Catalytic Asymmetric Cross-Dehydrogenative Coupling: Activation of C-H Bonds by a Cooperative Bimetallic Catalyst System**

Weidi Cao, Xiaohua Liu, Ruixue Peng, Peng He, Lili Lin and Xiaoming Feng *

Supporting Information

CONTENTS:

(A) General remarks	3
(B) Typical procedure for substrates preparation	4
(C) Typical procedure for the preparation of the racemic products	5
(D) Typical procedure for catalytic asymmetric CDC reaction.	5
(E) Optimization of the Oxidant	6
(F) The analytical and spectral characterization data of catalyst L5 and products	6
(G) Typical procedure for the reduction of 3a	20
(H) The analytical and spectral characterization data of 6	21
(I) Typical procedure for the scale-up reaction	22
(J) The electrospray ionization mass spectrometry (ESI-MS) analysis	22
(K) The possible catalytic cycle of iron complex	23
(L) X-ray structures of 3d	24
(M) Copy of CD spectras for products	24
(N) Copy of ¹ H NMR and ¹³ C NMR spectra for catalyst L5 products	

(A) General remarks

¹H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, δ = 7.26). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration and assignment. ¹³C NMR spectra were collected on commercial instruments (100 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, $\delta = 77.0$). Melting points (m.p.) were measured on electrothermal digital melting point apparatus and were uncorrected. Enantiomeric excesses (ee) were determined by HPLC analysis using the corresponding commercial chiral column as stated in the experimental procedures at 25 °C. Optical rotations were reported as follows: $[\alpha]^{T}_{D}$ (c g/100 mL, in CH₂Cl₂). HRMS was recorded on a commercial apparatus (ESI Source). All catalytic reactions were run in dried glassware using standard techniques. THF was distilled from sodium benzophenone ketyl. CHCl₂CHCl₂ was distilled after dried over K₂CO₃. MeOH was distilled over magnesium rod. **1b**, **1c**, **1d** and **1e** were prepared following a literature procedure,^[1] xanthene was used after recrystallized, ^tBuOOH was 5.0-6.0 M in decane. All of racemic samples were prepared by using 10 mol% (DL)-pipecolic acid derived L-Fe(BF₄)₂· $6H_2O$ complex as the catalyst.

(B) Typical procedure for substrates preparation.

1) The synthesis of phosphorus ylide

To a solution of triphenylphosphine in toluene, methyl bromoacetate was added. The mixture was stirred at room temperature for 2 h, then filtrated. The residue was washed with toluene. 1M NaOH was used to all the solid dissolved, CH_2Cl_2 extracted for three times, dried by MgSO₄, removing CH_2Cl_2 in vacuum.

2) The synthesis of α,β -unsaturated esters

To a solution of phosphorus ylide in toluene, aldehyde was added. The reaction was stirred at room temperature for 3 h, removing CH_2Cl_2 in vacuum without further purification.

3) The synthesis of esters

The α,β -unsaturated esters was reducing to esters under H₂ atmosphere in MeOH with palladium 10% on carbon as the catalyst. filtrated, removing MeOH in vacuum, the residue was purified by flash chromatography on silica gel, formed pure products.

4) The synthesis of substituted indenone

To ice-cooled TFSA (100 equiv) was slowly added esters, and the solution was stirred at 25 °C for 96 h. To the solution was added CH₂Cl₂ and the mixture was poured into ice-water, which was extracted with CH₂Cl₂. The organic phase was washed with brine and dried over Na₂SO₄, and the solvent was evaporated under reduced pressure to give a residue, which was purified via column chromatography on silica gel and to give pure substituted indenone.

2) The synthesis of β -ketoesters

To a solution of NaH in THF was slowly added indenone under N₂ atmosphere. After 20 min, dimethyl carboxylate was added and warmed to reflux. The reaction was monitored by TLC. The solvent was evaporated under reduced pressure, and 1 M HCl was added making pH to 4, extracted with CH_2Cl_2 , the organic phase was washed with brine and dried over Na₂SO4, and the solvent was evaporated under reduced pressure to give a residue, which was purified via column chromatography on silica gel and to give β -ketoesters.

(C) Typical procedure for the preparation of the racemic products

A mixture of (±)-L (0.01 mmol), Fe(BF₄)₂.6H₂O (0.01 mmol), β -ketoesters (0.1 mmol), xanthene (0.1mmol) and ^{*t*}BuOOH (20 µL) were stirred in CHCl₂CHCl₂ (0.5 mL) at 30 °C for 10 h. The residue was purified by flash chromatography on silica gel (prtroleum ether/ethyl acetate = 20/1) to afford the pure racemic product.

(D) Typical procedure for catalytic asymmetric CDC reaction

To a dry volumetlric flask (1.0 mL), L2 or L5 (0.02 mmol), Fe(BF₄)₂·6H₂O (0.02 mmol, 6.8 mg) and

THF (1.0 mL) were added and stirred at 30 °C for 0.5 h. Then the catalyst solution (100 μ L) was added to a dry reaction tube. After removing THF in vacuum, additional **L2** or **L5** (0.01 mmol), NiBr₂ (0.01 mmol, 2.2 mg), β -ketoesters (0.1 mmol) were added under N₂ atmosphere, and stirred at 30 °C for 0.5 h. Next, xanthene (0.11-0.2 mmol) and ^{*t*}BuOOH (20 μ L) were added, and the mixture continued stirring at 30 °C for the indicated time. The residue was purified by flash chromatography on silica gel (0-5 °C) to afford the corresponding products.

(E) Optimization of the Oxidant

Table 1 : Optimization of the Oxidant.^a

O CO2 ^t Bu+		NiBr ₂ /L5 (10 %mol, 1:1) CHCl ₂ CHCl ₂ , 30 °C	$\begin{array}{c} & & & & & \\ & & & & \\ &$
1a	2	<u> </u>	L5 : Ar = 2,4,6- <i>i</i> -Pr ₃ C ₆ H ₂ , n = 1
Entry	oxidant	Yield of 3a $(\%)^b$	<i>ee</i> of 3a (%) ^c
1	H_2O_2	NR^d	-
2^e	DDQ	85	0
3^{f}	<i>m</i> -CPBA	trace	-
4	TBHP	51	99

a Unless otherwise noted, all reactions were performed with NiBr₂/L5 (10 mol%, 1:1), **1a** (0.10 mmol), **2** (0.11 mmol), oxidant (0.10 mmol) at 30 °C for 24 h. *b* Isolated yield. *c* Determined by chiral HPLC analysis of ID column. *d* NR = no reaction. *e* DDQ = 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone. *f* m-CPBA = 3-Chloroperoxybenzoic acid.

(F) The analytical and spectral characterization data of catalyst the L5 and

products

White solid, ¹H NMR (400 MHz, CDCl₃) δ 12.44 (S, 2H), 7.01 (S, 4H), 3.88 – 3.59 (m, 6H), 3.54 – 3.32 (m, 4H), 3.12 – 2.96 (m, 4H), 2.95 – 2.78 (m, 4H), 2.76 – 2.44 (m, 6H), 2.22 – 1.88 (m, 4H), 1.24 (d, J = 6.8 Hz, 22H), 1.18 (d, J = 6.8 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ = 166.40, 148.06, 144.53, 128.67, 121.37, 68.21, 64.05, 34.29, 29.06, 27.57, 24.09, 23.28, 20.33, 19.80; HRMS (ESI-TOF) calcd for C₄₃H₆₈N₄O₄ ([M+H⁺]) = 705.5319, Found 705.5320.

(R)-tert-butyl 1-oxo-2-(9H-xanthen-9-yl)-2,3-dihydro-1H-indene-2-carboxylate

White solid, m.p. 98 –100 °C, 90% yield, 99% ee; $[\alpha]_D^{25} = -188.57$ (c = 0.70 in CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (hexane/ⁱPrOH = 95/5, 1.0 mL/min, 254 nm) t_r (major) = 8.33 min, t_r (minor) = 9.67 min; ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.28 (m, 5H), 7.25

-7.23 (m, 1H), 7.21 - 7.13 (m, 2H), 7.12 - 7.05 (m, 1H), 7.04 - 6.97 (m, 1H), 6.96 - 6.91 (m, 1H), 6.87 - 6.76 (m, 1H), 5.36 (s, 1H), 3.48 (d, J = 17.6 Hz, 1H), 3.10 (d, J = 17.6 Hz, 1H), 1.42 (s, 9H). 13 C NMR (101 MHz, CDCl₃) $\delta = 200.40$, 167.34, 154.35, 153.58, 153.46, 134.98, 134.91, 130.83, 129.79, 128.46, 128.20, 127.06, 125.77, 124.32, 123.44, 123.30, 122.32, 120.77, 116.73, 116.44, 82.69, 71.39, 42.97, 31.61, 27.86; HRMS (ESI-TOF) calcd for $C_{27}H_{24}O_4$ ([M+Na⁺]) = 435.1572, Found 435.1576.

1	8.450	6709734	49.27
2	9.761	6908165	50.73

tert-butyl 2-hydroxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate

CDCl₃) δ =200.37, 169.53, 151.31, 134.85, 132.89, 126.92, 125.26, 124.05, 82.93, 79.51, 38.42, 26.66.

(R)-tert-butyl 6-methyl-1-oxo-2-(9H-xanthen-9-yl)-2,3-dihydro-1H-indene-2-carboxylate

White solid, m.p. 168 –170 °C, 71% yield, 98% ee; $[\alpha]_D^{25} = -173.93$ (c = 0.56 in CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IC column (hexane/ⁱPrOH = 90/10, 1.0 mL/min, 254 nm) t_r (major) = 4.57 min, t_r (minor) = 6.26 min; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, *J* = 7.7, 1.4

Hz, 1H), 7.38 (s, 1H), 7.30 – 7.27 (m, 1H), 7.26 – 7.10 (m, 4H), 7.09 – 7.00 (m, 2H), 6.97 – 6.92 (m, 1H), 6.87 – 6.80 (m, 1H), 5.36 (s, 1H), 3.41 (d, J = 17.4 Hz, 1H), 3.04 (d, J = 17.4 Hz, 1H), 2.28 (s, 3H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 200.36$, 167.42, 153.59, 153.49, 151.81, 136.93, 136.27, 135.13, 130.91, 129.78, 128.40, 128.16, 125.44, 124.22, 123.40, 123.32, 122.40, 120.94, 116.71, 116.40, 82.60, 71.79, 42.86, 31.21, 27.86, 20.95; HRMS (ESI-TOF) calcd for C₂₈H₂₆O₄ ([M+Na⁺]) = 449.1729, Found 449.1728.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

8907311

49.29

(R)-tert-butyl 6-fluoro-1-oxo-2-(9H-xanthen-9-yl)-2,3-dihydro-1H-indene-2-carboxylate

2

6.281

White solid, m.p. 90 –92 °C, 71% yield, 99% ee; $[\alpha]_D^{25} = -111.21$ (c = 0.66 in CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (hexane/ⁱPrOH = 78/2, 0.8 mL/min, 254 nm) t_r (major) = 10.08 min, t_r (minor) = 11.42 min; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, J =

7.7, 1.4 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.23 – 7.19 (m, 2H), 7.19 – 7.13 (m, 2H), 7.13 – 7.06 (m, 2H), 7.05 – 7.00 (m, 1H), 6.97 – 6,93 (m, 1H), 6.85 (dd, J = 7.5, 1.2 Hz, 1H), 5.34 (s, 1H), 3.43 (d, J =17.4 Hz, 1H), 3.06 (d, J = 17.4 Hz, 1H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 198.59$, 165.98, 152.51, 152.42, 148.75, 129.69, 128.72, 127.54, 127.31, 126.15, 126.07, 122.47, 122.36, 121.76, 121.53, 121.06, 119.54, 115.76, 115.48, 109.02, 108.80, 81.92, 71.23, 42.08, 30.08, 26.83; HRMS (ESI-TOF) calcd for C₂₇H₂₃FO₄ ([M+Na⁺]) = 453.1478, Found 453.1475.

1	9.899	2882781	49.77
2	11.153	2908982	50.23

(R)-tert-butyl 6-chloro-1-oxo-2-(9H-xanthen-9-yl)-2,3-dihydro-1H-indene-2-carboxylate

Br

CO₂^tBu

3e

White solid, m.p. 120 –122 °C, 75% yield, 98% ee; $[\alpha]_D^{25} = -164.58$ (c = 0.24 in CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IC column (hexane/ⁱPrOH = 95/5, 0.8 mL/min, 254 nm) t_r (major) = 5.59 min, t_r (minor) = 6.36 min; ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.50 (m,

2H), 7.35 (dd, J = 8.1, 2.1 Hz, 1H), 7.32 – 7.26 (m, 1H), 7.21 (dd, J = 7.8, 1.5 Hz, 1H), 7.19 – 7.13 (m, 2H), 7.11 – 7.02 (m, 2H), 6.98 – 6.92 (m, 1H), 6.88 – 6.82 (m, 1H), 5.34 (s, 1H), 3.43 (d, J = 17.8 Hz, 1H), 3.06 (d, J = 17.8 Hz, 1H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 198.23$, 165.88, 152.51, 152.42, 151.40, 135.40, 133.91, 132.39, 129.71, 128.71, 127.56, 127.37, 125.98, 122.96, 122.49, 122.43, 121.02, 119.52, 115.77, 115.51, 82.00, 70.95, 42.02, 30.25, 26.83; HRMS (ESI-TOF) calcd for C₂₇H₂₃^{34.9689}ClO₄ ([M+Na⁺]) = 469.1183, Found 469.1185.

(R)-tert-butyl 6-bromo-1-oxo-2-(9H-xanthen-9-yl)-2,3-dihydro-1H-indene-2-carboxylate

White solid, m.p. 80–82 °C, 80% yield, 97% ee; $[\alpha]_D^{25} = -216.30$ (c =

0.46 in CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (hexane/PrOH = 98/2, 1.0 mL/min, 254 nm) t_r (major) = 10.06 min, t_r (minor) = 12.83 min; ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.53 (m, 2H), 7.38 (dd, *J* = 7.4, 1.0 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.25 – 7.23 (m, 1H), 7.22 – 7.18 (m, 1H), 7.16 – 7.14 (m, 1H), 7.09 (dd, *J* = 7.5, 1.2 Hz, 1H), 6.99 (dd, *J* = 7.1, 1.5 Hz, 1H), 6.97 – 6.91 (m, 1H), 6.83 (dd, *J* = 7.5, 1.2 Hz, 1H), 5.36 (s, 1H), 3.47 (d, *J* = 17.6 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 199.34, 166.32, 153.32, 152.56, 152.44, 133.97, 133.87, 129.81, 128.77, 127.43, 127.17, 126.03, 124.74, 123.30, 122.41, 122.28, 121.30, 119.75, 115.71, 115.40, 81.66, 70.37, 41.95, 30.60, 26.84; HRMS (ESI-TOF) calcd for C₂₇H₂₃^{78.9183}BrO₄ ([M+Na⁺]) = 513.0677, Found 513.0684.

(*R*)-tert-butyl 5-fluoro-1-oxo-2-(9H-xanthen-9-yl)-2,3-dihydro-1H-indene-2-carboxylate

White solid, m.p. 126 –128 °C, 81% yield, 97% ee; $[\alpha]_D^{25} = -189.16$ (c = 0.48 in CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (hexane/ⁱPrOH = 98/2, 1.0 mL/min, 254 nm) t_r (major) = 8.31 min, t_r (minor) = 10.02 min; ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.51 (m,

2H), 7.33 – 7.26 (m, 1H), 7.23 (dd, J = 7.7, 1.3 Hz, 1H), 7.18 – 7.12 (m, 1H), 7.11 – 7.06 (m, 1H), 7.04 – 6.93 (m, 2H), 6.92 – 6.79 (m, 3H), 5.34 (s, 1H), 3.47 (d, J = 17.9 Hz, 1H), 3.09 (d, J = 17.9 Hz, 1H), 1.44 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 198.53$, 167.11, 153.54, 153.44, 130.75, 129.76, 128.56, 128.34, 126.70, 126.59, 123.52, 123.34, 122.13, 120.56, 116.79, 116.53, 115.66, 115.42, 112.60, 112.38, 82.91, 71.60, 42.99, 31.58, 27.87; HRMS (ESI-TOF) calcd for C₂₇H₂₃FO₄ ([M+Na⁺]) = 453.1478, Found 453.1479.

(*R*)-tert-butyl 5-chloro-1-oxo-2-(9H-xanthen-9-yl)-2,3-dihydro-1H-indene-2-carboxylate

White solid, m.p. 172 –174 °C, 68% yield, 99% ee; $[\alpha]_D^{25} = -187.04$ (c = 0.54 in CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (hexane/ⁱPrOH = 95/5, 1.0 mL/min, 254 nm) t_r (major) = 5.97 min, t_r (minor) = 6.82 min; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, J =

7.7, 1.3 Hz, 1H), 7.50 (d, J = 8.2 Hz, 1H), 7.32 – 7.26 (m, 1H), 7.25 – 7.20 (m, 2H), 7.19 – 7.13 (m, 2H), 7.11 – 7.01 (m, 2H), 6.99 – 6.94 (m, 2H), 6.87 – 6.79 (m, 1H), 5.34 (s, 1H), 3.45 (d, J = 17.8 Hz, 1H), 3.08 (d, J = 17.8 Hz, 1H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 199.02$, 166.98,

155.71, 153.54, 153.44, 141.52, 133.43, 130.73, 129.74, 128.58, 128.39, 128.00, 126.01, 125.38, 123.52, 123.37, 122.07, 120.55, 116.81, 116.58, 82.99, 71.51, 43.01, 31.42, 27.86; HRMS (ESI-TOF) calcd for $C_{27}H_{23}^{34.9689}ClO_4$ ([M+Na⁺]) = 469.1183, Found 469.1183.

(R)-tert-butyl 5-bromo-1-oxo-2-(9H-xanthen-9-yl)-2,3-dihydro-1H-indene-2-carboxylate

White solid, m.p. 177 –179 °C, 76% yield, 99% ee; $[\alpha]_D^{25} = -193.93$ (c = 0.56 in CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (hexane/ⁱPrOH = 95/5, 1.0 mL/min, 254 nm) t_r (major) = 6.08 min, t_r (minor) = 6.75 min; ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.54 (m,

1H), 7.48 – 7.38 (m, 2H), 7.36 – 7.26 (m, 1H), 7.21 (d, J = 7.7 Hz, 1H), 7.15 (d, J = 7.7 Hz, 1H), 7.11 – 7.02 (m, 2H), 7.00 – 6.93 (m, 1H), 6.88 – 6.78 (m, 1H), 5.34 (s, 1H), 3.46 (d, J = 17.9 Hz, 1H), 3.08 (d, J = 17.9 Hz, 1H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 199.26$, 166.92, 155.81, 153.53, 153.44, 133.80, 130.82, 130.72, 130.48, 129.72, 129.09, 128.58, 128.40, 125.44, 123.51, 123.38, 122.05, 120.54, 116.81, 116.59, 83.00, 71.43, 42.99, 31.36, 27.86; HRMS (ESI-TOF) calcd for C₂₇H₂₃^{78.9183}BrO₄ ([M+Na⁺]) = 513.0677, Found 513.0684.

(R)-adamantan-1-yl 1-oxo-2-(9H-xanthen-9-yl)-2,3-dihydro-1H-indene-2-carboxylate

White solid, m.p. 176 –178 °C, 72% yield, 99% ee; $[\alpha]_D^{25} = -105.12$ (c = 0.52 in CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (hexane/ⁱPrOH = 90/10, 1.0 mL/min, 254 nm) t_r (major) = 7.59 min, t_r (minor) = 10.47 min; ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.54 (m, 2H),

7.42 – 7.36 (m, 1H), 7.32 – 7.26 (m, 1H), 7.26 – 7.12 (m, 4H), 7.17 – 7.12 (m, 1H), 7.05 – 6.98 (m, 1H), 6.97 – 6.92 (m, 1H), 6.86 – 6.78 (m, 1H), 5.36 (s, 1H), 3.47 (d, J = 17.6 Hz, 1H), 3.08 (d, J = 17.6 Hz, 1H), 2.20 – 2.10 (m, 4H), 2.19 – 2.14 (m, 5H), 1.64 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 200.44$, 166.98, 154.35, 153.56, 153.47, 135.03, 134.89, 130.89, 129.83, 128.43, 128.18, 127.04, 125.78, 124.32, 123.47, 123.30, 122.33, 120.83, 116.69, 116.42, 82.83, 71.56, 42.88, 41.05, 36.09, 31.63, 30.88; HRMS (ESI-TOF) calcd for C₃₃H₃₀O₄ ([M+Na⁺]) = 513.2042, Found 513.2036.

tert-butyl 1-oxo-2-(9H-xanthen-9-yl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate

Viscous oil, 70% yield, 99% ee; $[\alpha]_D^{25} = -53.88$ (c = 0.18 in CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (hexane/ⁱPrOH = 80/20, 1.0 mL/min, 254 nm) t_r (minor) = 6.36 min, t_r (major) = 9.97 min; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.9 Hz, 1H), 7.46 – 7.33 (m, 3H),

7.32 – 7.26 (m, 1H), 7.25 – 7.22 (m, 1H), 7.21 – 7.13 (m, 2H), 7.12 – 7.01 (m, 3H), 6.98 (t, J = 7.5 Hz, 1H), 5.47 (s, 1H), 3.13 – 3.00 (m, 1H), 2.74 – 2.63 (m, 1H), 2.23 – 2.35 (m, 1H), 1.81 – 1.67 (m, 1H), 1.21 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 193.22$, 167.63, 154.58, 154.27, 142.92, 133.25, 132.64, 130.83, 130.29, 128.57, 128.28, 128.10, 128.09, 126.40, 123.37, 123.02, 122.38, 122.14, 116.49, 116.33, 82.68, 65.91, 42.46, 27.66, 25.90, 25.76; HRMS (ESI-TOF) calcd for C₂₈H₂₆O₄ ([M+Na⁺]) = 449.1729, Found 449.1725.

	Retention Time	Area	% Area
1	6.391	2414269	50.63
2	10.076	2354573	49.37

tert-butyl

5,7-dimethyl-1-oxo-2-(9H-xanthen-9-yl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate

Viscous oil, 36% yield, 99% ee; $[\alpha]_D^{25} = -46.00$ (c = 0.10 in CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IC column (hexane/ⁱPrOH = 90/10, 1.0 mL/min, 254 nm) t_r (major) = 4.72 min, t_r (minor) = 5.81 min; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.47 (d, J

= 6.6 Hz, 1H), 7.34 (d, J = 7.5 Hz, 1H), 7.28 (s, 1H), 7.25 – 7.15 (m, 2H), 7.14 – 7.07 (m, 1H), 7.08 (s, 1H), 7.07 – 7.02 (m, 1H), 6.99 (t, J = 7.4 Hz, 1H), 5.46 (s, 1H), 2.83 – 2.71 (m, 1H), 2.64 – 2.54 (m, 1H), 2.38 – 2.31 (m, 1H), 2.30 (s, 3H), 2.11 (s, 3H), 1.72 – 1.64 (m, 1H), 1.26 – 1.10 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 193.74, 167.72, 154.62, 154.29, 138.28, 136.11, 135.66, 135.56, 132.71, 130.91, 130.29, 128.21, 128.05, 125.98, 123.34, 123.01, 122.49, 122.32, 116.47, 116.27, 82.46, 65.28, 42.14, 27.63, 25.19, 23.21, 20.81, 18.97; HRMS (ESI-TOF) calcd for C₃₀H₃₀O₄ ([M+Na⁺]) = 477.2042, Found 477.2040.

tert-butyl 7-bromo-1-oxo-2-(9H-xanthen-9-yl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate

Viscous oil, 60% yield, 99% ee; $[\alpha]_D^{25} = -56.89$ (c = 0.58 in CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IC column (hexane/ⁱPrOH = 90/10, 1.0 mL/min, 254 nm) t_r (major) = 4.15 min, t_r (minor) = 5.07 min; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 2.1 Hz,

1H), 7.48 (dd, J = 8.2, 2.2 Hz, 1H), 7.38 (dd, J = 7.7, 1.3 Hz, 1H), 7.33 (dd, J = 7.6, 1.2 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.22 – 7.13 (m, 2H), 7.12 – 7.03 (m, 2H), 7.02 – 6.93 (m, 2H), 5.44 (s, 1H), 3.06 – 2.85 (m, 1H), 2.72 – 2.55 (m, 1H), 2.37 – 2.23 (m, 1H), 1.78 – 1.66 (m, 1H), 1.25 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 191.99$, 167.29, 154.57, 154.25, 141.68, 136.06, 134.03, 130.76, 130.70, 130.41, 130.26, 128.40, 128.24, 123.46, 123.07, 122.14, 121.85, 120.45, 116.55, 116.40, 83.00, 65.80, 42.53, 27.70, 25.65, 25.50; HRMS (ESI-TOF) calcd for C₂₈H₂₅^{78.9183}BrO₄ ([M+Na⁺]) = 527.0834, Found 527.0830.

CO₂^tBu

5d

H₃CO

tert-butyl 7-methoxy-1-oxo-2-(9H-xanthen-9-yl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate

White solid, m.p. 113 –115 °C, 71% yield, 99% ee; $[\alpha]_D^{25} = -31.36$ (c = 0.66 in CH₂Cl₂); the ee was determined by HPLC analysis using a

chiral IC column (hexane/¹PrOH = 90/10, 1.0 mL/min, 254 nm) t_r (major) = 5.46 min, t_r (minor) = 7.86 min; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 7.8 Hz, 1H), 7.45 (dd, J = 7.7, 1.2 Hz, 1H), 7.34 (dd, J = 7.6, 1.2 Hz, 1H), 7.29 – 7.23 (m, 1H), 7.23 – 7.19 (m, 1H), 7.19 – 7.13 (m, 2H), 7.12 – 7.07 (m, 1H), 7.07 – 7.02 (m, 1H), 7.01 – 6.96 (m, 1H), 6.91 (d, J = 8.0 Hz, 1H), 5.45 (s, 1H), 3.77 (s, 3H), 2.86 – 2.76 (m, 1H), 2.75 – 2.64 (m, 1H), 2.36 – 2.27 (m, 1H), 1.71 – 1.61 (m, 1H), 1.18 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 193.47, 167.62, 156.59, 154.61, 154.27, 133.70, 132.03, 130.82, 130.32, 128.23, 128.06, 126.67, 123.31, 122.99, 122.44, 122.26, 119.63, 116.49, 116.31, 113.85, 82.52, 65.46, 55.57, 42.16, 27.62, 25.20, 19.99; HRMS (ESI-TOF) calcd for C₂₉H₂₈O₅ ([M+Na⁺]) = 479.1834, Found 479.1837.

tert-butyl 5-methoxy-1-oxo-2-(9H-xanthen-9-yl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate

Viscous oil, 34% yield, 99% ee; $[\alpha]_D^{25} = -7.92$ (c = 0.24 in CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (hexane/ⁱPrOH = 80/20, 1.0 mL/min, 254 nm) t_r (minor) = 8.93 min, t_r (major) = 13.95 min; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.35 (d, *J* = 7.7 Hz, 1H), 7.26 d,

J = 7.7 Hz, 1H), 7.21 – 7.16 (m, 1H), 7.15 – 7.05 (m, 2H), 7.04 – 6.95 (m, 2H), 6.95 – 6.84 (m, 3H),

5.38 (s, 1H), 3.76 (s, 3H), 2.97 – 2.82 (m, 1H), 2.61 – 2.50 (m, 1H), 2.28 – 2.11 (m, 1H), 1.75 – 1.58 (m, 1H), 1.15 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 193.11, 167.17, 158.15, 154.59, 154.28, 135.48, 133.37, 130.77, 130.33, 129.79, 128.27, 128.11, 123.35, 123.01, 122.41, 122.13, 121.89, 116.50, 116.34, 109.82, 82.68, 65.77, 55.49, 42.51, 27.69, 26.07, 25.13; HRMS (ESI-TOF) calcd for C₂₉H₂₈O₅ ([M+Na⁺]) = 479.1834, Found 479.1835.

	Retention Time	Area	% Area
1	8.546	4345859	50.43
2	13.768	4272058	49.57

adamantan-1-yl 1-oxo-2-(9H-xanthen-9-yl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate

White solid, m.p. 165 –167 °C, 72% yield, 99% ee; $[\alpha]_D^{25} = -17.14$ (c = 0.14 in CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (hexane/ⁱPrOH = 90/10, 1.0 mL/min, 254 nm) t_r (minor) = 9.28 min,

 t_r (major) = 10.63 min; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.8 Hz,

1H), 7.44 (d, J = 7.7 Hz, 1H), 7.41 – 7.35 (m, 2H), 7.31 – 7.26 (m, 1H), 7.25 – 7.21 (m, 1H), 7.20 – 7.12 (m, 2H), 7.12 – 7.02 (m, 3H), 6.98 (t, J = 7.4 Hz, 1H), 5.47 (s, 1H), 3.13 – 3.01 (m, 1H), 2.76 – 2.61 (m, 1H), 2.35 – 2.24 (m, 1H), 2.05 (s, 3H), 1.85 (dd, J = 30.4, 11.3 Hz, 6H), 1.77 – 1.62 (m, 2H), 1.55 (s, 5H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 192.09$, 166.16, 153.56, 153.23, 141.98, 132.21,

131.56, 129.82, 129.30, 127.55, 127.23, 127.10, 127.05, 125.35, 122.35, 122.00, 121.37, 121.11, 115.39, 115.27, 81.72, 65.08, 41.48, 39.91, 34.95, 29.73, 24.91, 24.64; HRMS (ESI-TOF) calcd for $C_{34}H_{32}O_4$ ([M+Na⁺]) = 527.2189, Found 527.2200.

The results of other β -ketoesters substrates

50.02

6333878

2

10.725

(G) Typical procedure for the reduction of 3a

To a solution of **3a** (0.02 mmol) in 1 mL MeOH, NaBH₄ (1.5 eq) was added at 0 °C, the reaction was

stirred at this temperature for 30 min. 1 M HCl was added making pH to 5, CH_2Cl_2 extracted for three times, dried by MgSO₄, removing CH_2Cl_2 in vacuum. The residue was purified by flash chromatography on silica gel (0-5 °C) to afford the product **6**.

(H) The analytical and spectral characterization data of 6

(1R,2R)-tert-butyl 1-hydroxy-2-(9H-xanthen-9-yl)-2,3-dihydro-1H-indene-2-carboxylate

White solid, 95% yield, 99/1 dr, 99% ee; $[\alpha]_D^{25} = 11.38$ (c = 0.36 in CH₂Cl₂); the dr determined was by ¹H NMR; the ee was determined by HPLC analysis using a chiral IC column (hexane/ⁱPrOH = 90/10, 1.0 mL/min, 254 nm) t_r (major) = 3.94 min, t_r (minor) = 4.94 min; ¹H NMR (400 MHz, CDCl₃) δ 7.62

(d, J = 7.6 Hz, 1H), 7.26 - 7.16 (m, 4H), 7.10 (t, J = 7.7 Hz, 1H), 7.07 - 6.98 (m, 4H), 6.97 - 6.94 (m, 2H), 6.89 (t, J = 7.4 Hz, 1H), 5.19 (s, 1H), 4.78 (s, 1H), 3.17 (d, J = 15.5 Hz, 1H), 2.95 (d, J = 15.5 Hz, 1H), 0.97 (s, 9H).¹³C NMR (101 MHz, CDCl₃) δ = 171.94, 153.99, 153.64, 143.28, 141.80, 130.06, 129.95, 128.64, 127.98, 127.85, 126.76, 124.62, 123.85, 123.13, 123.09, 122.53, 122.48, 116.47, 116.25, 81.00, 77.87, 67.22, 40.71, 37.59, 27.22; HRMS (ESI-TOF) calcd for C₂₇H₂₆O₄ ([M+Na⁺]) = 437.1729, Found 437.1724.

1	3.930	4248313	50.25
2	4.939	4206416	49.75

(I) Typical procedure for the scale-up reaction

To a dried round flash, **L5** (0.1 mmol, 71.0 mg), $Fe(BF_4)_2$ $^{\circ}GH_2O$ (0.1 mmol, 34 mg) and THF (5 mL) were added and stirred at 30 $^{\circ}C$ for 2.5 h. After removing THF in vacuum, **L5** (0.5 mmol, 355.0 mg), NiBr₂ (0.5 mmol, 108.5 mg), and β -ketoester (5.0 mmol) were added under N₂ atmosphere, and continued stirring at 30 $^{\circ}C$ for 2.5 h. Next, xanthene (5.5 mmol) and ^tBuOOH (1.0 mL) were added, the reaction was stirred at 30 $^{\circ}C$ for 15 h. The residue was purified by flash chromatography on silica gel (0-5 $^{\circ}C$) to afford the product **3a**.

(J) The electrospray ionization mass spectrometry (ESI-MS) analysis

 $Fe(BF_4)_2 \cdot 6H_2O + L5 + TBHP$

 $[(L5-O) + H^+]$ Calcd for $C_{43}H_{69}N_4O_3^+$ 689.5370, found: 689.5372; $[Fe^{III} + L5 - 2H^+]$ Calcd for : 758.4433 found : 758.4474; $[Fe^{III} + (L5-O) + 2OH^-]^+$ Calcd for : 778.4696 found : 778.4512; $[O=Fe^V + L5 + 2OH^-]^+$ Calcd for : 810.4594 found : 810.4778.

 $[Ni^{II} + (L5 - H^+) + 1a]$ Calcd for : 993.5615 found : 993.5626.

(K) The possible catalytic cycle of iron complex

Firstly, **L5**–Fe^{II} combined to ^tBuOOH to generate **L5**–Fe^{III}–OO^tBu. In the presence of H₂O, the intermediate **C** undergoes heterolytic O–O bond and O–H cleavage, giving active high-valent **L5**–Fe^V(O)(OH) **D**. At the same time, a molecular of ^tBuOH left up. High-valent iron(V)–oxo specie **D** activated sp³ benzylic C-H bond of xanthene, and then H-atom abstraction would afford carbocation **E**.

(L) X-ray structures of 3d

CCDC 910798 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambrige Crystallographic Data Centere via www.ccdc.cam.ac.uk/data_request/cif

(N) Copy of ¹H NMR and ¹³C NMR spectra for products

NUC1: 13C P1: 9.63 usec SF01: undefined MHz

F2 - Processing Parameters SI: 65536 DC: 0.05 LB: 1.00 Hz First Point: 0.50 FT: Hyper Quadrature Phase: Manual Ph0: -54.76 Ph1: 38.60

10 0 -10

110 f1 (ppm)

90 80 70 60 50 40 30 20

210

190

170

150

130

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2013

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 120904_s2_cwd

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 120904_s2_cwd

Bond precision:	C-C = 0.0043 A	Wavelength=(0.71070
Cell:	a=8.0885(4) alpha=90	b=16.7224(5) beta=113.440(6)	c=9.1381(5) gamma=90
Temperature:	293 К		
	Calculated	Reported	
Volume	1134.01(10)	1134.01(8)	
Space group	P 21	P 1 21 1	
Hall group	P 2yb	P 2yb	
Moiety formula	C27 H23 Cl O4	C27 H23 Cl	04
Sum formula	C27 H23 Cl O4	C27 H23 Cl	04
Mr	446.90	446.90	
Dx,g cm-3	1.309	1.309	
Z	2	2	
Mu (mm-1)	0.200	0.200	
F000	468.0	468.0	
F000'	468.51		
h,k,lmax	10,20,11	10,20,11	
Nref	2394[4622]	3886	
Tmin,Tmax	0.944,0.951	0.968,1.000	C
Tmin'	0.944		
Correction meth	od= MULTI-SCAN		
Data completene	ss= 1.62/0.84	Theta(max)= 26.370	
R(reflections)=	0.0427(3213)	wR2(reflections)=	0.0896(3886)
S = 1.047	Npar=	292	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C CELLV02_ALERT_1_C The supplied cell volume s.u. differs from that calculated from the cell parameter s.u.'s by > 2 Calculated cell volume su = 10.39 Cell volume su given = 8.00

PLAT242_ALERT_2_C Check LowUeq as Compared to Neighbors forC24PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds0.0043 AngPLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. #1C27 H23 Cl O404

```
Alert level G
```

PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF	?	
PLAT152_ALERT_1_G The Supplied and Calc. Volume s.1. Differ by	2	Units
PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature	293	K
PLAT200_ALERT_1_G Check the Reporteddiffrn_ambient_temperature	293	K
PLAT791_ALERT_4_G Note: The Model has Chirality at C8 (Verify)	R	

```
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
4 ALERT level C = Check. Ensure it is not caused by an omission or oversight
5 ALERT level G = General information/check it is not something unexpected
4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
2 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 05/11/2012; check.def file version of 05/11/2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Datablock 120904_s2_cwd - ellipsoid plot

