd, J = 8.6, 7.4, 1.4 Hz, 1H), 7.51 – 7.44 (m, 1H), 7.36 (ddd, J = 8.5, 7.4, 1.5 Hz, 1H), 4.67 (br, J = 6.5 Hz, 1H), 4.37 – 4.18 (m, 1H), 4.16 – 4.05 (m, 1H), 3.80 – 3.62 (m, 2H), 3.18 – 3.03 (m, 2H), 1.53 – 1.15 (m, 14H), 0.93 – 0.82 (m, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 156.09, 150.77, 137.45, 132.52, 128.25, 127.25, 123.95, 68.57, 67.21, 44.35, 41.60, 40.98, 33.25, 31.42, 29.82, 28.79, 26.32, 26.03, 22.51, 17.78, 17.32, 13.98. Mass: C₁₆N₂₄N₂O₄[M+Na]⁺ 331.1626, Found: 331.1634.

b. NPPOC-Hexylamine (0.1mmol, 29.3mg) was dissolved in MeOH (10ml) and then stirred under 320-390 nm irradiation (20mW/cm²) for 3 hours. After irradiation, a 100 µl aliquot was diluted to 10ml (0.05mM) in MeOH and upon which a UV/Vis spectrum was obtained (scanning 1nm/s from 200 to 600nm).

Scheme S1: Principal cleavage pathways and products of NPPOC-protected (X=O, NH) amine or alcohol. ^{1,2}

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Fig S1. ¹³C-NMR of Photolysis of NPPOC-hexylamine.

1.2 Model photo triggered NPPOC-Hexylamine catalyzed thiol-acrylate addition

To a 10 ml glass vial was added thiol (2mmol) and catalyst (0.1mmol) and to this was added methyl acrylate (2mmol, 0. 182 ml). The mixture was vortexed until fully mixed. The mixture was then stirred under 320-390nm irradiation (20mW/cm^2) .

1.

Methyl 3-(phenylthio)propanoate: ¹H NMR (400 MHz, $CDCl_3$) δ 7.40 – 7.34 (m, 2H),

7.33 – 7.27 (m, 2H), 7.24 – 7.18 (m, 1H), 3.68(s, 1H), 3.17 (t, J = 7.4 Hz, 2H), 2.63 (t, J = 7.4 Hz, 2H) ¹³C NMR δ (101 MHz, CDCl₃) 172.29, 135.33, 130.27, 129.16, 127.67, 127.29, 126.73, 51.94, 34.38, 29.22.

Methyl 3-((2-butoxy-2-oxoethyl)thio)propanoate: ¹H NMR (400 MHz, Chloroform-d) 4.13 (t, J = 6.7 Hz, 2H), 3.69 (s, 3H), 3.23 (s, 2H), 2.91 (t, J = 7.7 Hz, 2H), 2.59 (t, J = 7.7 Hz, 2H), 1.68 -1.57 (m, 2H), 1.46-1.30 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) 172.21, 170.49 , 65.46 , 51.96 , 34.28 , 33.87 , 30.72 , 27.70 , 19.21 , 13.81 .

Methyl 3-((2-hydroxyethyl)thio)propanoate: ¹H NMR (400 MHz, Chloroform-*d*) δ 3.77 – 3.72 (m, 2H), 3.70 (s, *J* = 3H), 2.81 (t, *J* = 7.1 Hz, 2H), 2.77 – 2.71 (t, J=7.1 Hz, 2H), 2.62 (t, *J* = 7.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) 172.46, 60.69, 52.01, 35.58, 34.80, 26.78.

Butyl 3-((3-methoxy-3-oxopropyl)thio)propanoate: ¹H NMR (400 MHz, Chloroform-d) δ 4.09 (t, J = 6.7 Hz, 2H), 3.69 (s, 3H), 2.80 (tdd, J = 7.6, 1.8, 0.6 Hz, 4H), 2.66 – 2.52 (m, 4H), 1.65 – 1.55 (m, 2H), 1.37 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.39, 172.01, 64.77, 51.95, 34.96, 34.73, 30.77, 27.23, 27.15, 19.95, 13.82

2. Kinetics study

Real-Time Fourier Transform Infrared (FT-IR) Spectroscopy: Reaction kinetics were monitored by FT-IR spectroscopy at a series scan rate of one scan per 2 seconds. These studies were performed on a Nicolet 750 Magna FT-IR spectrometer with a KBr beam splitter and an MCT/A detector under dry air. Samples were sandwiched between to NaCl windows and placed into a horizontal transmission apparatus. The sample thicknesses were approximately 200 microns. The conversion of thiol and vinyl functional groups was assessed by monitoring the disappearance of peak areas centered around 2567 and v812 cm⁻¹, respectively.

Figure S2: FT-IR spectra indicating the conversion of vinyl (a) and thiol (b) functional groups for the reaction between Butyl thiolglycolate and methyl acrylate. The disappearance of the two peak areas occur in a one-to-one manner, indicating a one-to-one stoichiometry.

 $CDCl_3$) spectra indicating the conversion of vinyl and thiol groups for the reaction between butyl thiogylcolate and methyl acrylate.

3. Mechanical Study

Dynamic mechanical analysis (DMA): The mechanical properties (E' and E") of fully formed polymer networks was performed with a DMAQ800 dynamic mechanical analyzer.³ A rectangular sample geometry was used with dimensions of 11.32mm×1.89mm×1.04mm and 14.96mm×4.48mm×0.96mm for the PETMA/bisphenol A ethoxy diacrylate and PETMP/bisphenol A ethoxy diacrylate specimens, respectively.

Experiments were performed over a temperature range of -40 to 80° C with a scanning rate of 2° C/min. Finally, the T_g was determined as the maximum of the tan δ curve (where tan $\delta = E''/E'$).

Reference:

(1) D. Woll, J. Smirnova, M. Galetskaya, T. Prykota, J. Buhler, K. P. Stengele, W. Pfleiderer and U. E. Steiner, *Chem-Eur J*, 2008, **14**, 6490-6497

(2) A. Hasan, K. P. Stengele, H. Giegrich, P. Cornwell, K. R. Isham, R. A. Sachleben, W. Pfleiderer and R. S. Foote, *Tetrahedron*, 1997, **53**, 4247-4264.

(3) S. Ye, N. B. Cramer, B. E. Stevens, R. L. Sani, C. N. Bowman, *Macromolecules* **2011**, 44, 4988.

NMR Spectra

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2013

- 50 110 100 f1 (ppm) ů Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

