SUPPORTING INFORMATION

María J. López-Gómez, David Martin and Guy Bertrand

UCSD-CNRS Joint Research Laboratory (UMI 3555)

Department of Chemistry and Biochemistry, University of California, San Diego,

La Jolla, CA 92093-0343, USA

E-mail: guybertrand@ucsd.edu.

General considerations: All reactions were performed under an atmosphere of argon by using standard Schlenk or dry box techniques; solvents were dried over sodium or CaH₂. Compounds **1**•H⁺, **3**¹ and (tetrahydrothiophene)gold(I) chloride² were synthesized according to the literature procedures. ¹H NMR, and ¹³C NMR spectra were obtained with a Bruker Advance 300 and Varian Mercury 400 spectrometers at 298K. ¹H NMR, ¹⁹F and ¹³C NMR chemical shifts (δ) are reported in parts per million (ppm) relative to TMS and were referenced to the residual solvent peak. NMR multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad signal. Melting points were measured with a Büchi melting point apparatus system. A Bruker X8-APEX X-ray diffraction instrument with Mo-radiation was used for data collection.

Complex 2: A solution of **1·H**⁺ (400 mg, 0.92 mmol) in 6 mL of THF was added dropwise to a stirred solution of KHMDS (202.1 mg, 1.01 mmol) in THF (5 mL) at -78 ° C. After 5 min (tetrahydrothiophene)gold(I) chloride (147.7 mg, 0.46 mmol) was added in the absence of light, and the mixture was allowed to reach room temperature overnight. The volatiles were removed *in vacuo* and the remaining dark precipitate was washed with benzene until the washes became colorless. The remaining solid was extracted with CH₂Cl₂. This colorless solution was slowly concentrated under in vacuo and hexane was layered affording a white microcrystalline solid; 650 mg, 85 % yield. Colorless single crystals were obtained by layering pentane on a solution of **2** in CHCl₃. mp (dec.) 231°C. MS (m/z): [M]⁺ calcd. for C₃₈H₅₆N₄Au, 765.4165; found, 765.4167. ¹H NMR (300 MHz, CDCl₃): δ 7.34 (m, 2H), 7.16 (m, 4H), 3.44 (m, 2H), 3.30 (m, 4H), 3.14 (m, 2H), 2.90 (m, 5H), 2.68 (m, 7H), 2.00 (m, 2H), 1.69 (m, 4H), 1.31 (d, 6H, *J* = 7 Hz), 1.23 (d, 6H, *J* = 7 Hz), 1.16 (d, 6H, *J* = 7 Hz), 0.94 (d, 6H, *J* = 7 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 23.9 (CH₃), 24.7 (CH₃), 25.0 (2 CH₃), 26.4 (CH₂), 26.5 (CH₂), 28.2 (CH), 28.6 (CH), 29.7 (CH), 49.7 (CH₂), 51.7 (CH₂), 59.3 (CH₂),

124.6 (CH_{aro}), 124.9 (CH_{aro}), 129.9 (CH_{aro}), 139.0 (C_{aro}), 144.2 (C_{aro}), 146.1 (C_{aro}), 223.5 (CAu).

Complex 1-AuCl: A solution of 1-H⁺ (400 mg, 1.05 mmol) in THF (6 mL) was added dropwise to a solution of KHMDS (202.5 mg, 1.16 mmol) in THF (5 mL) at -78 °C. The mixture was stirred 15 min, then warmed to room temperature and added to a suspension of (tetrahydrothiophene)gold(I) chloride (295.3 mg, 1.05 mmol) in THF (5 mL) at -78 °C in the absence of light. The mixture was stirred and allowed to reach room temperature overnight. The volatiles were removed in vacuo and the resulting dark precipitate was extracted with benzene. Removal of the volatiles in vacuo, followed by trituration with pentane afforded 1•AuCl as a powder; 307 mg, 57 % yield. Eventual colored impurities can be removed by filtration on neutral alumina (eluent: dichloromethane). Colorless single crystals were obtained by layering hexanes on a solution of 1•AuCl in dichloromethane. mp (dec.): 240°C. MS (m/z): $[M+Na]^+$ calcd. for $C_{19}H_{28}N_2AuClNa$, 539.1499; found, 539.1495. ¹H NMR (300 MHz, CDCl₃): δ 7.37 (m, 1H), 7.16 (m, 2H), 4.6 (m, 1H), 3.48 (m, 1H), 3.39 (m, 1H), 3.16 (m, 3H), 2.85 (m, 2H), 2.67 (m, 1H), 2.03 (m, 1H), 1.81 (m, 3H), 1.48 (d, 3H, J = 7 Hz), 1.26 (d, 3H, J = 7 Hz), 1.24 (d, 3H, J = 7 Hz), 1.22 (d, 3H, J = 7 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 24.1 (CH₃), 25.1 (CH₃), 25.3 (2×CH₃), 26.4 (CH₂), 27.3 (CH₂), 28.5 (CH), 28.9 (CH), 30.3 (CH), 49.8 (CH₂), 53.1 (CH₂), 59.2 (CH₂), 124.5 (CH_{aro}), 125.6 (CH_{aro}), 130.1 (CH_{aro}), 139.6 (C_{aro}), 144.6 (C_{aro}), 145.2 (C_{aro}), 209.3 (CAu).

General procedure for the hydroamination of alkynes: Complex 1-AuCl (12.9 mg, 0.025 mmol) and $KB_{Ar}^{F}_{4}$ ($B_{Ar}^{F}_{4}$: B[C₆H₃(CF₃)₂]₄⁻) (17.9 mg, 0.025 mmol) were introduced in a J Young NMR tube. The solvent (0.4 mL), 1,4-di-*tert*-butylbenzene (10 mg, 0.05 mmol), the desired alkyne, (0.5 mmol) and anhydrous NH₂NH₂ (15.7 µL, 0.5 mmol) were added in this

order. The reaction was monitored by ¹H and ¹³C NMR spectroscopy. After completion of the reaction, the reaction mixture was promptly passed under a stream of argon through a short pad of well dried florisil® silica gel.

2- hydrazonohexane³ (Table 2, entry 1): ¹H NMR (400 MHz, C₆D₆): δ = 4.47 (br s, 2H), 2.20 (t, *J* = 7.5 Hz, 2H), 1.6-1.4 (m, 2H), 1.45 (s, 3H), 1.4-1.2 (m, 2H), 0.95 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆): δ = 149.0 (C), 38.4 (CH₂), 28.9 (CH₂), 22.4 (CH₂), 13.9 (CH₃), 12.8 (CH₃).

1-cyclohexylhydrazonoethane³ (**Table 2, entry 2**): ¹H NMR (400 MHz, C₆D₆): δ = 4.3 (br s, 2H), 2.13-2.09 (m, 1H), 1.9-1.6 (m, 6H), 1.45 (s, 3H), 1.4-1.2 (m, 4H); ¹³C NMR (100 MHz, C₆D₆): δ = 152.7 (C), 46.8 (CH), 30.5 (CH₂), 26.4 (CH₂), 26.1 (CH₂), 11.5 (CH₃).

1-phenylhydrazonopropane³ (**Table 2, entry 3**): ¹H NMR (400 MHz, C_6D_6): $\delta = 7.3-7.1$ (m, 5H), 4.6 (br s, 2H), 3.47 (s, 2H), 1.84 (s, 3H); ¹³C NMR (100 MHz, C_6D_6): $\delta = 148.3$ (C), 139.0 (C), 129.3 (CH), 128.7 (CH), 126.6 (CH), 45.6 (CH₂), 12.7 (CH₃).

2-hydrazono-3,3-dimethylbutane⁴ (Table 2, entry 5): ¹H NMR (400 MHz, C₆D₆): $\delta = 4.1$ (br s, 2H), 1.28 (s, 3H), 1.02 (s, 9H); ¹³C NMR (100 MHz, C₆D₆): $\delta = 155.1$ (C), 46.1 (C), 28.0 (CH₃), 9.5 (CH₃).

1-phenylhydrazonoethane⁵ (**Table 2, entry 7**): ¹H NMR (400 MHz, C₆D₆) δ 7.8–7.7 (m, 2H); 7.2–7.1 (m, 2H), 7.1–7.0 (m, 1H), 4.69 (br, 2H), 1.52 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 145.1 (C), 140.1 (C), 128.4 (CH), 127.9 (CH), 125.7 (CH), 10.6 (CH₃).

1-anisylhydrazonoethane⁶ (Table 2, entry 8): ¹H NMR (400 MHz, C₆D₆): $\delta = 7.57$ (d, J = 8.9 Hz, 2H), 6.70 (d, J = 8.9 Hz, 2H), 3.27 (s, 3H), 2.74 (br s, 2H), 1.65 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): $\delta = 159.9$ (C), 145.2 (C), 133.0 (C), 127.0 (CH), 113.9 (CH), 54.9 (CH₃), 11.1 (CH₃).

1-cyclohexenylhydrazonoethane³ (**Table 2, entry 9**): ¹H NMR (100 MHz, C₆D₆): δ5.81 (s, 1H), 4.65 (br s, 2H), 2.56 (m, 2H), 2.00 (m, 2H), 1.58(m, 2H), 1.51 (s, 3H), 1.48 (m, 2H); ¹³C

NMR (100 MHz, C₆D₆): δ150.3 (C), 138.0 (C), 125.6 (CH), 26.3 (CH₂), 25.2 (CH₂), 23.3 (CH₂), 22.9 (CH₂), 9.2 (CH₃).

1-hydrazono-1,2-diphenylethane⁷ (**Table 2, entry 10**): ¹H NMR (400 MHz, CDCl₃): $\delta = 7.96 \text{ (m, 2H)}, 7.4-7.3 \text{ (m, 3H)}, 7.2-7.1 \text{ (m, 5H)}, 6.11 \text{ (br s, 2H)}, 4.39 \text{ (s, 2H)}; {}^{13}\text{C}$ NMR (100 MHz, CDCl₃): $\delta = 162.3 \text{ (C)}, 137.6 \text{ (2C)}, 130.0 \text{ (CH)}, 129.3 \text{ (CH)}, 128.9 \text{ (CH)}, 128.8 \text{ (CH)}, 128.6 \text{ (CH)}, 127.7 \text{ (CH)}, 126.3 \text{ (C)}, 35.0 \text{ (CH₂)}.$

Crystallographic Data

Crystal data for 2: C₄₁H₅₈AuCl₆F₃N₄O₃S, M = 1153.64, triclinic, a = 11.8363(11)Å, b = 13.7890(13) Å, c = 16.121(2)Å, $a = 110.5960(10)^{\circ}$, $\beta = 91.5170(10)^{\circ}$, $\gamma = 104.5830(10)^{\circ}$, V = 2364.3(4) Å³, T = 293(2) K, space group *P-1*, Z = 2, μ (MoK α) = 0.71073 mm⁻¹, 15826 reflections measured, 10419 independent reflections ($R_{int} = 0.0158$). The final R_I values were 0.0291 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.0728 ($I > 2\sigma(I)$). The final R_I values were 0.0313 (all data). The final $wR(F^2)$ values were 0.0743 (all data). The goodness of fit on F^2 was 1.028. CCDC 924514.

	<u> </u>			
Au(1)-C(1)	2.040(3)	Au(1)-C(8)	2.044(3)	
N(1)-C(1)	1.381(4)	N(1)-C(2)	1.475(4)	
N(1)-C(7)	1.475(4)	N(2)-C(1)	1.328(4)	
N(2)-C(15)	1.449(4)	N(2)-C(6)	1.488(4)	
N(3)-C(8)	1.369(4)	N(3)-C(14)	1.470(4)	
N(3)-C(13)	1.484(4)	N(4)-C(8)	1.329(4)	
N(4)-C(21)	1.450(4)	N(4)-C(9)	1.493(4)	
C(2)-C(3)	1.537(5)	C(2)-H(2A)	0.9700	
C(2)-H(2B)	0.9700	C(3)-C(4)	1.546(5)	
C(3)-H(3A)	0.9700	C(3)-H(3B)	0.9700	
C(4)-C(5)	1.536(5)	C(4)-H(4A)	0.9700	
C(4)-H(4B)	0.9700	C(5)-C(7)	1.514(4)	
C(5)-C(6)	1.529(4)	C(5)-H(5)	0.9800	
C(6)-H(6A)	0.9700	C(6)-H(6B)	0.9700	
C(7)-H(7A)	0.9700	C(7)-H(7B)	0.9700	
C(9)-C(10)	1.529(4)	C(9)-H(9A)	0.9700	
C(9)-H(9B)	0.9700	C(10)-C(14)	1.522(4)	

Table S1. Bond lengths [Å] and angles [°] for 2.

C(10)-C(11)	1.538(5)	C(10)-H(10)	0.9800
C(11)-C(12)	1.541(4)	C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700	C(12)-C(13)	1.539(4)
C(12)-H(12A)	0.9700	C(12)-H(12B)	0.9700
C(13)-H(13A)	0.9700	C(13)-H(13B)	0.9700
C(14)-H(14A)	0.9700	C(14)-H(14B)	0.9700
C(15)-C(16)	1.402(5)	C(15)-C(20)	1.406(5)
C(16)- $C(17)$	1.402(4)	C(16)-C(27)	1 520(5)
C(17)- $C(18)$	1.383(5)	C(17) - H(17)	0.9300
C(18)- $C(19)$	1 391(5)	C(18)-H(18)	0.9300
C(19) - C(20)	1.397(3) 1 392(4)	C(19) - H(19)	0.9300
C(20)- $C(30)$	1.521(5)	C(21)-C(26)	1402(4)
C(21)-C(22)	1.021(5) 1.404(5)	C(22) - C(23)	1.385(5)
C(22) - C(33)	1.404(5) 1.525(5)	C(22) = C(23)	1.386(5)
C(23)-H(23)	0.9300	C(24)-C(25)	1.386(5)
C(24) H(24)	0.9300	C(25) C(26)	1.300(5) 1.402(5)
C(25) H(25)	0.9300	C(25) - C(20) C(26) - C(36)	1.402(5) 1.523(5)
$C(23) - \Pi(23)$ C(27) C(20)	0.9300	C(20)-C(30)	1.525(5) 1.536(5)
C(27) + C(29)	0.0800	C(27) - C(28) C(28) + U(28A)	1.550(5)
$C(27) - \Pi(27)$	0.9800	$C(20) - \Pi(20A)$	0.9000
C(20) H(20A)	0.9600	C(20) - H(20C)	0.9600
C(29)-H(29A)	0.9600	C(29)-H(29B)	0.9600
C(29) - H(29C)	0.9600	C(30) - C(31)	1.520(5)
C(30)-C(32)	1.530(5)	C(30)-H(30)	0.9800
C(31)-H(31A)	0.9600	C(31)-H(31B)	0.9600
C(31)-H(31C)	0.9600	C(32)-H(32A)	0.9600
C(32)-H(32B)	0.9600	C(32)-H(32C)	0.9600
C(33)-C(35)	1.519(5)	C(33)-C(34)	1.533(5)
C(33)-H(33)	0.9800	C(34)-H(34A)	0.9600
C(34)-H(34B)	0.9600	C(34)-H(34C)	0.9600
C(35)-H(35A)	0.9600	C(35)-H(35B)	0.9600
C(35)-H(35C)	0.9600	C(36)-C(38)	1.534(4)
C(36)-C(37)	1.536(5)	C(36)-H(36)	0.9800
C(37)-H(37A)	0.9600	C(37)-H(37B)	0.9600
C(37)-H(37C)	0.9600	C(38)-H(38A)	0.9600
C(38)-H(38B)	0.9600	C(38)-H(38C)	0.9600
C(39)-F(1)	1.283(5)	C(39)-F(2)	1.328(5)
C(39)-F(3)	1.359(6)	C(39)-S(1)	1.813(4)
O(1)-S(1)	1.409(3)	O(2)-S(1)	1.431(3)
O(3)-S(1)	1.450(4)	C(40)-Cl(3)	1.758(3)
C(40)- $Cl(1)$	1.760(4)	C(40)-Cl(2)	1.769(4)
C(40)-H(40)	0.9800	C(41)-Cl(4)	1.759(4)
C(41)-Cl(6)	1.759(4)	C(41)-Cl(5)	1.767(4)
C(41)-H(41)	0.9800		
$C(1) A_{rr}(1) C(0)$	170 54(12)	C(1) $N(1)$ $C(2)$	110 5(2)
C(1)-Au(1)- $C(8)$	1/9.54(12)	C(1)-N(1)-C(2)	112.5(3)
C(1)-N(1)-C(7)	116.7(2)	C(2)-N(1)-C(7)	111.2(2)
C(1)-N(2)-C(15)	119.9(2)	C(1)-N(2)-C(0)	124.7(2)
C(15)-N(2)-C(6)	115.0(2) 112.0(2)	C(8)-N(3)-C(14)	11/.2(3)
C(8) - N(3) - C(13)	112.9(2)	C(14)-N(3)-C(13)	110.9(2)
C(8)-N(4)-C(21)	120.2(2)	C(8)-N(4)-C(9)	124.0(3)
C(21)-N(4)-C(9)	114.8(2)	N(2)-C(1)-N(1)	116.2(3)
N(2)-C(1)-Au(1)	122.8(2)	N(1)-C(1)-Au(1)	121.0(2)
N(1)-U(2)-U(3)	107.9(3)	N(1)-C(2)-H(2A)	110.1
C(3)-C(2)-H(2A)	110.1	N(1)-C(2)-H(2B)	110.1
C(3)-C(2)-H(2B)	110.1	H(2A)-C(2)-H(2B)	108.4
C(2)-C(3)-C(4)	112.9(3)	C(2)-C(3)-H(3A)	109.0
C(4) - C(3) - H(3A)	109.0	U(2)-U(3)-H(3B)	109.0
C(4)-C(3)-H(3B)	109.0	H(3A)-U(3)-H(3B)	107.8
C(3) - C(4) - C(3)	110.2(3)	C(5)-C(4)-H(4A)	108.2
U(3)-U(4)-H(4A)	108.2	C(5)-C(4)-H(4B)	108.2

C(3)-C(4)-H(4B)	108.2	H(4A)-C(4)-H(4B)	107.4
C(7)-C(5)-C(6)	104.3(2)	C(7)-C(5)-C(4)	108.8(3)
C(6)-C(5)-C(4)	117.6(3)	C(7)-C(5)-H(5)	108.6
C(6)-C(5)-H(5)	108.6	C(4)-C(5)-H(5)	108.6
N(2)-C(6)-C(5)	112.7(2)	N(2)-C(6)-H(6A)	109.1
C(5)-C(6)-H(6A)	109.1	N(2)-C(6)-H(6B)	109.1
C(5)-C(6)-H(6B)	109.1	H(6A)-C(6)-H(6B)	107.8
N(1)-C(7)-C(5)	107.0(3)	N(1)-C(7)-H(7A)	110.3
C(5)-C(7)-H(7A)	110.3	N(1)-C(7)-H(7B)	110.3
C(5)-C(7)-H(7B)	110.3	H(7A)-C(7)-H(7B)	108.6
N(4)-C(8)-N(3)	116.4(3)	N(4)-C(8)-Au(1)	121.7(2)
N(3)-C(8)-Au(1)	121.9(2)	N(4)-C(9)-C(10)	112.5(3)
N(4)-C(9)-H(9A)	109.1	C(10)-C(9)-H(9A)	109.1
N(4)-C(9)-H(9B)	109.1	C(10)-C(9)-H(9B)	109.1
H(9A)-C(9)-H(9B)	107.8	C(14)-C(10)-C(9)	104.5(2)
C(14)-C(10)-C(11)	108.1(3)	C(9)-C(10)-C(11)	118.0(3)
C(14)-C(10)-H(10)	108.6	C(9)-C(10)-H(10)	108.6
C(11)-C(10)-H(10)	108.6	C(10)-C(11)-C(12)	115 9(3)
C(10)-C(11)-H(11A)	108.3	C(12)-C(11)-H(11A)	108.3
C(10) - C(11) - H(11B)	108.3	C(12) - C(11) - H(11B)	108.3
H(11A)-C(11)-H(11B)	107.4	C(12) - C(12) - C(11)	112 8(3)
C(13)-C(12)-H(12A)	109.0	C(11)-C(12)-H(12A)	109.0
C(13)-C(12)-H(12B)	109.0	C(11)-C(12)-H(12B)	109.0
H(12A)-C(12)-H(12B)	107.8	N(3)-C(13)-C(12)	107.0(3)
N(3)-C(13)-H(13A)	110.3	C(12)-C(13)-H(13A)	1107.0(3)
N(3)-C(13)-H(13R)	110.3	C(12) - C(13) - H(13R)	110.3
H(13A)-C(13)-H(13B)	108.6	N(3)-C(14)-C(10)	106.9(2)
N(3)-C(14)-H(14A)	110.3	C(10)-C(14)-H(14A)	100.9(2)
N(3)-C(14)-H(14R)	110.3	C(10)-C(14)-H(14B)	110.3
H(1/A) - C(1/A) - H(1/AB)	108.6	C(16)-C(15)-C(20)	173.3(3)
C(16) C(15) N(2)	110 5(3)	C(10) - C(15) - C(20)	123.3(3) 117.2(3)
C(10)-C(15)-N(2) C(15)-C(16)-C(17)	119.3(3) 116.0(3)	C(20)- $C(15)$ - $N(2)$	117.2(3) 122.0(3)
C(13)-C(10)-C(17) C(17) $C(16)$ $C(27)$	110.9(3) 120.2(3)	C(13)-C(10)-C(27) C(18) C(17) C(16)	122.9(3) 121 1(3)
C(17) - C(10) - C(27) C(18) - C(17) + U(17)	120.2(3)	C(16) - C(17) - C(10) C(16) - C(17) - U(17)	121.1(3) 110.5
C(17) C(17) - C(17)	119.5	$C(10)-C(17)-\Pi(17)$ $C(17)-C(18)-\Pi(18)$	119.5
C(17) - C(18) - C(19)	120.3(3)	$C(17) - C(10) - \Pi(10)$ C(18) - C(10) - C(20)	119.7 120.0(2)
C(19)-C(10)-H(10) C(18)-C(10)-H(10)	119.7	C(10)-C(19)-C(20) C(20) $C(10)$ $H(10)$	120.9(5)
$C(10) - C(19) - \Pi(19)$ C(10) - C(20) - C(15)	117.3 117.2(3)	C(10) C(20) C(30)	117.3 121.1(3)
C(15) - C(20) - C(15)	117.2(3) 121.6(2)	C(19)-C(20)-C(30)	121.1(3) 122.0(2)
C(15)-C(20)-C(30) C(26) C(21) N(4)	121.0(3) 110 4(3)	C(20)-C(21)-C(22) C(22)-C(21)-N(4)	122.9(3) 117.7(3)
C(23) C(21) - N(4)	117.4(3) 117.4(3)	C(22) - C(21) - N(4) C(23) - C(22) - C(33)	117.7(3) 120.1(3)
C(23)-C(22)-C(21) C(21) C(22) C(23)	117.4(3) 122 5(3)	C(22) - C(22) - C(33)	120.1(3) 121.2(3)
C(21)-C(22)-C(33) C(22) C(23) H(23)	122.5(5)	C(24) = C(23) + C(24) C(24) = C(23) + L(23)	121.2(3)
$C(22) - C(23) - \Pi(23)$ C(23) - C(24) - C(25)	120.5(3)	C(24) - C(23) - H(23) C(23) - C(24) - H(24)	119.4
C(25) - C(24) - C(25)	120.3(3)	$C(24) - C(24) - \Pi(24)$	117.0 120.7(3)
C(24) - C(24) - H(24)	119.8	C(24)-C(25)-C(20) C(26)-C(25)-H(25)	120.7(3) 1107
$C(24)-C(25)-\Pi(25)$ C(21) $C(26)$ $C(25)$	119.7 117.2(3)	$C(20)-C(23)-\Pi(23)$ C(21) $C(26)$ $C(36)$	119.7
C(21)- $C(20)$ - $C(25)$	117.2(3) 110 5(3)	C(21)- $C(20)$ - $C(30)$	123.3(3) 111.5(2)
C(25)- $C(20)$ - $C(30)$	119.3(3) 111.2(3)	C(10)-C(27)-C(29)	111.3(3) 110.1(2)
C(16) - C(27) - C(28)	108.0	C(29) - C(27) + C(28)	10.1(3)
C(10)-C(27)-H(27) C(28)-C(27)-H(27)	108.0	$C(29)-C(27)-\Pi(27)$ $C(27)-C(28)-\Pi(28A)$	100.0
$C(20)-C(27)-\Pi(27)$ $C(27)-C(28)-\Pi(28P)$	100.0	$U(27) - U(20) - \Pi(20A)$	109.5
C(27) C(28) H(28C)	109.5	H(28A) C(28) H(28C)	109.5
U(28P) C(28) U(28C)	109.5	$\Pi(20A) - \mathbb{C}(20) - \Pi(20C)$	109.5
$\Pi(20D) - C(20) - \Pi(20C)$ $C(27) - C(20) - \Pi(20D)$	109.5	U(20 A) C(20) U(20 P)	109.5
C(27) C(29) H(29C)	109.5	$\Pi(29A) - U(29) - \Pi(29B)$ $\Pi(20A) = U(20C)$	109.5
$U(27) - U(27) - \Pi(27U)$	109.5	$\Pi(27A) - U(27) - \Pi(27U)$	109.3
$\Pi(29D) - U(29) - \Pi(29U)$	109.3	C(31)- $C(30)$ - $C(20)$	110.1(3) 112.1(2)
C(31)-C(30)-C(32) C(21)-C(20)-U(20)	111.0(3)	C(20) - C(30) - C(32)	112.1(3)
C(31)-C(30)-H(30)	107.8	C(20) - C(30) - H(30)	107.8
C(32)-C(30)-H(30)	107.8	C(30)-C(31)-H(31A)	109.5

C(30)-C(31)-H(31B)	109.5	H(31A)-C(31)-H(31B)	109.5
C(30)-C(31)-H(31C)	109.5	H(31A)-C(31)-H(31C)	109.5
H(31B)-C(31)-H(31C)	109.5	C(30)-C(32)-H(32A)	109.5
C(30)-C(32)-H(32B)	109.5	H(32A)-C(32)-H(32B)	109.5
C(30)-C(32)-H(32C)	109.5	H(32A)-C(32)-H(32C)	109.5
H(32B)-C(32)-H(32C)	109.5	C(35)-C(33)-C(22)	111.4(3)
C(35)-C(33)-C(34)	111.0(4)	C(22)-C(33)-C(34)	111.0(3)
C(35)-C(33)-H(33)	107.8	C(22)-C(33)-H(33)	107.8
C(34)-C(33)-H(33)	107.8	C(33)-C(34)-H(34A)	109.5
C(33)-C(34)-H(34B)	109.5	H(34A)-C(34)-H(34B)	109.5
C(33)-C(34)-H(34C)	109.5	H(34A)-C(34)-H(34C)	109.5
H(34B)-C(34)-H(34C)	109.5	C(33)-C(35)-H(35A)	109.5
C(33)-C(35)-H(35B)	109.5	H(35A)-C(35)-H(35B)	109.5
C(33)-C(35)-H(35C)	109.5	H(35A)-C(35)-H(35C)	109.5
H(35B)-C(35)-H(35C)	109.5	C(26)-C(36)-C(38)	111.1(3)
C(26)-C(36)-C(37)	110.7(3)	C(38)-C(36)-C(37)	110.4(3)
C(26)-C(36)-H(36)	108.2	C(38)-C(36)-H(36)	108.2
C(37)-C(36)-H(36)	108.2	C(36)-C(37)-H(37A)	109.5
C(36)-C(37)-H(37B)	109.5	H(37A)-C(37)-H(37B)	109.5
C(36)-C(37)-H(37C)	109.5	H(37A)-C(37)-H(37C)	109.5
H(37B)-C(37)-H(37C)	109.5	C(36)-C(38)-H(38A)	109.5
C(36)-C(38)-H(38B)	109.5	H(38A)-C(38)-H(38B)	109.5
C(36)-C(38)-H(38C)	109.5	H(38A)-C(38)-H(38C)	109.5
H(38B)-C(38)-H(38C)	109.5	F(1)-C(39)-F(2)	110.8(4)
F(1)-C(39)-F(3)	104.2(4)	F(2)-C(39)-F(3)	106.0(4)
F(1)-C(39)-S(1)	113.3(3)	F(2)-C(39)-S(1)	112.4(3)
F(3)-C(39)-S(1)	109.6(3)	O(1)-S(1)-O(2)	118.3(2)
O(1)-S(1)-O(3)	112.2(3)	O(2)-S(1)-O(3)	113.5(2)
O(1)-S(1)-C(39)	104.9(2)	O(2)-S(1)-C(39)	103.5(2)
O(3)-S(1)-C(39)	102.4(2)	Cl(3)-C(40)-Cl(1)	109.8(2)
Cl(3)-C(40)-Cl(2)	110.16(18)	Cl(1)-C(40)-Cl(2)	110.72(19)
Cl(3)-C(40)-H(40)	108.7	Cl(1)-C(40)-H(40)	108.7
Cl(2)-C(40)-H(40)	108.7	Cl(4)-C(41)-Cl(6)	110.5(2)
Cl(4)-C(41)-Cl(5)	110.3(2)	Cl(6)-C(41)-Cl(5)	110.2(2)
Cl(4)-C(41)-H(41)	108.6	Cl(6)-C(41)-H(41)	108.6
Cl(5)-C(41)-H(41)	108.6		

Crystal data for 1-AuCl: : $C_{19}H_{28}AuClN_2$, M = 516.85, monoclinic, a = 9.8369(11)Å, b = 17.341(2)Å, c = 11.3162(13)Å, $a = 90.00^{\circ}$, $\beta = 100.9140(10)^{\circ}$, $\gamma = 90.00^{\circ}$, $V = 1895.4(4)Å^3$, T = 296(2) K, space group P21/n, Z = 4, $\mu(MoK\alpha) = 0.71073 \text{ mm}^{-1}$, 10885 reflections measured, 4078 independent reflections ($R_{int} = 0.0283$). The final R_1 values were 0.0246 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.0785 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.0883 (all data). The goodness of fit on F^2 was 0.789. CCDC 924515.

Au(1)-C(1)	1.983(3)	C(9)-C(17)	1.530(4)
Au(1)-Cl(1)	2.2994(7)	C(10)-C(11)	1.390(4)
N(1)-C(1)	1.330(3)	C(10)-H(21)	0.9300
N(1)-C(8)	1.445(3)	C(11)-C(12)	1.392(4)
N(1)-C(2)	1.491(3)	C(11)-H(20)	0.9300
N(2)-C(1)	1.376(4)	C(12)-C(13)	1.396(4)
N(2)-C(4)	1.472(4)	C(12)-H(19)	0.9300
N(2)-C(5)	1.474(4)	C(13)-C(14)	1.518(4)
C(2)-C(3)	1.516(4)	C(14)-C(16)	1.526(4)
C(2)-H(11)	0.9700	C(14)-C(15)	1.532(4)
C(2)-H(10)	0.9700	C(14)-H(15)	0.9800
C(3)-C(4)	1.526(4)	C(15)-H(12)	0.9600
C(3)-C(7)	1.559(4)	C(15)-H(14)	0.9600
C(3)-H(1)	0.9800	C(15)-H(13)	0.9600
C(4)-H(8)	0.9700	C(16)-H(17)	0.9600
C(4)-H(9)	0.9700	C(16)-H(16)	0.9600
C(5)-C(6)	1.540(4)	C(16)-H(18)	0.9600
C(5)-H(7)	0.9700	C(17)-C(18)	1.532(5)
C(5)-H(6)	0.9700	C(17)-C(19)	1.536(4)
C(6)-C(7)	1.541(5)	C(17)-H(22)	0.9800
C(6)-H(5)	0.9700	C(18)-H(23)	0.9600
C(6)-H(4)	0.9700	C(18)-H(25)	0.9600
C(7)-H(2)	0.9700	C(18)-H(24)	0.9600
C(7)-H(3)	0.9700	C(19)-H(27)	0.9600
C(8)-C(9)	1.392(4)	C(19)-H(28)	0.9600
C(8)-C(13)	1.407(4)	C(19)-H(26)	0.9600
C(9)-C(10)	1.395(4)		
		C(3)-C(2)-H(10)	108.9
C(1)-Au(1)-Cl(1)	177.95(8)	H(11)-C(2)-H(10)	107.7
C(1)-N(1)-C(8)	122.7(2)	C(2)-C(3)-C(4)	104.4(2)
C(1)-N(1)-C(2)	123.5(2)	C(2)-C(3)-C(7)	117.9(2)
C(8)-N(1)-C(2)	113.4(2)	C(4)-C(3)-C(7)	108.0(2)
C(1)-N(2)-C(4)	117.3(2)	C(2)-C(3)-H(1)	108.7
C(1)-N(2)-C(5)	114.0(2)	C(4)-C(3)-H(1)	108.7
C(4)-N(2)-C(5)	110.9(2)	C(7)-C(3)-H(1)	108.7
N(1)-C(1)-N(2)	116.0(2)	N(2)-C(4)-C(3)	106.0(2)
N(1)-C(1)-Au(1)	123.1(2)	N(2)-C(4)-H(8)	110.5
N(2)-C(1)-Au(1)	120.88(19)	C(3)-C(4)-H(8)	110.5
N(1)-C(2)-C(3)	113.4(2)	N(2)-C(4)-H(9)	110.5
N(1)-C(2)-H(11)	108.9	C(3)-C(4)-H(9)	110.5
C(3)-C(2)-H(11)	108.9	H(8)-C(4)-H(9)	108.7
N(1)-C(2)-H(10)	108.9	N(2)-C(5)-C(6)	106.8(2)

Table S2. Bond lengths [Å] and angles [°] for 1•AuCl.

N(2)-C(5)-H(7)	110.4	C(13)-C(14)-C(15)	111.4(2)
C(6)-C(5)-H(7)	110.4	C(16)-C(14)-C(15)	109.9(2)
N(2)-C(5)-H(6)	110.4	C(13)-C(14)-H(15)	108.2
C(6)-C(5)-H(6)	110.4	C(16)-C(14)-H(15)	108.2
H(7)-C(5)-H(6)	108.6	C(15)-C(14)-H(15)	108.2
C(5)-C(6)-C(7)	112.5(3)	C(14)-C(15)-H(12)	109.5
C(5)-C(6)-H(5)	109.1	C(14)-C(15)-H(14)	109.5
C(7)-C(6)-H(5)	109.1	H(12)-C(15)-H(14)	109.5
C(5)-C(6)-H(4)	109.1	C(14)-C(15)-H(13)	109.5
C(7)-C(6)-H(4)	109.1	H(12)-C(15)-H(13)	109.5
H(5)-C(6)-H(4)	107.8	H(14)-C(15)-H(13)	109.5
C(6)-C(7)-C(3)	116.0(2)	C(14)-C(16)-H(17)	109.5
C(6)-C(7)-H(2)	108.3	C(14)-C(16)-H(16)	109.5
C(3)-C(7)-H(2)	108.3	H(17)-C(16)-H(16)	109.5
C(6)-C(7)-H(3)	108.3	C(14)-C(16)-H(18)	109.5
C(3)-C(7)-H(3)	108.3	H(17)-C(16)-H(18)	109.5
H(2)-C(7)-H(3)	107.4	H(16)-C(16)-H(18)	109.5
C(9)-C(8)-C(13)	122.5(3)	C(9)-C(17)-C(18)	109.6(2)
C(9)-C(8)-N(1)	118.1(3)	C(9)-C(17)-C(19)	112.2(2)
C(13)-C(8)-N(1)	119.2(2)	C(18)-C(17)-C(19)	111.2(3)
C(8)-C(9)-C(10)	118.2(3)	C(9)-C(17)-H(22)	107.9
C(8)-C(9)-C(17)	122.4(3)	C(18)-C(17)-H(22)	107.9
C(10)-C(9)-C(17)	119.4(3)	C(19)-C(17)-H(22)	107.9
C(11)-C(10)-C(9)	120.5(3)	C(17)-C(18)-H(23)	109.5
C(11)-C(10)-H(21)	119.8	C(17)-C(18)-H(25)	109.5
C(9)-C(10)-H(21)	119.8	H(23)-C(18)-H(25)	109.5
C(10)-C(11)-C(12)	120.4(3)	C(17)-C(18)-H(24)	109.5
C(10)-C(11)-H(20)	119.8	H(23)-C(18)-H(24)	109.5
C(12)-C(11)-H(20)	119.8	H(25)-C(18)-H(24)	109.5
C(11)-C(12)-C(13)	120.7(3)	C(17)-C(19)-H(27)	109.5
C(11)-C(12)-H(19)	119.7	C(17)-C(19)-H(28)	109.5
C(13)-C(12)-H(19)	119.7	H(27)-C(19)-H(28)	109.5
C(12)-C(13)-C(8)	117.7(3)	C(17)-C(19)-H(26)	109.5
C(12)-C(13)-C(14)	119.5(3)	H(27)-C(19)-H(26)	109.5
C(8)-C(13)-C(14)	122.9(3)	H(28)-C(19)-H(26)	109.
C(13)-C(14)-C(16)	110.9(2)		

References

- 1 D. Martin, N. Lassauque, B. Donnadieu and G. Bertrand, Angew. Chem. Int. Ed., 2012, 51, 6172.
- 2 R. Usón, A. Laguna and M. Laguna, Inorg. Synth., 1989, 26, 85.
- 3 R. Kinjo, B. Donnadieu and G. Bertrand, Angew. Chem. Int. Ed., 2011, 50, 5560.
- 4 G.J. Karabatsos and C.E. Osborne *Tetrahedron*, 1968, 24, 3361.
- 5 T. Kleine, R. Fröhlich, B. Wibbeling and E.-U. Würthwein, J. Org. Chem., 2011 ,76, 4591.
- 6 (a) V. Nenajdenko, O. N. Lenkova, A. V. Shastin and E. S. Balenkova, *Synthesis*, 2004, 4, 573; (b) H. F. Harnsberger, E. L. Cochran and H. H. Szmant, *J. Am. Chem. Soc.*, 1955, 77, 5048.
- 7 R. Theis and R. Dessy, J. Org. Chem., 1966, 31, 624.