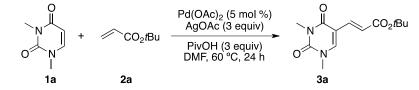
SUPPORTING INFORMATION

for

Dehydrogenative alkenylation of uracils *via* palladium-catalyzed regioselective C–H activation

Yi-Yun Yu and Gunda I. Georg*

Department of Chemistry and Department of Medicinal Chemistry and the Institute for Therapeutics Discovery and Development, University of Minnesota 717 Delaware Street SE, Minneapolis, Minnesota 55414 USA


Table of Contents

1. General experimental remarks	S2
2. General procedure for the dehydrogenative alkenylation reactions	S2
3. Detailed optimization study	S3–S6
4. Characterization data for compounds 3a–3t	S7–S14
5. ¹ H NMR and ¹³ C NMR spectra for compounds $3a-3t$	S15–S35

1. General experimental remarks

All reactions were carried out in clear 1-dram vials under air. Vials were used without drying. Palladium(II) acetate, the alkenes, all other chemicals and solvents were purchased and were directly used without further purification. Flash column chromatography was carried out on silica gel. TLC was conducted on 250 micron, F_{254} silica gel plates. ¹H NMR analyses were performed on a 400 MHz spectrometer and ¹³C NMR spectra were recorded on a 100 MHz spectrometer with complete proton decoupling. Chemical shifts were reported as ppm relative to chloroform (CHCl₃: 7.26 ppm for ¹H, 77.16 ppm for ¹³C). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz) and integration. IR spectra of solids were obtained by dissolving the sample in CH₂Cl₂ and letting the solvent evaporate on a NaCl plate. High-resolution mass spectrometry was performed on an ESI-TOF instrument. Melting points were uncorrected.

2. General Procedure for the dehydrogenative alkenylation reactions

1,3-Dimethyluracil (1) (14.0 mg, 0.1 mmol) was mixed in a clear 1-dram vial with Pd(OAc)₂ (1.13 mg, 0.005 mmol), AgOAc (50.3 mg, 0.3 mmol), PivOH (30.6 mg, 0.3 mmol). To the mixture was added *tert*-butyl acrylate (**2a**) (29.3 μ L, 0.2 mmol), followed by DMF (0.5 mL). The reaction vessel was then capped. After being stirred for 2 min, the reaction was heated at 60 °C for 24 h in dark. The reaction was then cooled, diluted with EtOAc (1 mL), and pressure-filtered over Celite. The filter cake was washed with EtOAc (20 mL). The filtrate was then concentrated under reduced pressure and purified by flash chromatography (30–40% EtOAc in hexanes) on silica gel to provide 24.3 mg (92%) of **3a** as an off-white solid (mp 140–142 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.19 (d, *J* = 15.8 Hz, 1H), 6.89 (d, *J* = 16.6 Hz, 1H), 3.47 (s, 3H), 3.38 (s, 3H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 161.5, 150.9, 144.2, 135.1, 121.4, 109.3, 80.5, 37.6, 28.3, 28.3; FTIR (NaCl, cm⁻¹) 3155, 2953, 1710, 1665, 1629, 1457, 1437, 1370, 1301, 1263, 1194, 1172, 1091, 984, 907; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₁₃H₁₈N₂O₄Na: 289.1159, found 289.1158.

3. Detailed optimization study

3.1 Reoxidant screening

Table S1 Reoxidant effect on the dehydrogenative alkenylation

	O N O N V + CO₂tBu	Pd(TFA) ₂ (10 mol %) reoxidant DMF, 80 °C, 24 h O N CO ₂ tBu O N	
	1a 2a	За	
Entry ^a	Reoxidant (equiv.)	Conversion $(\%)^b$	Yield $(\%)^c$
1	$Cu(OAc)_2$ (2.0)	74	52
2	$CuCl_2$ (2.0)	9	0
3	Cu(OTf) ₂ (2.0)	8	6
4	Cu(TFA) ₂ (2.0)	10	0
5	duroquinone (2.0)	15	4
6	$PhCO_3 tBu$ (2.0)	60	45
7	Ag ₂ O (1.0)	26	11
8	Ag_2CO_3 (1.0)	37	20
9	$AgF_{2}(2.0)$	-1	0
10	AgCl (2.0)	7	0
11	AgNO ₃ (2.0)	10	3
12	$AgSbF_6(2.0)$	32	0
13	AgOBz (2.0)	64	55
14	AgOTF (2.0)	27	0
15	AgOAc (2.0)	86	68

^{*a*} Reaction conditions: uracil **1a** (0.2 M), acrylate **2a** (2.0 equiv.), Pd(TFA)₂ (10 mol%), oxidant, DMF (0.5 mL) under air at 80 °C, 24 h. ^{*b*} ¹H NMR % conversion of the starting enaminone with Ph₃SiMe (1.0 equiv) as the internal standard. ^{*c*} ¹H NMR % yield with Ph₃SiMe (1.0 equiv) as the internal standard.

3.2 Additive study

Table S2 Additive effect on the dehydrogenative alkenylation

		2 [/] Bu Pd(TFA) ₂ (10 mol %) AgOAc (2 equiv) Additive DMF, 80 °C, 24 h	O N O N	
	1a 2a		3a	
Entry ^a	Reoxidant (equiv.)	Additive (equiv.)	Conversion $(\%)^b$	Yield $(\%)^c$
1	AgOAc (2.0)	$K_2CO_3(2.0)$	37	19
2	AgOAc (2.0)	TFA (2.0)	34	24
3	AgOAc (2.0)	AcOH (2.0)	86	70
4	AgOAc (2.0)	PivOH (2.0)	96	77
5	$Ag_2O(1.0)$	PivOH (2.0)	88	74
6	AgOAc (2.0)		86	68

^{*a*} Reaction conditions: uracil **1a** (0.2 M), acrylate **2a** (2.0 equiv.), Pd(TFA)₂ (10 mol%), AgOAc (2.0 equiv.), additive, DMF (0.5 mL) under air at 80 °C, 24 h. ^{*b* 1}H NMR % conversion of the starting enaminone with Ph₃SiMe (1.0 equiv) as the internal standard. ^{*c* 1}H NMR % yield with Ph₃SiMe (1.0 equiv) as the internal standard.

3.3 Solvent effect

Table S3 Solvent effect on the dehydrogenative alkenylation

	O N O N O N O N O N O N O N O N O N O CO ₂ <i>t</i> Bu O O CO ₂ <i>t</i> Bu O CO ₂ <i>t</i> CO O CO ₂ <i>t</i> Bu O CO ₂ <i>t</i> CO O CO ₂ <i>t</i> CO O CO CO CO CO CO CO CO CO CO CO CO CO	CO ₂ /Bu	
	1a 2a	3a	
Entry ^a	Solvent (0.5 mL)	Conversion $(\%)^b$	Yield $(\%)^c$
1	DMSO	38	24
2	MeCN	76	62
3	NMP	92	64
4	DMF	96	77
5	THF	94	66
6	dioxane	100	58
7	tBuOH	78	52
8	DMA	90	72

^{*a*} Reaction conditions: uracil **1a** (0.2 M), acrylate **2a** (2.0 equiv.), $Pd(TFA)_2$ (10 mol%), AgOAc (2.0 equiv.), PivOH (3.0 equiv.), solvent, under air at 80 °C, 24 h. ^{*b*} ¹H NMR % conversion of the starting enaminone with Ph₃SiMe (1.0 equiv) as the internal standard. ^{*c*} ¹H NMR % yield with Ph₃SiMe (1.0 equiv) as the internal standard.

3.4 Catalyst choice

Table S4 Catalyst efficiency on the dehydrogenative alkenylation

		CO ₂ tBu AgOA	Ac, PivOH 30 °C, 24 h	CO ₂ tBu	
	1a	2a	За		
Entry ^a	Catalyst (mol%)	AgOAc (equiv.)	PivOH (equiv.)	Conversion $(\%)^b$	Yield $(\%)^c$
1	$Pd(TFA)_2$ (10)	2.0	2.0	86	68
2	$Pd(OAc)_2$ (10)	1.1	2.0	76	58
3	$Pd(OAc)_{2}$ (10)	2.0	2.0	95	80
4	$Pd(OAc)_2$ (10)	2.5	2.0	100	85
5	$Pd(OAc)_2$ (10)	3.0	2.0	100	85
6	$Pd(OAc)_2(1)$	2.5	2.0	73	66
7	$Pd(OAc)_2(1)$	4.0	2.0	65	57
8	$Pd(OAc)_2(5)$	1.5	2.0	79	67
9	$Pd(OAc)_2(5)$	2.0	2.0	93	83
10	$Pd(OAc)_2(5)$	2.5	2.0	100	84
11	$Pd(OAc)_2(5)$	3.0	2.0	100	82
12	$Pd(OAc)_2(5)$	2.5	0.5	94	79
13	$Pd(OAc)_2(5)$	2.5	2.5	100	83
14	$Pd(OAc)_2(5)$	2.5	3.0	100	83

^{*a*} Reaction conditions: uracil **1a** (0.2 M), acrylate **2a** (2.0 equiv.), catalyst, AgOAc, PivOH, DMF (0.5 mL) under air at 80 °C, 24 h. ^{*b* 1}H NMR % conversion of the starting enaminone with Ph₃SiMe (1.0 equiv) as the internal standard. ^{*c* 1}H NMR % yield with Ph₃SiMe (1.0 equiv) as the internal standard.

3.5 Reaction scale

 Table S5 Reaction scale of the dehydrogenative alkenylation

	O N O N O CO ₂ tBu	Pd(OAc) ₂ (5 mol %) AgOAc (2.5 equiv) PivOH (2 equiv) DMF, 80 °C, 24 h	O N CO ₂ <i>t</i> Bu	
	1a 2a		3a	
Entry ^a	1a (M)	2a (equiv.)	Conversion $(\%)^b$	Yield $(\%)^c$
1	0.2	1.1	100	78
2	0.2	2.0	100	84
3	0.2	3.0	97	81
4	0.1	2.0	100	84
5	0.5	2.0	100	82

^{*a*} Reaction conditions: uracil **1a** (0.1 mmol), acrylate **2a** (2.0 equiv.), $Pd(OAc)_2$ (5 mol%), AgOAc (2.5 equiv.), PivOH (2.0 equiv.), DMF (0.2–1.0 mL) under air at 80 °C, 24 h. ^{*b* 1}H NMR % conversion of the starting enaminone with Ph₃SiMe (1.0 equiv) as the internal standard. ^{*c* 1}H NMR % yield with Ph₃SiMe (1.0 equiv) as the internal standard.

3.6 Temperature effect

Table S6 Temperature effect on the dehydrogenative alkenylation

	O N O N +	CO ₂ <i>t</i> Bu AgOA	2 (5 mol %) c, PivOH F, 24 h	CO₂ <i>t</i> Bu	
	1a	2a	За		
Entry ^a	AgOAc (equiv.)	PivOH (equiv.)	Temp (°C)	Conversion $(\%)^b$	Yield $(\%)^c$
1	2.5	2.0	50	86	80
2	2.5	2.0	50	86	78
3	3.0	3.0	50	92	87
4	2.5	2.0	60	100	86
5	3.0	2.0	60	100	91
6	2.5	2.5	60	100	87
7	2.5	3.0	60	100	91
8	3.0	3.0	60	100	91
9	2.5	2.0	70	100	88
10	3.0	3.0	70	100	87
11	2.5	2.0	80	100	84
12	2.5	2.0	100	100	74

^{*a*} Reaction conditions: uracil **1a** (0.2 M), acrylate **2a** (2.0 equiv.), $Pd(OAc)_2$ (5 mol%), AgOAc, PivOH, DMF (0.5 mL) under air, 24 h. ^{*b* 1}H NMR % conversion of the starting enaminone with Ph₃SiMe (1.0 equiv) as the internal standard. ^{*c* 1}H NMR % yield with Ph₃SiMe (1.0 equiv) as the internal standard.

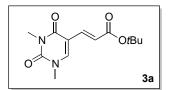
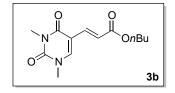
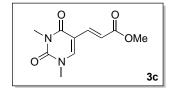
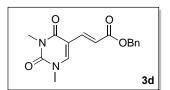

3.7 Reaction time

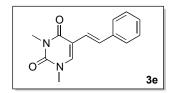
Table S7 Effect of reaction time on the dehydrogenative alkenylation

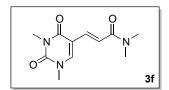

	O N O N I + CO₂ťBu	Pd(OAc) ₂ (5 mol %) AgOAc (3 equiv) PivOH (3 equiv) DMF, 60 °C, time	
	1a 2a	За	
Entry ^a	Time (h)	Conversion $(\%)^b$	Yield $(\%)^c$
1	0.5	31	25
2	1	40	37
3	2	60	53
4	4	75	66
5	8	88	81
6	12	92	88
7	18.5	100	91
8	24	100	91(92) ^d

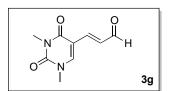
^{*a*} Reaction conditions: uracil **1a** (0.2 M), acrylate **2a** (2.0 equiv.), Pd(OAc)₂ (5 mol%), AgOAc (3.0 equiv.), PivOH (3.0 equiv.), DMF (0.5 mL), under air at 60 °C, 0–24 h. ^{*b*} ¹H NMR % conversion of the starting enaminone with Ph₃SiMe (1.0 equiv) as the internal standard. ^{*c*} ¹H NMR % yield with Ph₃SiMe (1.0 equiv) as the internal standard. ^{*d*} Isolated yield in parenthesis.

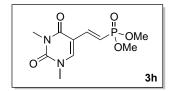

4. Characterization data for new compounds

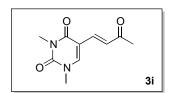

(*E*)-1,3-Dimethyl-5-(2'-*t*-butoxycarbonylvinyl)uracil (3a). 3a was prepared by the general procedure described above and purified by flash chromatography (30–40% EtOAc in hexanes) on silica gel to provide 24.3 mg (92%) as an off-white solid (mp 140–142 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.19 (d, *J* = 15.8 Hz, 1H), 6.89 (d, *J* = 16.6 Hz, 1H), 3.47 (s, 3H), 3.38 (s, 3H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 161.5, 150.9, 144.2, 135.1, 121.4, 109.3, 80.5, 37.6, 28.3, 28.3; FTIR (NaCl, cm⁻¹) 3155, 2953, 1710, 1665, 1629, 1457, 1437, 1370, 1301, 1263, 1194, 1172, 1091, 984, 907; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₁₃H₁₈N₂O₄Na: 289.1159, found 289.1158.

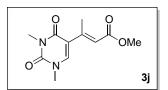

(*E*)-1,3-Dimethyl-5-(2'-*n*-butoxycarbonylvinyl)uracil (3b). 3b was prepared by the general procedure described above and purified by flash chromatography (40% EtOAc in hexanes) on silica gel to provide 24.1 mg (91%) as a white solid (mp 138–140 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H), 7.28 (d, *J* = 16.3 Hz, 1H), 6.99 (d, *J* = 15.8 Hz, 1H), 4.16 (t, *J* = 6.6 Hz, 2H), 3.47 (s, 3H), 3.38 (s, 3H), 1.65 (m, 2H), 1.41 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 161.4, 150.8, 144.8, 136.3, 119.3, 109.0, 64.4, 37.6, 30.9, 28.3, 19.3, 13.8; FTIR (NaCl, cm⁻¹) 3055, 2987, 2963, 1708, 1665, 1628, 1454, 1422, 1355, 1299, 1173, 1090, 1063, 985, 867; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₁₃H₁₈N₂O₄Na: 289.1159, found 289.1159.

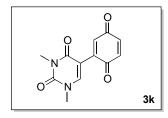

(*E*)-5-(2'-Methoxycarbonylvinyl)-1,3-dimethyluracil (3c). 3c was prepared by the general procedure described above and purified by flash chromatography (50% EtOAc in hexanes) on silica gel to provide 21.0 mg (94%) as a white solid (mp 163–165 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H), 7.30 (d, *J* = 15.8 Hz, 1H), 7.00 (d, *J* = 15.8 Hz, 1H), 3.77 (s, 3H), 3.48 (s, 3H), 3.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 161.4, 150.8, 144.9, 136.6, 118.9, 109.0, 51.8, 37.7, 28.3; FTIR (NaCl, cm⁻¹) 3424, 2953, 1710, 1666, 1630, 1456, 1437, 1369, 1301, 1262, 1172, 1091, 984, 908; HRMS (ESI+) *m/e* calculated for [M+Na]⁺C₁₀H₁₂N₂O₄Na: 247.0689, found 247.0695.

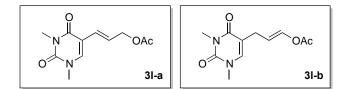

(*E*)-5-(2'-Benzoxycarbonylvinyl)-1,3-dimethyluracil (3d). 3d was prepared by the general procedure described above and purified by flash chromatography (50% EtOAc in hexanes) on silica gel to provide 15.7 mg (52%) as a white solid (mp 180–182 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.42—7.30 (m, 7H), 7.06 (d, *J* = 15.7 Hz, 1H), 5.22 (s, 2H), 3.47 (s, 3H), 3.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 161.4, 150.8, 145.0, 136.9, 136.3, 128.7, 128.3, 128.2, 119.0, 109.0, 66.4, 37.7, 28.3; FTIR (NaCl, cm⁻¹) 3367, 2956, 1710, 1666, 1629, 1456, 1380, 1299, 1166, 1093, 985, 907; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₁₆H₁₆N₂O₄Na: 323.1002, found 323.1003.

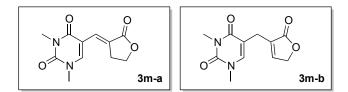

(*E*)-1,3-Dimethyl-5-styryluracil (3e). 3e was prepared by the general procedure described above and purified by flash chromatography (40% EtOAc in hexanes) on silica gel to provide 24.0 mg (98%) as a yellowish solid (mp 139–141 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 7.6 Hz, 2H), 7.38 (d, *J* = 16.4 Hz, 1H), 7.28 (m, 4H), 6.84 (d, *J* = 16.3 Hz, 1H), 3.46 (s, 3H), 3.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 151.2, 139.4, 137.5, 129.5, 128.8, 127.8, 126.5, 120.1, 111.6, 37.4, 28.3; FTIR (NaCl, cm⁻¹) 3055, 2987, 1702, 1659, 1459, 1369, 1087, 968; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₁₄H₁₄N₂O₂Na: 265.0947, found 265.0943.

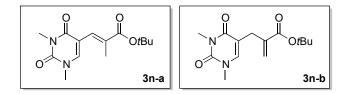

(*E*)-1,3-Dimethyl-5-(2'-dimethylcarbamoylvinyl)uracil (3f). 3f was prepared by the general procedure described above and purified by flash chromatography (100% acetone) on silica gel to provide 23.5 mg (100%) as a yellowish solid (mp 208–210 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 15.0 Hz, 1H), 7.13 (s, 1H), 7.07 (d, *J* = 15.0 Hz, 1H), 3.33 (s, 3H), 3.25 (s, 3H), 3.01 (s, 3H), 2.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 161.9, 150.8, 145.3, 134.3, 118.8, 109.5, 37.5, 36.0, 28.2; FTIR (NaCl, cm⁻¹) 3155, 2929, 1709, 1663, 1599, 1454, 1398, 1354, 1146, 1090, 980, 908; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₁₁H₁₅N₃O₃Na: 260.1006, found 260.1011.

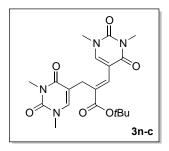

(*E*)-5-(2'-Formylvinyl)-1,3-dimethyluracil (3g). 3g was prepared by the general procedure described above and purified by flash chromatography (100% EtOAc) on silica gel to provide 15.3 mg (79%) as a white solid (mp 175–177 °C). ¹H NMR (400 MHz, CDCl₃) δ 9.59 (d, *J* = 7.6 Hz, 1H), 7.57 (s, 1H), 7.23 (d, *J* = 15.9 Hz, 1H), 7.02 (dd, *J* = 15.9, 7.6 Hz, 1H), 3.52 (s, 3H), 3.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.9, 161.1, 150.8, 144.6, 144.2, 128.5, 108.8, 37.9, 28.4; FTIR (NaCl, cm⁻¹) 3155, 2949, 2847, 1716, 1665, 1630, 1455, 1372, 1127, 1092, 908; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₉H₁₀N₂O₃Na: 217.0584, found 217.0580.

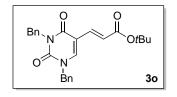

(*E*)-5-(2'-Dimethoxyphosphinylvinyl)-1,3-dimethyluracil (3h). 3h was prepared by the general procedure described above and purified by flash chromatography (100% acetone) on silica gel to provide 23.0 mg (84%) as a yellow solid (mp 155–157 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.10 (dd, *J* = 24.1, 17.3 Hz, 1H), 6.91 (dd, *J* = 17.3, 20.1 Hz, 1H), 3.73 (d, *J* = 11.1 Hz, 6H), 3.47 (s, 3H), 3.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.6, 150.7, 145.6, 141.7 (d, *J* = 7.1 Hz), 113.6 (d, *J* = 185.8 Hz), 109.0 (d, *J* = 23.2 Hz), 52.6 (d, *J* = 13.9 Hz), 37.7, 28.2; FTIR (NaCl, cm⁻¹) 3055, 2987, 2954, 1711, 1664, 1454, 1422, 1356, 1266, 1196, 1057, 1034, 989, 863, 838; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₁₀H₁₅N₂O₅PNa: 297.0611, found 297.0607.

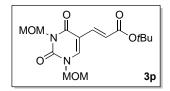

(*E*)-1,3-Dimethyl-5-(3'-oxobut-1'-enyl)uracil (3i). 3i was prepared by the general procedure described above and purified by flash chromatography (100% EtOAc) on silica gel to provide 15.8 mg (75%) as an off-white solid (mp 164–166 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 7.22 (s, 2H), 3.49 (s, 3H), 3.39 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.6, 161.6, 150.8, 145.0, 134.7, 126.7, 109.0, 37.8, 28.9, 28.3; FTIR (NaCl, cm⁻¹) 3155, 2980, 2938, 2834, 1727, 1703, 1676, 1634, 1456, 1393, 1368, 1318, 1288, 1155, 1100, 1057, 983, 908, 870; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₁₀H₁₂N₂O₃Na: 231.0740, found 231.0742.

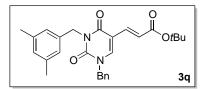

(*E*)-5-(2'-Methoxycarbonyl-1'-methylvinyl)-1,3-dimethyluracil (3j). 3j was prepared by the general procedure described above and purified by flash chromatography (40% EtOAc in hexanes) on silica gel to provide 13.9 mg (59%) as a white solid (mp 108–110 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (s, 1H), 6.39 (s, 1H), 3.72 (s, 3H), 3.45 (s, 3H), 3.36 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 161.5, 151.2, 148.5, 141.1, 118.8, 115.5, 51.4, 37.5, 28.3, 17.7; FTIR (NaCl, cm⁻¹) 3208, 2951, 1702, 1655, 1450, 1363, 1341, 1291, 1214, 1175, 1040; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₁₁H₁₄N₂O₄Na: 261.0846, found 261.0852.

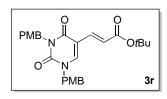

1,3-Dimethyl-5-*p*-quinonyluracil (3k). 3k was prepared by the general procedure described above and purified by flash chromatography (50% EtOAc in hexanes) on silica gel to provide 13.7 mg (56%) as an orange solid (mp 159–161 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.46 (d, *J* = 2.1 Hz, 1H), 6.83–6.76 (m, 2H), 3.51 (s, 3H), 3.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.4, 186.7, 161.4, 150.7, 146.2, 137.0, 136.9, 136.6, 134.1, 104.3, 38.0, 28.6; FTIR (NaCl, cm⁻¹) 3055, 2087, 1710, 1655, 1422, 1357, 1109, 996; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₁₂H₁₀N₂O₄Na: 269.0533, found 269.0536.

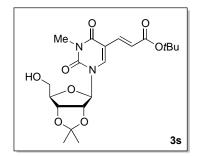

(*E*)-5-(3'-Acetoxyprop-1'-enyl)-1,3-dimethyluracil (3l-a) and (*E*)-5-(3'-acetoxyprop-2'-enyl)-1,3-dimethyluracil (3l-b). 3l-a and 3l-b were prepared by the general procedure described above and purified by flash chromatography (60% EtOAc in hexanes) on silica gel to provide 12.5 mg (53%) of an inseparable mixture as a white solid (mp 108–110 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (s, 1H, 3l-b), 7.22 (s, 1H, 3l-a), 6.58 (dt, *J* = 15.8, 6.3 Hz, 1H, 3l-a), 6.43 (d, *J* = 12.2 Hz, 1H, 3l-b), 6.35 (d, *J* = 15.9 Hz, 1H, 3l-a), 5.83 (dt, *J* = 7.0, 11.6 Hz, 1H, 3l-b), 4.70 (d, *J* = 7.0 Hz, 2H, 3l-b), 4.65 (d, *J* = 6.3 Hz, 2H, 3l-a), 3.44 (s, 3H, 3l-b), 3.43 (s, 3H, 3l-a), 3.37 (s, 3H, 3l-a), 3.37 (s, 3H, 3l-b), 2.08 (s, 3H, 3l-b), 2.07 (s, 3H, 3l-a); ¹³C NMR (100 MHz, CDCl₃) δ 170.9 (3l-a), 162.2 (3l-a), 151.2 (3l-a), 140.3 (3l-a), 125.3 (3l-a), 124.6 (3l-a), 110.4 (3l-a), 65.3 (3l-a), 37.3 (3l-a), 28.2 (3l-a), 21.1 (3l-a); FTIR (NaCl, cm⁻¹) 3055, 2087, 1735, 1707, 1655, 1458, 1421, 1369, 1089, 1025, 970; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₁₁H₄N₂O₄Na: 261.0846, found 261.0848.


(*E*)-1,3-Dimethyl-5-((2-oxodihydrofuran-3(2*H*)-ylidene)methyl)uracil (3m-a) and 1,3-dimethyl-5-((2-oxo-2,5-dihydrofuran-3-yl)methyl)uracil (3m-b). 3m-a and 3m-b were prepared by the general procedure described above and purified by flash chromatography (60% acetone in hexanes) on silica gel to provide 22.4 mg (96%) of an inseparable mixture as a yellow solid (mp 130–132 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (t, *J* = 2.9 Hz, 1H, 3m-a), 7.42 (s, 1H, 3m-a), 7.36 (s, 1H, 3m-b), 7.31 (s, 1H, 3m-b), 4.76 (d, *J* = 1.4 Hz, 2H, 3m-b), 4.40 (t, *J* = 7.2 Hz, 2H, 3m-a), 3.49 (s, 3H, 3m-a), 3.38 (s, 3H, 3m-a), 3.38 (s, 3H, 3m-b), 3.33 (s, 3H, 3m-b), 3.31 (s, 2H, 3m-b), 3.13 (td, *J* = 7.1, 2.7 Hz, 2H, 3m-a); ¹³C NMR (100 MHz, CDCl₃) δ 174.3 (3m-b), 171.9 (3m-a), 163.4 (3m-b), 161.4 (3m-a), 151.7 (3m-b), 150.9 (3m-a), 147.2 (3m-b), 143.8 (3m-a), 37.9 (3m-a), 37.1 (3m-b), 28.5 (3m-a), 28.2 (3m-a), 28.1 (3m-b), 23.5 (3m-b); FTIR (NaCl, cm⁻¹) 3224, 2930, 1752, 1702, 1664, 1459, 1375, 1343, 1205, 1171, 1081, 1052, 907, 833, 312; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₁₁H₁₂N₂O₄Na: 259.0689, found 259.0686.

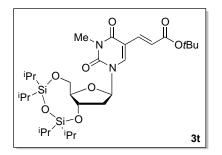

(*E*)-1,3-Dimethyl-5-(2'-*t*-butoxycarbonylpropenyl)uracil (3n-a) and 1,3-dimethyl-5-(2'-*t*-butoxycarbonylallyl) uracil (3n-b). 3n-a and 3n-b were prepared by the general procedure described above and purified by flash chromatography (50% EtOAc in hexanes) on silica gel to provide 13.2 mg (47%) of an inseparable mixture as colorless crystals (mp 93–95 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H, 3n-a), 7.28 (s, 1H, 3n-a), 7.10 (s, 1H, 3n-b), 6.15 (s, 1H, 3n-b), 5.69 (s, 1H, 3n-b), 3.46 (s, 3H, 3n-a), 3.38 (s, 3H, 3n-a), 3.37 (s, 3H, 3n-b), 3.35 (s, 3H, 3n-b), 3.29 (s, 2H, 3n-b), 1.98 (s, 3H, 3n-a), 1.51 (s, 9H, 3n-a), 1.47 (s, 9H, 3n-b); ¹³C NMR (100 MHz, CDCl₃) δ 167.1 (3n-a), 166.1 (3n-b), 163.5 (3n-b), 162.5 (3n-a), 151.9 (3n-b), 151.2 (3n-a), 142.2 (3n-a), 140.8 (3n-b), 138.6 (3n-b), 130.3 (3n-a), 128.6 (3n-a), 126.7 (3n-b), 111.0 (3n-b), 110.1 (3n-a), 81.1 (3n-b), 81.0 (3n-a), 37.6 (3n-a), 37.0 (3n-a, 3n-b), 29.6 (3n-a, 3n-b), 28.2 (3n-a, 3n-b), 14.9 (3n-a); FTIR (NaCl, cm⁻¹) 3055, 2086, 1702, 1660, 1457, 1422, 1369, 1341, 1143, 1085, 1049, 954, 849; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₁₄H₂₀N₂O₄Na: 303.1315, found 303.1316.


(*E*)-1,3-Dimethyl-5-(3'-(1,3-dimethyluracil-5-yl)-2'-*t*-butoxycarbonylallyl)uracil (3n-c). 3n-c was prepared by the general procedure described above and purified by flash chromatography (100% EtOAc) on silica gel to provide 6.6 mg (24%) as a white wax. ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.50 (s, 1H), 7.37 (s, 1H), 3.50 (s, 3H), 3.44 (s, 2H), 3.38 (s, 6H), 3.36 (s, 3H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 164.3, 162.8, 151.6, 151.4, 144.3, 143.1, 131.1, 130.7, 109.6, 108.5, 81.6, 37.6, 37.2, 37.2, 28.3, 25.4; FTIR (NaCl, cm⁻¹) 3054, 2987, 1702, 1659, 1552, 1422, 1370, 1344, 1157, 1102; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₂₀H₂₆N₄O₆Na: 441.1745, found 441.1751.

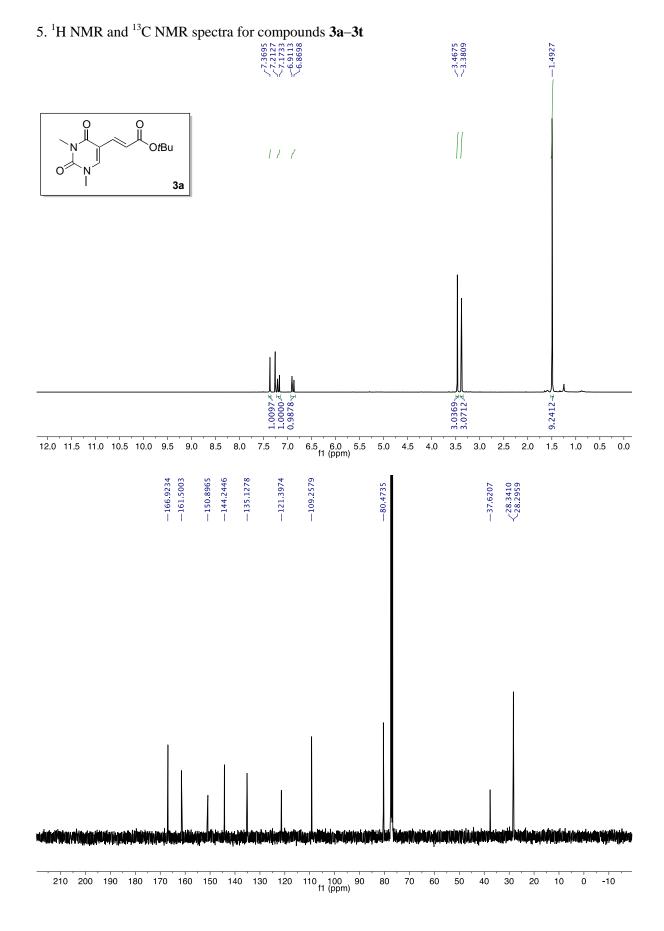

(*E*)-1,3-Dibenzyl-5-(2'-*t*-butoxycarbonylvinyl)uracil (30). 30 was prepared by the general procedure described above and purified by flash chromatography (20% EtOAc in hexanes) on silica gel to provide 38.4 mg (94%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 6.7 Hz, 2H), 7.42–7.26 (m, 9H), 7.12 (d, *J* = 15.8 Hz, 1H), 6.88 (d, *J* = 15.7 Hz, 1H), 5.18 (s, 2H), 4.97 (s, 2H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 161.1, 150.8, 143.3, 136.6, 135.2, 134.7, 129.4, 129.3, 129.0, 128.6, 128.4, 127.9, 121.6, 109.9, 80.5, 52.8, 45.0, 28.3; FTIR (NaCl, cm⁻¹) 3055, 2983, 2933, 1708, 1664, 1629, 1496, 1452, 1384, 1368, 1317, 1155, 1080, 1030, 984, 910; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₂₅H₂₆N₂O₄Na: 441.1785, found 441.1790.

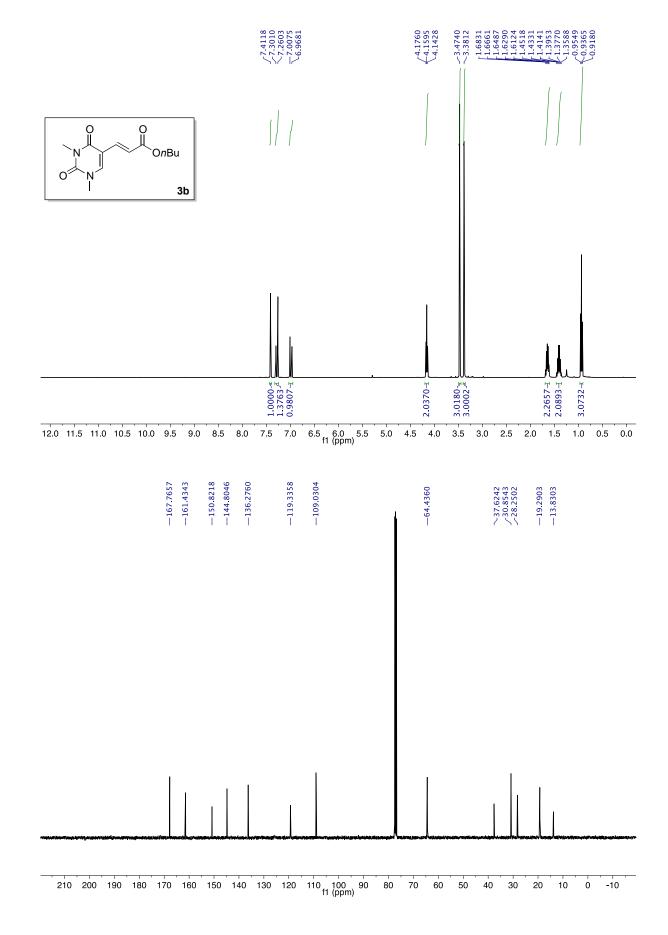

(*E*)-1,3-Bis(methoxymethyl)-5-(2'-*t*-butoxycarbonylvinyl)uracil (3p). 3p was prepared by the general procedure described above and purified by flash chromatography (50% EtOAc in hexanes) on silica gel to provide 21.7 mg (68%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.21 (d, *J* = 15.8 Hz, 1H), 6.88 (d, *J* = 15.8 Hz, 1H), 5.42 (s, 2H), 5.18 (s, 2H), 3.45 (s, 3H), 3.41 (s, 3H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 161.1, 150.9, 142.7, 134.7, 122.4, 110.4, 80.6, 79.3, 72.5, 58.2, 57.5, 28.3; FTIR (NaCl, cm⁻¹) 3155, 2980, 2938, 1724, 1676, 1634, 1456, 1368, 1318, 1288, 1155, 1100, 984, 908; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₁₅H₂₁N₂O₆Na: 349.1370, found 349.1367.

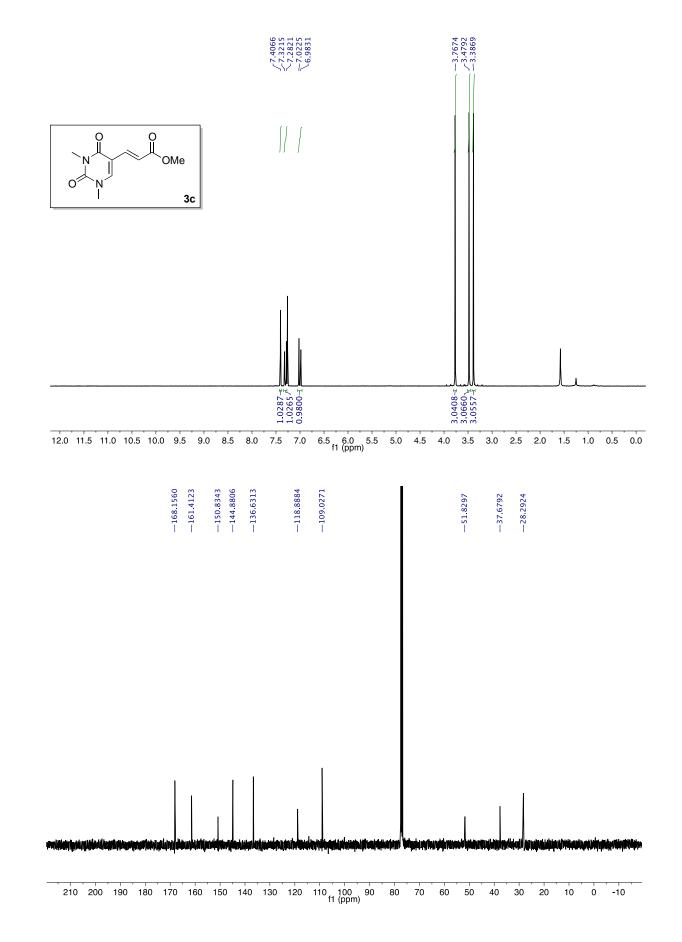
(*E*)-1-Benzyl-3-(3',5'-dimethylbenzyl)-5-(2'-*t*-butoxycarbonylvinyl)uracil (3q). 3q was prepared by the general procedure described above and purified by flash chromatography (20% EtOAc in hexanes) on silica gel to provide 33.3 mg (76%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.27 (m, 6H), 7.13 (d, *J* = 15.8 Hz, 1H), 7.06 (s, 2H), 6.90–6.87 (m, 2H), 5.11 (s, 2H), 4.98 (s, 2H), 2.28 (s, 6H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 161.0, 150.8, 143.3, 138.1, 136.4, 135.3, 134.8, 129.5, 129.4, 129.0, 128.3, 126.7, 121.5, 109.9, 80.5, 52.8, 44.9, 28.3, 21.4; FTIR (NaCl, cm⁻¹) 3156, 2079, 2948, 2869, 1704, 1660, 1466, 1368, 1329, 1297, 1153, 1116, 1041, 993, 908; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₂₇H₃₀N₂O₄Na: 469.2098, found 469.2097.

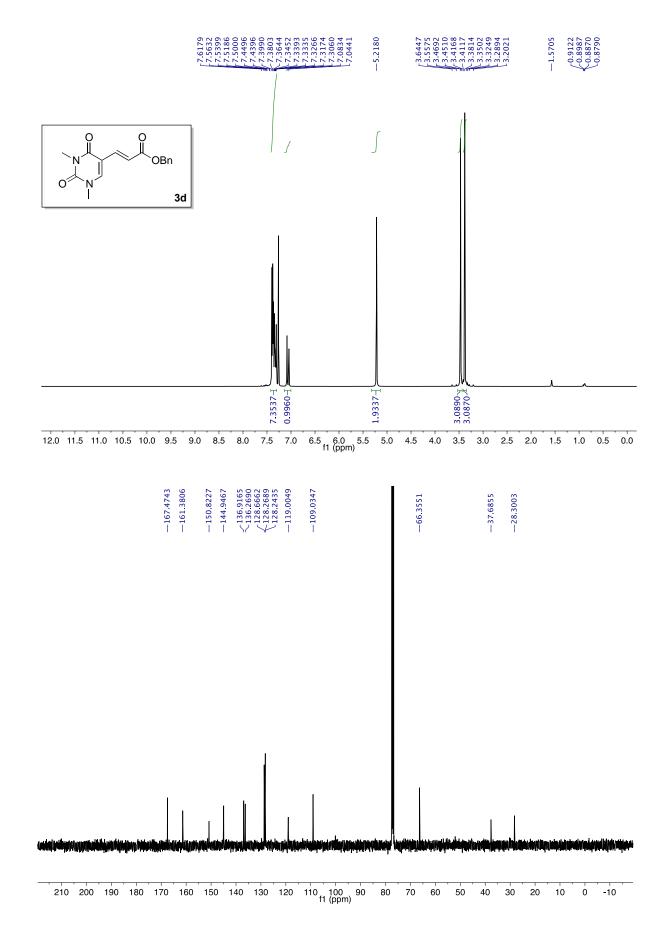


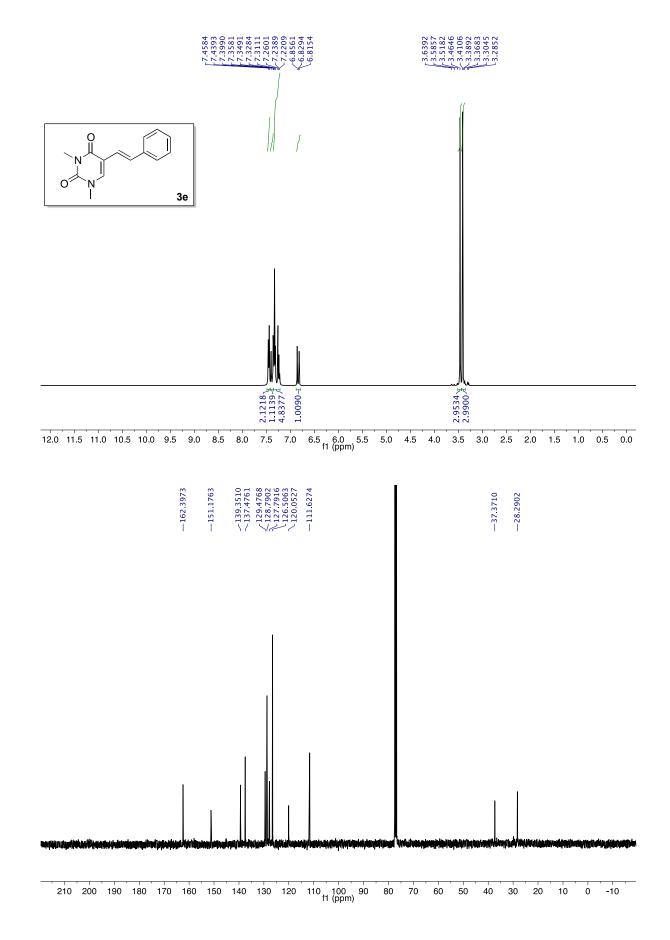
(*E*)-1,3-Bis(*p*-methoxybenzyl)-5-(2'-*t*-butoxycarbonylvinyl)uracil (3r). 3r was prepared by the general procedure described above and purified by flash chromatography (50% EtOAc in hexanes) on silica gel to provide 46.1 mg (96%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.6 Hz, 2H), 7.28 (s, 1H), 7.22 (d, *J* = 8.6 Hz, 2H), 7.10 (d, *J* = 15.8 Hz, 1H), 6.92–6.80 (m, 5H), 5.10 (s, 2H), 4.88 (s, 2H), 3.81 (s, 3H), 3.77 (s, 3H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 161.0, 160.1, 159.3, 150.8, 143.1, 135.4, 130.9, 130.1, 128.9, 126.5, 121.3, 114.8, 113.8, 109.7, 80.4, 55.4, 52.3, 44.4, 28.3; FTIR (NaCl, cm⁻¹) 3055, 2987, 2839, 1706, 1663, 1628, 1623, 1514, 1456, 1422, 1368, 1178, 1155, 1034, 985, 896; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₂₇H₃₀N₂O₆Na: 501.1996, found 501.1995.




(*E*)-2',3'-*O*-Isopropylidene-3-methyl-5-(2'-*t*-butoxycarbonylvinyl)uridine (3s). 3s was prepared by the general procedure described above and purified by flash chromatography (35% EtOAc in hexanes) on silica gel to provide 27.1 mg (66%) as a white wax. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.19 (d, *J* = 15.8 Hz, 1H), 6.81 (d, *J* = 15.8 Hz, 1H), 5.76 (d, *J* = 1.4 Hz, 1H), 4.96–4.89 (m, 2H), 4.42–4.34 (m, 1H), 3.96 (dd, *J* = 11.8, 2.3 Hz, 1H), 3.83 (dd, *J* = 11.8, 2.9 Hz, 1H), 3.34 (s, 3H), 2.95 (br, 1H), 1.58 (s, 3H), 1.48 (s, 9H), 1.35 (s, 3H); ¹³C NMR (100 MHz, 100 MHz,


CDCl₃) δ 167.1, 161.1, 150.1, 141.2, 135.4, 121.3, 114.4, 109.2, 96.0, 87.2, 84.9, 80.7, 62.8, 28.3, 28.1, 27.3, 25.4; FTIR (NaCl, cm⁻¹) 3468, 3055, 2987, 1710, 1667, 1627, 1466, 1422, 1369, 1265, 1155, 1112, 1084, 987, 855; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₂₀H₂₈N₂O₈Na: 447.1738, found 447.1737.




(*E*)-2'-Deoxy-3',5'-*O*-(1',1',3',3'-tetraisopropyldisiloxy)-3-methyl-5-(2'-*t*-butoxycarbonylvinyl)uridine (3t). 3t was prepared by the general procedure described above and purified by flash chromatography (10–20% EtOAc in hexanes) on silica gel to provide 44.6 mg (75%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.26 (d, *J* = 15.8 Hz, 1H), 6.84 (d, *J* = 15.9 Hz, 1H), 6.02 (d, *J* = 6.6 Hz, 1H), 4.44 (q, *J* = 8.0 Hz, 1H), 4.16 (d, *J* = 13.1 Hz, 1H), 4.03 (dd, *J* = 13.2, 2.5 Hz, 1H), 3.81 (d, *J* = 8.2 Hz, 1H), 3.35 (s, 3H), 2.54 (ddd, *J* = 13.4, 10.2, 7.2 Hz, 1H), 2.29 (dd, *J* = 13.4, 7.2 Hz, 1H), 1.48 (s, 9H), 1.11–0.98 (m, 28H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 161.2, 149.9, 138.6, 135.7, 121.1, 108.8, 85.5, 80.2, 67.1, 60.1, 40.2, 28.3, 27.9, 17.5, 17.1, 13.6, 13.1, 12.8, 12.6; FTIR (NaCl, cm⁻¹) 3156, 2079, 2948, 2869, 1704, 1660, 1466, 1368, 1320, 1297, 1153, 1116, 1041, 993, 908, 885; HRMS (ESI+) *m/e* calculated for [M+Na]⁺ C₂₉H₅₀N₂O₈Si₂Na: 633.3003, found 633.2995.

