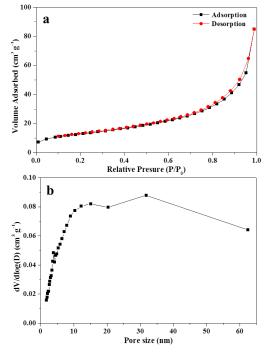
Supporting Information


Continuous One-Pot Synthesis of Sandwich Structured Core-Shell Particles and Transformation to Yolk-Shell Particles

You Na Ko,^{ab} Yun Chan Kang^{*a} and Seung Bin Park^b

^aDepartment of Chemical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea. Fax: +82-2-458-3504; Tel: +82-2-2049-6010
^bDepartment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea

This file includes:

- Nitrogen adsorption-desorption isotherm and pore size distribution.
- Schematic diagram of ultrasonic spray pyrolysis process.
- Detailed experimental procedure
- XRD pattern of the the 20/60/20 (wt%) Pd/V₂O₅/SiO₂ core-shell particles.

Nitrogen adsorption-desorption isotherm and pore size distribution:

Fig. S1 (a) Nitrogen adsorption-desorption isotherms plot and (b) pore size distribution plot of the $Pd@SiO_2$ yolk-shell particles.

Detailed experimental procedure:

The ultrasonic spray pyrolysis system shown in Fig. S1 consisted of a droplet generator, quartz reactor, and powder collector. A 1.7 MHz ultrasonic nebulizer with six vibrators was used to simultaneously generate a large quantity of droplets, which were carried into the high-temperature tubular reactor by air at a flow rate of 10 L min⁻¹. The length and diameter of the quartz reactor are 1200 and 50 mm, respectively. The tubular reactor with a heat zone of 60 cm was employed and the reactor temperature was fixed at 1000° C. The formed particles were collected by a Teflon bag filter.

 V_2O_5/SiO_2 core-shell particles and sandwich structured Pd/V₂O₅/SiO₂ core-shell particles were directly prepared from an aqueous spray solution using ultrasonic spray pyrolysis. The precursor solutions were prepared by dissolving a weight ratio of 0:80:20, 5:75:20, and 20:60:20 palladium, vanadium, and silica precursors in distilled water and nitric acid with heating. Pd(NO₃)₂•nH₂O (n=2.4, Kojima, 99%), V₂O₅ (Junsei, 99%), and tetraethyl orthosilicate (TEOS) (Samchun, 98%) were used as the source materials for Pd, V, and Si, respectively. The concentrations of the metal salts were fixed at 0.1 M. Hollow SiO₂ particles and Pd@SiO₂ yolk-shell particles were obtained by washing the collected particles in distilled water to eliminate V₂O₅ components and centrifugation. The core-shell powders were added into distilled water at a 1:10 weight ratio to remove V₂O₅ inner layer. After boiling, the residual product was harvested by several rinse-centrifugation cycles with distilled water.

The crystal structures of the particles were investigated using X-ray diffractometry (XRD) with CuK α radiation ($\lambda = 1.5418$ Å). Morphological characteristics were investigated via high-resolution transmission electron microscopy (HR-TEM).

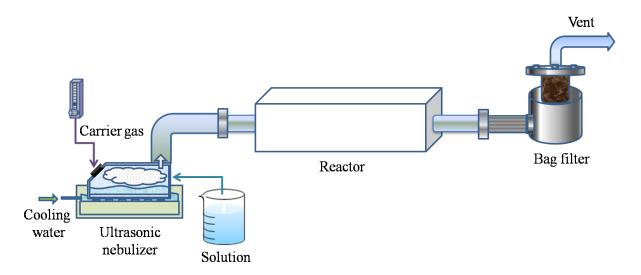
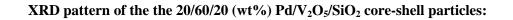



Fig. S2 Schematic diagram of the ultrasonic spray pyrolysis process.

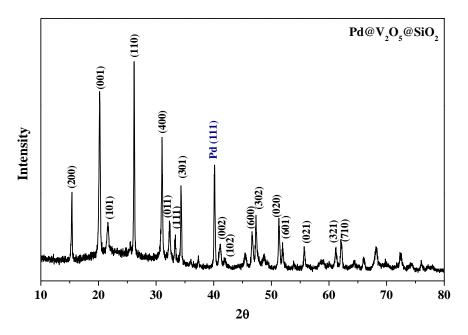


Fig. S3 XRD pattern of 20/60/20 (wt%) Pd/V₂O₅/SiO₂ core-shell particles.