Electronic Supplementary Information (ESI)

Enhanced photoelectrochemical performance of composite photovoltaic cells of $Li^+@C_{60}$ /sulphonated porphyrin supramolecular nanoclusters

Kei Ohkubo,^a Yuki Kawashima,^a Hayato Sakai,^b Taku Hasobe^{*b} and Shunichi Fukuzumi^{*a,c}

^a Department of Material and Life Science, Graduate School of Engineering, Osaka University and ALCA, Japan Science and Technology Agency (JST), 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan. Fax: +81-6-6879-7370; Tel: +81-6-6879-7368; E-mail: fukuzumi@chem.eng.osaka-u.ac.jp

^b Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan; hasobe@chem.keio.ac.jp

^c Department of Bioinspired Science, Ewha Womans University, Seoul, 120-750, Korea.

Fig. S1 Dynamic light scattering (DLS) diagram of $(ZnTPPS^{4-}/Li^+@C_{60})_n$ in MeCN/PhCN (3:1 v/v).

Fig. S2 I-V characteristics of OTE/SnO₂/(ZnTPPS^{4–}/Li⁺@C₆₀)_n electrode under white light illumination (AM 1.5); electrolyte LiI (0.5 M) and I₂ (0.05 M) in MeCN; input power 40 mW cm^{-2.}

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Fig. S3 (a) EPR spectrum of the charge-separated state of $(ZnTPPS^{4-}/Li^+@C_{60})_n$ dispersed in deaerated MeCN/PhCN (3:1 v/v) and observed after photoirradiation at 77 K. (b) EPR spectrum of $Li^+@C_{60}^{--}$ generated by the electron-transfer reduction from dimeric 1-benzylnicotinamide to $Li^+@C_{60}$ at 100 K.

Fig. S4 (a) Transient absorption spectrum of H₂TPPS⁴⁻ (3.2×10^{-5} M) with Li⁺@C₆₀ (3.2×10^{-5} M) in deaerated MeCN/PhCN (3:1 v/v) taken at 50 μ s (black) and 300 μ s (red) after laser excitation at 520 nm.

Experimental

Materials. Chemicals were purchased from commercial sources and used without further purification, unless otherwise noted. Lithium ion-encapsulated fullerene hexafluorophosphate salt ($\text{Li}^+@C_{60} \text{ PF}_6^-$: 96%) was obtained from Daiichi Jitsugyo Co. Ltd, Japan. (Bu₄N⁺)₄MTPPS⁴⁻ (M = Zn, H₂) were synthesized by the neutralization of tetrasulphonated porphyrin (Tokyo Chemical Industry Co. Ltd.) with 4 equiv. of tetrabutylammonium hydroxide in MeOH. Benzonitrile (PhCN) used as a solvent was distilled over phosphorus pentoxide. Acetonitrile (MeCN) was purchased from WAKO pure chemical and used as received.

UV-vis absorption and fluorescence spectral measurements. UV-vis absorption spectra were recorded on a Hewlett-Packard 8453 diode array spectrophotometer at room temperature. Fluorescence spectra were measured on a Horiba FluoroMax-4 spectrofluorophotometer.

Photoelectrochemical measurements. Electrophoretic deposition was performed using a Power Pac HV (Bio-Rad). Photoelectrochemical measurements were carried out in a standard two-compartment cell consisting of a working electrode, a Pt wire gauze counter electrode. A KEITHLEY 2400 was used for recording *I-V* characteristics and photocurrent generation density under an AM 1.5 simulated light source (OTENTO-SUN II, Bunkoh Keiki Co., LTD). For the IPCE measurements, a monochromator (SM-25, Bunkoh Keiki Co., LTD) was introduced into the path of the excitation beam (150 W xenon lamp, Bunkoh Keiki Co., LTD) for the selected wavelength. The lamp intensity at each wavelength was determined using a Si photodiode (Hamamatsu Photonics S1337-1010BQ) and corrected.

TEM measurements. Transmission electron micrograph (TEM) measurements were recorded on Tecnai spirit (FEI company) by applying a drop of the sample to a copper grid. TEM images were recorded on a transmission electron microscope an accelerating voltage of 120 kV for imaging.

Dynamic light scattering (DLS) measurements. The particle size and distribution were measured in MeCN/PhCN (3:1 v/v) using light-scattering equipment (Zetasizer nano ZS).

Time-resolved transient absorption measurements. Nanosecond transient absorption spectral measurements were made according to the following procedure. A deaerated MeCN/PhCN solution (3:1 v/v) containing (Li⁺@C₆₀/MTPPS⁴⁻)_n was excited by a Panther OPO pumped Nd:YAG laser (Continuum, SLII-10, 4-6 ns fwhm) at 450 nm. The resulting time resolved transient absorption spectra were measured by using a continuous Xe-lamp (150 W) and a photodiode (Hamamatsu 2949) as the probe light and detector, respectively. The output from the photodiode and the photomultiplier tube was recorded using a digitizing oscilloscope (Tektronix, TDS3032, 300 MHz). The solutions were deoxygenated by N₂ purging for 10 min prior to measurements. Rates of charge recombination in (Li⁺@C₆₀/MTPPS⁴⁻)_n were monitored by the decay of the absorption band due to the Li⁺@C₆₀ radical anion at 1035 nm. First-order rate constants were determined by a least-squares curve fit. All experiments were performed at 298 K.