Supporting Information

Synthesis of pseudo indoxyl derivatives via sequential Cu-catalyzed S_NAr and Smalley cyclization

Yogesh Goriya and Chepuri V. Ramana*

CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune – 411 008 (India).

Email: vr.chepuri@ncl.res.in

Table of content	SI 2
General remarks	SI 4
General Procedure B for preparation of α -bromophenyl sec-alkenyl ketones	SI 5
General Procedure C for synthesis of 2,2-disubstituted indolin-3-one	SI 5
Absorption and emission spectra for compounds $2a - 2o$	SI 7
References	SI 15

S. No	Compound	Data	Page No
	Characterization data	SI9	
	- I	¹ H NMR Spectrum	SI 16
		¹³ C NMR Spectrum	SI 17
		DEPT Spectrum	SI 18
	2a	Mass Spectrum (HRMS + ESI)	SI 19 & SI 20
		Characterization data	SI 9
		¹ H NMR Spectrum	SI 21
2		¹³ C NMR Spectrum	SI 22
		DEPT Spectrum	SI 23
		Mass Spectrum (HRMS + ESI)	SI 24 & SI 25
	MeO O	Characterization data	SI 9
		¹ H NMR Spectrum	SI 26
3		¹³ C NMR Spectrum	SI 27
		DEPT Spectrum	SI 28
	20	Mass Spectrum (HRMS + ESI)	SI 29 & SI 30
	0	Characterization data	SI 10
	MeO	¹ H NMR Spectrum	SI 31
4	N H 2d	¹³ C NMR Spectrum	SI 32
		DEPT Spectrum	SI 33
		Mass Spectrum (HRMS + ESI)	SI 34 & SI 35
	MeO MeO MeO NH OMe 2e	Characterization data	SI 10
		¹ H NMR Spectrum	SI 36
5		¹³ C NMR Spectrum	SI 37
		DEPT Spectrum	SI 38
		Mass Spectrum (HRMS + ESI)	SI 39 & SI 40
	MeO MeO OMe 2f	Characterization data	SI 11
		¹ H NMR Spectrum	SI 41
6		¹³ C NMR Spectrum	SI 42
		DEPT Spectrum	SI 43
		Mass Spectrum (HRMS + ESI)	SI 44 & SI 45
	MeO 2g H	Characterization data	SI 11
7		¹ H NMR Spectrum	SI 46
/		¹³ C NMR Spectrum	SI 47
		DEPT Spectrum	SI 48
		Mass Spectrum (HRMS + ESI)	SI 49 & SI 50
		Characterization data	SI 12
		¹ H NMR Spectrum	SI 51
8		¹³ C NMR Spectrum	SI 52
		DEPT Spectrum	SI 53
	2h	Mass Spectrum (HRMS + ESI)	SI 54 & SI 55

S. No	Compound	Data	Page No
	0	Characterization data	SI 12
9		¹ H NMR Spectrum	SI 56
		¹³ C NMR Spectrum	SI 57
	2i	DEPT Spectrum	SI 58
		Mass Spectrum (HRMS + ESI)	SI 59 & SI 60
	MeO MeO CO ₂ Et	Characterization data	SI 13
10		¹ H NMR Spectrum	SI 61
		¹³ C NMR Spectrum	SI 62
		DEPT Spectrum	SI 63
	2j	Mass Spectrum (HRMS + ESI)	SI 64 & SI 65
	0	Characterization data	SI 13
	CO ₂ Et	¹ H NMR Spectrum	SI 66
11	Meo	¹³ C NMR Spectrum	SI 67
	OMe	DEPT Spectrum	SI 68
	2k	Mass Spectrum (HRMS + ESI)	SI 69 & SI 70
		Characterization data	SI 13
		¹ H NMR Spectrum	SI 71
12		¹³ C NMR Spectrum	SI 72
		DEPT Spectrum	SI 73
		Mass Spectrum (HRMS + ESI)	SI 74 & SI 75
	0	Characterization data	SI 14
	MeO N H 2m	¹ H NMR Spectrum	SI 76
13		¹³ C NMR Spectrum	SI 77
		DEPT Spectrum	SI 78
		Mass Spectrum (HRMS + ESI)	SI 79 & SI 80
	MeO MeO MeO NH OMe 2n	Characterization data	SI 14
14		¹ H NMR Spectrum	SI 81
		¹³ C NMR Spectrum	SI 82
		DEPT Spectrum	SI 83
		Mass Spectrum (HRMS + ESI)	SI 84 & SI 85
	MeO Br 20	Characterization data	SI 15
		¹ H NMR Spectrum	SI 86
15		¹³ C NMR Spectrum	SI 87
		DEPT Spectrum	SI 88
		Mass Spectrum (HRMS)	SI 89

General Remarks

Reactions were carried out in anhydrous solvents under an atmosphere of argon in oven-dried glassware. Commercial reagents and solvents were used without purification. Column Chromatography was carried out by using spectrochem silica gel (60–120, 100–200, 230–400 mesh). ¹H and ¹³C NMR spectroscopy measurements were carried out on Bruker AC 200 MHz or Bruker DRX 400 and Bruker DRX 500 MHz spectrometers, and TMS was used as an internal standard. ¹H and ¹³C NMR chemical shifts are reported in ppm downfield from Chloroform-d ($\delta = 7.25$) or TMS and coupling constants (*J*) are reported in Hertz (Hz). The following abbreviations are used to designate signal multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad. The multiplicity of ¹³C NMR signals was assigned with the help of DEPT spectra and the abbreviations used: s = singlet, d = doublet, t = triplet, q = quartet, represent C (quaternary), CH, CH₂ and CH₃ respectively. Mass spectroscopy was carried out on PI QStar Pulsar (Hybrid Quadrupole-TOF LC/MS/MS) and 4800 plus MALDI TOF/TOF Applied Biosystem spectrometer.

A. Synthesis of substrates 1a-1k

Compounds **1a** and **1b** have been synthesized according to the reported procedure and the same has been followed for the preparation of compounds **1c–1h**.¹ Substrate **1i** has been prepared by acylation of fluorene in the presence of LDA. Substrates **1j** and **1k** have been prepared by following a sequence of Zn-mediated Reformatsky followed by the oxidation.²

B. General procedure for Preparation of α-bromophenyl sec-alkenyl ketones (11

<u>to 1q):</u>

Scheme S1. *Reagents and conditions*: a) (i) crotyl bromide, Zn, THF, 0 °C to rt; (ii) IBX, EtOAc, reflux, 3-4h; b) DBU, DCM, 5m.

To a vigorously stirred suspension of Zn (5.0 eq.) and propargyl bromide (3.0 eq.) in THF (10 mL) was added a solution of aldehyde (1.0 eq.) in THF (10 mL) and the stirring was continued for another 30 min. The reaction mixture was cooled to 0 °C, sat. NH₄Cl (10 mL) was added drop wise for 30 min and stirring was continued for additional 2 h. Reaction mixture was filtered through *celite* pad and the solvent was evaporated under vacuum. The crude mixtures dilute with water and extracted with ethyl acetate (3 X 25ml), washed with brine, dried (Na₂SO₄), and concentrated. The crude residue was used for next step without further purification.

At rt, a solution of the above crude alcohol in ethyl acetate (10 mL) was treated with IBX (1.3 eq.) stirred at reflux temperature for 3 h. After complete consumption of starting material, the reaction mixture was cooled to rt and filtered through a celite pad. Solvent was evaporated under reduced pressure and the crude residue was purified over silica gel column (ethyl acetate and pet ether as eluent) to obtain the keto compounds (**11**, **10**, **1p** and **1q**) in 60–80% yields over two steps. Compound **10** and **1p** have been stirred with DBU in CH_2Cl_2 for 5 min to afford the required **1m** and **1n** respectively in quantitative yields.

C. Representative Procedure for synthesis of 2,2-disubstituted indolin-3-one:

To a solution of α -bromophenyl sec-alkyl\alkenyl ketones (1.0 mmol) in DMSO, were added L-proline (0.2 mmol), K₂CO₃ (1.5 mmol), CuSO₄:5H₂O (0.2 mmol), sodium ascorbate (0.2 mmol), and NaN₃ (1.2 mmol). The mixture was stirred for 12–18 h at 70 °C (oil bath temperature). The reaction mixture was diluted with 30 mL of water and extracted with ethyl acetate (3 X 30 mL). Combined organic layer was dried (Na₂SO₄) and evaporated under reduced pressure. The crude was purified over silica gel (ethyl acetate and pet ether as eluent) to procure 2,2-disubstituted indolin-3-one in moderate to good yields.

Table S1. Optimization of Reaction Condition with various Cu-catalysts

Entry ^a	Cu-catalyst	Base	Yield ^c
1	CuSO ₄ 5H ₂ O	K ₂ CO ₃	65%
2	CuSO ₄ 5H ₂ O	КОН	23%
3	CuSO ₄ 5H ₂ O	Cs ₂ CO ₃	57%
4	CuSO ₄ 5H ₂ O	Triton B	59%
5	CuSO ₄ 5H ₂ O	TBAOH	51%
6	CuSO ₄ 5H ₂ O	Et ₃ N	41%
7	CuSO ₄ 5H ₂ O		33%
8	CuI	K ₂ CO ₃	36%
9	CuI	КОН	61%
10	CuI		46% ^b
11	CuI		36%
12	CuI		53% ^{b, d}
13	Cu ₂ O	K ₂ CO ₃	36% ^b
14	Cu(OAc) ₂	$K_2 \overline{CO_3}$	43%

[a] all reactions performed with 1.2 eq NaN_3 ; 20 mol% L-proline, Na-ascorbate, Cu-cat in DMSO; [b] reaction without Na-ascorbate; [c] isolated yields [d] PEG as a solvent

Figure S1. Absorption spectra (S1a) and emission spectra (S1b) of compound 2a-2o

Figure S2.Photographs of compounds 2a-2n in MeOH under 365nm irradiation.

2,2-Dimethylindolin-3-one (**2a**)³:-

Brown solid; 65% yield; $R_f = 0.4$ (10% ethyl acetate/pet. ether); mp: 81–82 °C; IR (Nujol)*v*: 3363, 2924, 2855, 1681, 1619, 1464, 1375, 1142, 993, 760, 648 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.31 (s, 6H), 4.69 (s, 1H), 6.75–6.84 (m, 2H), 7.43 (ddd, J = 1.4, 7.1, 8.4 Hz, 1H), 7.60 (dt, J = 1.0, 7.7 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 24.4 (q, 2C), 63.9 (s), 112.5 (d), 118.7 (d), 119.5 (s), 125.0 (d), 137.2 (d), 159.6 (s), 205.2 (s) ppm; ESI-MS: 162.10 (65%, [M+H]⁺); HRMS (ESI+): calcd. for C₁₀H₁₁NOH⁺ 162.0913, found 162.0913.

Spiro[cyclohexane-1,2'-indolin]-3'-one (2b)³:-

Yellow solid; 71% yield; $R_f = 0.5$ (10% ethyl acetate/pet. ether); mp: 133–134 °C; IR (Nujol)v: 3330, 2924, 2854, 1669, 1620,

1463, 1377, 1141, 971, 751, 664 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.34–1.54 (m, 5H), 1.68–1.91 (m, 5H), 5.04 (s, 1H), 6.79 (dt, J = 0.8, 7.8 Hz, 1H), 6.86 (br d, J = 8.3 Hz, 1H), 7.42 (ddd, J = 1.3, 7.1, 8.4 Hz, 1H), 7.60 (br d, J = 7.8 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 22.5 (t, 2C), 24.8 (t), 32.8 (t, 2C), 66.9 (s), 112.6 (d), 118.8 (d), 120.4 (s), 125.0 (d), 137.0 (d), 159.9 (s), 204.9 (s) ppm; ESI-MS (m/z): 202.05 (100%, [M+H]⁺), 224.01 (30%, [M+Na]⁺); HRMS (ESI+): calcd. for C₁₃H₁₅NOH⁺ 202.1226, found 202.1226.

5-Methoxy-2,2-dimethylindolin-3-one (2c)³:-

Brown solid; 66% yield; $R_f = 0.2$ (10% ethyl acetate/pet. ether); mp: 56–57 °C; IR (Nujol)*v*: 3324, 2924, 2854, 1679,

1494, 1462, 1376, 1234, 1139, 1029, 913, 793 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.32 (s, 6H), 3.76 (s, 3H), 4.30 (s, 1H), 6.81 (dd, J = 0.5, 8.8 Hz, 1H), 7.04 (d, J = 2.6

Hz, 1H), 7.14 (dd, J = 2.7, 8.8 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 24.6 (q, 2C), 55.8 (q), 64.9 (s), 104.7 (d), 114.3 (d), 120.0 (s), 127.8 (d), 153.4 (s), 155.4 (s), 205.5 (s) ppm; ESI-MS (*m*/*z*): 190.07 (100%, [M–H]⁺), 192.10 (25%, [M+H]⁺); HRMS (ESI+): calcd. for C₁₁H₁₃NO₂H⁺ 192.1019, found 192.1019.

5'-Methoxyspiro[cyclohexane-1,2'-indolin]-3'-one (2d):-

Yellow solid; 68% yield; $R_f = 0.3$ (15% ethyl acetate/pet. ether); mp: 63–64 °C; IR (CHCl₃)v: 3404, 2925, 1714,

1601, 1489, 1460, 1377, 1269, 1217, 1118, 1029, 946, 811, 765, 721 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.35–1.50 (m, 5H), 1.68–1.85 (m, 5H), 3.75 (s, 3H), 4.71 (s, 1H), 6.84 (d, J = 8.7 Hz, 1H), 7.04 (d, J = 2.6 Hz, 1H), 7.13 (dd, J = 2.7, 8.8, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 21.7 (t, 2C), 24.6 (t), 31.7 (t, 2C), 55.9 (s), 90.4 (s), 104.3 (d), 114.6 (d), 120.0 (s), 128.1 (d), 154.6 (s), 166.6 (s), 204.5 (s) ppm; ESI-MS (*m/z*): 230.05 (100%, [M–H]⁺), 232.09 (45%, [M+H]⁺); HRMS (ESI+): calcd. for C₁₄H₁₇NO₂H⁺ 232.1332, found 232.1331.

5,6,7-Trimethoxy-2,2-dimethylindolin-3-one (2e):-

Yellow solid; 69% yield; $R_f = 0.3$ (20% ethyl acetate/pet. ether); mp: 74–75 °C; IR (Nujol)v: 3360, 2854, 1704, 1617,

1459, 1376, 1297, 1133, 975, 722 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.32 (s, 6H), 3.81 (s, 3H), 3.93 (s, 3H), 3.96 (s, 3H), 4.42 (s, 1H), 6.85 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 24.9 (q, 2C), 56.3 (q), 60.5 (q), 61.1 (q), 64.6 (s), 100.2 (d), 114.1 (s), 139.0 (s), 148.0 (s), 149.9 (s), 150.4 (s), 204.3 (s) ppm; ESI-MS: 252.07 (75%, [M+H]⁺), 273.96 (55%, [M+Na]⁺); HRMS (ESI+): calcd. for C₁₃H₁₇NO₄H⁺ 252.1230, found 252.1227.

5',6',7'-Trimethoxyspiro[cyclohexane-1,2'-indolin]-3'-one (2f):

Brown solid; 74% yield; $R_f = 0.4$ (20% ethyl acetate/pet. ether); mp: 122–123 °C; IR (Nujol)v: 3283, 2923, 1659, 1621, 1459, 1376, 1310, 1252, 1102, 1042, 964, 898, 783

cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.37–1.50 (m, 5H), 1.72–1.89 (m, 5H), 3.80 (s, 3H), 3.96 (s, 6H), 4.76 (s, 1H), 6.84 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 22.6 (t, 2C), 24.7 (t), 32.9 (t, 2C), 56.2 (q), 60.5 (q), 61.1 (q), 67.6 (s), 100.0 (d), 114.9 (s), 139.0 (s), 147.9 (s), 149.6 (s), 150.6 (s), 204.1 (s) ppm; ESI-MS: 292.17 (35%, [M+H]⁺), 314.03 (65%, [M+Na]⁺); HRMS (ESI+): calcd. for C₁₆H₂₁NO₄H⁺ 292.1543, found 292.1544.

2-Ethyl-5-methoxy-2-methylindolin-3-one (2g):

Yellow solid; 69% yield; $R_f = 0.3$ (15% ethyl acetate/pet. ether); mp: 76–77 °C; IR (CHCl₃)v: 3341, 2967, 2927, 1670,

1496, 1455, 1262, 1228, 1140, 1029, 821, 788 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 0.79 (t, J = 7.5 Hz, 3H), 1.2 (s, 3H), 1.66 (dq, J = 7.3, 14.0 Hz, 1H), 1.73 (dq, J = 7.5, 14.9 Hz, 1H), 3.75 (s, 3H), 4.27 (s, 1H), 6.82 (d, J = 8.8 Hz, 1H), 7.02 (d, J = 2.6 Hz, 1H), 7.12 (dd, J = 2.7, 8.7 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 8.1 (q), 23.1 (q), 31.0 (t), 55.7 (q), 68.3 (s), 104.4 (d), 114.1 (d), 120.9 (s), 127.8 (d), 153.2 (s), 156.2 (s), 205.6 (s) ppm; ESI-MS: 203.97 (100%, [M–H]⁺), 205.97 (25%, [M+H]⁺); HRMS (ESI+): calcd. for C₁₂H₁₅NO₂H⁺ 206.1176, found 206.1174.

2-Ethyl-5,6,7-trimethoxy-2-methylindolin-3-one (2h):

Yellow liquid; 72% yield; $R_f = 0.3$ (20% ethyl acetate/pet. ether); IR (CHCl₃)v: 3344, 2967, 1676, 1618, 1501, 1469, 1370, 1301, 1134, 1091, 1002, 959, 792 cm⁻¹; ¹H NMR

(200 MHz, CDCl₃): δ 0.78 (t, J = 7.4 Hz, 3H), 1.27 (s, 3H), 1.66 (dq, J = 7.3, 14.1 Hz, 1H), 1.73 (dq, J = 7.5, 14.9 Hz, 1H), 3.79 (s, 3H), 3.92 (s, 3H), 3.96 (s, 3H) 4.38 (s, 1H), 6.82 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 8.1 (q), 23.2 (q), 31.0 (t), 56.2 (q), 60.5 (q), 61.1 (q), 67.9 (s), 100.0 (d), 115.1 (s), 138.8 (s), 147.8 (s), 149.8 (s), 151.0 (s), 204.3 (s) ppm; ESI-MS: 266.01 (100%, [M+H]⁺), 288.03 (35%, [M+Na]⁺); HRMS (ESI+): calcd. for C₁₄H₁₉NO₄H⁺ 266.1387, found 266.1385.

Spiro[fluorene-9,2'-indolin]-3'-one (2i):-

Yellow solid; 59% yield; $R_f = 0.3$ (20% ethyl acetate/pet. ether); mp: 211–212 °C; IR (Nujol)*v*: 3386, 2924, 1699, 1614, 1463, 1377, 1152, 1028, 748, 736, 649 cm⁻¹; ¹H NMR (400

MHz, CDCl₃): δ 4.91 (s, 1H), 6.90 (t, J = 7.4 Hz, 1H), 7.01 (d, J = 8.3 Hz, 1H), 7.15– 7.24 (m, 4H), 7.38 (dt, J = 1.2, 7.5 Hz, 2H), 7.54 (br t, J = 7.6 Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.71 (d, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 77.7 (s), 112.6 (d), 119.4 (d), 120.6 (d, 2C), 120.7 (s), 122.9 (d, 2C), 125.9 (d), 128.0 (d, 2C), 129.3 (d, 2C), 137.5 (d), 141.8 (s, 2C), 143.5 (s, 2C), 161.9 (s), 199.2 (s) ppm; ESI-MS (m/z): 283.97 (100%, [M+H]⁺), 305.94 (90%, [M+Na]⁺); HRMS (ESI+): calcd. for C₂₀H₁₃NOH⁺ 284.1070, found 284.1071.

Ethyl 5-methoxy-2-methyl-3-oxoindoline-2-carboxylate (2j):-

Yellow liquid; 51% yield; $R_f = 0.3$ (25% ethyl acetate/pet. ether); IR (CHCl₃)v: 3385,2700, 2400, 1703, 1495, 1219, 1108, 933, 771 cm⁻¹; ¹H NMR (400 MHz,

CDCl₃): δ 1.27 (t, J = 7.2 Hz, 3H), 1.63 (s, 3H), 3.76 (s, 3H), 4.14–4.28 (m, 2H), 4.95 (s, 1H), 6.93 (br d, J = 8.9 Hz, 1H), 7.03 (d, J = 2.7 Hz, 1H), 7.17 (dd, J = 2.8, 8.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 14.1 (q), 22.1 (q), 55.8 (q), 62.6 (t), 71.5 (s), 104.9 (d), 115.1 (d), 120.2 (s), 128.1 (d), 154.4 (s), 156.9 (s), 169.4 (s), 196.8 (s) ppm; ESI-MS (m/z): 271.97 (100%, [M+Na]⁺); HRMS (ESI+): calcd. for C₁₃H₁₅NO₄H⁺ 250.1074, found 250.1073.

Ethyl 5,6,7-trimethoxy-2-methyl-3-oxoindoline-2carboxylate (2k):-

Yellow liquid; 61% yield; $R_f = 0.2$ (25% ethyl acetate/pet.

ether); IR (CHCl₃)v: 3356, 2932, 1741, 1697, 1499, 1469, 1369, 1297, 1091, 931, 756 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.26 (br t, J = 7.1 Hz, 3H), 1.63 (s, 3H), 3.81 (s, 3H), 3.95 (s, 3H), 3.99 (s, 3H), 5.02 (s, 1H), 6.83 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 14.1 (q), 21.9 (q), 56.3 (q), 60.7 (q), 61.2 (q), 62.5 (t), 71.1 (s), 100.4 (d), 114.2 (s), 139.4 (s), 148.9 (s), 150.3 (s), 151.9 (s), 169.4 (s), 195.6 (s) ppm; ESI-MS: 332.03 (100%, [M+Na]⁺); HRMS (ESI+): calcd. for C₁₅H₁₉NO₆H⁺ 310.1285, found 310.1285.

2-Methyl-2-vinylindolin-3-one (2l):

Yellow liquid; 67% yield; $R_f = 0.3$ (10% ethyl acetate/pet. ether); IR (CHCl₃)v: 3346, 2973, 2926, 1682, 1620, 1470, 1324, 1133,

1099, 969, 752, 702 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.44 (s, 3H), 4.72 (s, 1H), 5.14 (dd, J = 0.8, 10.4 Hz, 1H), 5.34 (dd, J = 0.8, 17.2 Hz, 1H), 5.88 (dd, J = 10.4, 17.2 Hz, 1H), 6.77–6.89 (m, 2H), 7.45 (ddd, J = 1.3, 7.1, 8.4 Hz, 1H) 7.58 (br d, J =7.8 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 22.8 (q), 68.3 (s), 112.4 (d), 114.5 (t), 119.0 (d), 119.3 (s), 125.3 (d), 137.3 (d), 137.5 (d), 159.8 (s), 202.0 (s) ppm; ESI-MS: 174.01 (40%, [M+H]⁺); HRMS (ESI+): calcd. for C₁₁H₁₁NOH⁺ 174.0913, found 174.0913.

5-Methoxy-2-methyl-2-vinylindolin-3-one (2m):

Yellow liquid; 71% yield; $R_f = 0.4$ (15% ethyl acetate/pet. ether); IR (CHCl₃)v: 3346, 2927, 1681, 1495, 1440, 1270,

1227, 1125, 1028, 924, 821, 783 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.44 (s, 3H), 3.75 (s, 3H), 4.41 (s, 1H), 5.14 (dd, J = 0.8, 10.3 Hz, 1H), 5.34 (dd, J = 0.8, 17.2 Hz, 1H), 5.87 (dd, J = 10.4, 17.24 Hz, 1H), 6.85 (dd, J = 0.4, 8.8 Hz, 1H), 7.02 (d, J = 2.6Hz, 1H), 7.14 (dd, J = 2.7, 8.8 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 22.8 (q), 55.8 (q), 69.3 (s), 105.0 (d), 114.2 (d), 114.5 (t), 119.7 (s), 127.9 (d), 137.7 (d), 153.6 (s), 155.6 (s), 202.3 (s) ppm; ESI-MS: 204.02 (100%, [M+H]⁺); HRMS (ESI+): calcd. for C₁₂H₁₃NO₂H⁺ 204.1019, found 204.1019.

5,6,7-Trimethoxy-2-methyl-2-vinylindolin-3-one (2n):-

Yellow liquid; 74% yield; $R_f = 0.3$ (25% ethyl acetate/pet. ether); IR (CHCl₃)*v*: 3344, 2932, 1684, 1618, 1500, 1469, 1304, 1123, 1090, 926, 790 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.44 (s, 3H), 3.80 (s, 3H), 3.95 (s, 3H), 3.98 (s, 3H), 4.53 (s, 1H), 5.14 (br d, J = 10.5 Hz, 1H), 5.34 (br d, J = 17.2 Hz, 1H), 5.87 (dd, J = 10.5, 17.2 Hz, 1H), 6.83 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 22.8 (q), 56.3 (q), 60.6 (q), 61.2 (q), 68.9 (s), 100.5 (d), 113.8 (s), 114.3 (t), 137.8 (d), 138.9 (s), 148.1 (s), 150.0 (s), 150.6 (s), 201.1 (s) ppm; ESI-MS (*m/z*): 263.88 (100%, [M+H]⁺), 285.99 (30%, [M+Na]⁺); HRMS (ESI+): calcd. for C₁₄H₁₇NO₄H⁺ 264.1230, found 264.1230.

6-bromo-5-methoxy-2-methyl-2-vinylindolin-3-one (2o):-

Yellow solid; 72% yield; $R_f = 0.3$ (15% ethyl acetate/pet. ether); mp: 154–155 °C; IR (CHCl₃)*v*: 3284, 2923, 1740,

1671, 1577, 1478, 1275, 1154, 1040, 848, 718 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 1.44 (s, 3H), 3.84 (s, 3H), 4.43 (s, 1H), 5.15 (br d, J = 10.4 Hz, 1H), 5.34 (br d, J =17.1 Hz, 1H), 5.85 (dd, J = 10.4, 17.1 Hz, 1H), 7.05 (s, 1H), 7.20 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 22.8 (q), 56.7 (q), 69.2 (s), 105.7 (d), 114.7 (t), 117.8 (d), 118.9 (s), 124.2 (s), 137.3 (d), 150.0 (s), 154.9 (s), 201.4 (s) ppm; HRMS (ESI+): calcd. for C₁₂H₁₂BrNO₂H⁺ 282.0124, found 282.0129.

References:-

- L. Lunazzi, A. Mazzanti and M. Minzoni, J. Org. Chem., 2006, 71, 9297; T. J. Korn,
 M. A. Schade, M. N. Cheemala, S. Wirth, S. A. Guevara, G. Cahiez and P. Knochel, Synthesis, 2006, 3547.
- 2. S. P. Chavan, S. Garai and U. R. Kalkote, Tetrahedron, 2012, 68, 8509
- Azadi-Ardakani, M. A. Alkhader, J. H. Lippiatt, D. I. Patel, R. K. Smalley and S. Higson, J. Chem. Soc., Perkin Trans. 1, 1986, 1107; R. J. S. Beer, T. Donavanik and A. Robertson, J. Chem. Soc., 1954, 4139.

SI 40

. .

