Supplementary Information

Distinct Reactivity of Morita-Baylis-Hillman Acetates as A Novel C_2 Component in Amine-Catalyzed [2 + 2 + 2] and [2 + 4] Annulations

Rongshun Chen,^a Silong Xu,^{b,} * Liyi Wang,^a Yuhai Tang,^b and Zhengjie He^{a,} *

Table of Contents

1. General Remarks	1
2. Optimization on Conditions for the $[2 + 2 + 2]$ and $[2 + 4]$ Annulations	2
3. General Reaction Procedures	4
4. Analytical Data for Compounds 3 and 6	5
5. ORTEP Drawings for 3a and 6a	19
6. NMR Spectra for Compounds 3 , 4a , and 6	21

^a The State Key Laboratory of Elemento-Organic Chemistry and Department of Chemistry, Nankai University, Tianjin 300071, P.R. China. E-mail: <u>zhengjiehe@nankai.edu.cn</u>

^b Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, P.R. China E-mail: silongxu@mail.xjtu.edu.cn

1. General Remarks

Unless otherwise noted, all reactions were carried out in a nitrogen atmosphere. Allylic acetates **1** were prepared according to previously reported procedures¹ by treating the corresponding Morita-Baylis–Hillman alcohols² with AcCl/pyridine. Substrates **3** and **5** were prepared according to literature methods.^{3,4} All other reagents were purchased from commercial sources and used without further purification. NMR spectra were recorded in CDCl₃ or DMSO- d_6 with tetramethylsilane (TMS) as the internal standard. Column chromatography was performed on silica gel (200-300 mesh) using a mixture of petroleum ether/ethyl acetate as eluant.

^{1.} S. Nag, G. P. Yadav, P. R. Maulik, S. Batra, Synthesis 2007, 6, 911.

^{2. (}a) C. Z. Yu, B. Liu, L. Q. Hu, J. Org. Chem. 2001, 66, 5413; (b) V. K. Aggarwal, A. Mereu, Chem. Commun.. 1999, 2311.

^{3.} D. Prajapati, K. C. Lekhok, J. S. Sandhu, A. C. Ghosh, J. Chem. Soc., Perkin Trans. 1. 1996, 959.

^{4.} H. Dückert, V. Khedkar, H. Waldmann, K. Kumar, Chem.-Eur. J. 2011, 17, 5130.

2. Optimization on Conditions for the [2 + 2 + 2] and [2 + 4]

Annulations

	OAc CO ₂ Et + 1a	NC CN conditions Ph 2a	Ph CN NC Ph 3a	N _{CO₂} Et
Entry	Catalyst	Solvent	Time (h)	$\text{Yield}^{b}(\%)$
1	DABCO	THF	24	54
2	DMAP	THF	24	43
3	DBU	THF	24	37
4	quinine	THF	24	trace
5	imidazole	THF	24	trace
6	NEt ₃	THF	24	trace
7	DABCO	DMSO	12	85
8	DABCO	DMF	12	<i>93</i>
9	DABCO	ethanol	48	/
10	DABCO	CH ₃ CN	12	64
11	DABCO	1,4-dioxane	12	39
12	DABCO	CH_2Cl_2	48	43
13	DABCO	toluene	48	21
14^c	DABCO	DMF	48	81
15^d	DABCO	DMF	72	54

Table S1. Survey on Conditions for the [2 + 2 + 2] Annulation Reaction.^{*a*}

^{*a*} Typical conditions: under N₂ and at r.t., to a stirred solution of **1a** (0.5 mmol) and **2a** (0.5 mmol) in solvent (3.0 mL) was added the amine catalyst (0.05 mmol). ^{*b*} Isolated yield based on **2a**. ^{*c*} catalyst loading 5 mol %. ^{*d*} catalyst loading 1 mol %.

Table S2. Survey on Conditions for the [2+4] Annulation Reaction.^a

^{*a*} Typical procedure : a mixture of allylic acetate **1c** (0.3 mmol), **5** (0.2 mmol) and the catalyst (0.04 mmol) in solvent (2.0 mL) was refluxed. ^{*b*} Isolated yield based on **5a**. ^{*c*} run at r.t. ^{*d*} 0.4 mmol of **1c** was used. ^{*e*} a solution of **1c** (0.3 mmol) in CHCl₃ (1.0 mL) was dropwise added over15 min. ^{*f*} catalyst loading 10 mol %.

3. General Reaction Procedures

a. General Procedure for DABCO-Catalyzed [2 + 2 + 2] Annulation (Table 1)

Under a N₂ atmosphere and at room temperature, to a stirred solution of **1** (0.3 mmol; for entries 11, 12, 16, 17, 21, 0.5 mmol) and **2** (0.5 mmol) in DMF (3.0 mL) was added DABCO (0.05 mmol), and the resulting mixture was continuously stirred at r.t. for the specified hours (monitored by TLC). Water (10 mL) was added into it and the mixture was extracted twice with CH_2Cl_2 (20 mL × 2). The combined organic layer was dried over anhydrous sodium sulfate. After filtration and concentrated on a rotary evaporator under reduced pressure, the residue was subjected to column chromatography on silica gel (gradient eluant: petroleum ether/ethyl acetate 5:1–2:1) to give the [2 + 2 + 2] annulation products **3**.

b. General Procedure for DMAP-Catalyzed [2 + 4] Annulation (Table 2)

Under a N₂ atmosphere, a mixture of MBH acetates **1** (for entries 1–6, 0.3 mmol; for entries 7–10, 0.4 mmol), azadienes **5** (0.2 mmol), and DMAP (0.04 mmol) in chloroform or THF (2.0 mL) was refluxed for 24 h. After evaporation of the solvent and volatile components on a rotary evaporator, the residue was isolated by column chromatography on silica gel (gradient eluant: petroleum ether/ethyl acetate 20:1–5:1) to afford the [2 + 4] annulation products **6**.

c. Procedure for PPh₃-Catalyzed [3 + 2] Annulation of 1a and 2a (Scheme 2)

Under a N₂ atmosphere, a mixture of MBH acetate **1a** (85 mg, 0.5 mmol), **2a** (77 mg, 0.5 mmol) and K₂CO₃ (104 mg, 0.75 mmol) with PPh₃ (13 mg, 0.05 mmol) in toluene (3.0 mL) was refluxed with stirring for 24 h. After work-up and chromatographic isolation on silica gel (eluant: petroleum ether/ethyl acetate 20:1), product **4a** (101 mg, yield 72%) was obtained as slightly yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.45 (s, 5H), 6.58 (d, *J* = 1.7 Hz, 1H), 4.31 (m, 2H), 3.60 (m, 2H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.32 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.5, 147.8, 133.0, 130.5, 129.6, 129.3, 128.5, 114.2, 111.6, 63.3, 61.7, 45.0, 43.0, 16.9, 14.1; HRMS-ESI: calcd for C₁₇H₁₆N₂O₂ [M + NH₄]⁺ 298.1550, found 298.1549.

4. Analytical Data for Compounds 3 and 6

3a, 101 mg, 93% yield; as a white solid, mp 233–236 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.88 (m, 2H), 7.56-7.45 (m, 8H), 6.80 (s, 1H), 6.36 (s, 1H), 4.30 (m, 2H), 4.03 (d, *J* = 16.0 Hz, 1H), 3.77 (s, 1H), 3.54 (d, *J* = 12.0 Hz, 1H), 2.85 (dt, *J* = 12.0, 16.0 Hz, 1H), 2.26 (d, *J* = 12.0 Hz, 1H), 1.34 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 136.4, 134.5, 131.3, 131.1, 130.7, 130.0, 129.9, 129.5, 129.2, 128.7, 112.7, 112.1, 111.2, 111.0, 62.4, 54.0, 51.2, 45.3, 43.7, 43.5, 30.1, 14.1; HRMS-ESI calcd for C₂₇H₂₂N₄O₂ [M + Na]⁺ 457.1635, found 457.1629.

3b, 96 mg, 77% yield; as a white solid, mp 200–202 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.47 (d, J = 7.5 Hz, 1H), 7.75 (d, J = 7.4 Hz, 1H), 7.61 (d, J = 7.7 Hz, 1H), 7.51 (m, 3H), 7.40 (m, 2H), 6.79 (s, 1H), 6.31 (s, 1H), 4.84 (s, 1H), 4.43 (d, J = 12.0 Hz, 1H), 4.31 (m, 2H), 4.12 (d, J = 12.0 Hz, 1H), 2.77 (dt, J = 12.0, 16.0 Hz, 1H), 2.17 (d, J = 16.0 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.3, 136.0(2C), 134.7, 132.1(2C), 130.9, 130.8(2C), 130.6, 128.8, 128.6, 128.5, 128.4, 127.7, 111.3, 111.2, 111.1(2C), 62.3, 47.4, 45.8, 44.1, 43.1, 42.8, 30.6, 14.0; HRMS-ESI calcd for C₂₇H₂₀C₁₂N₄O₂ [M + Na]⁺ 525.0856, found 525.0864.

3c, 109 mg, 87% yield; as a white solid, mp 177–179 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 7.5 Hz, 1H), 7.77 (s, 1H), 7.47 (m, 6H), 6.84 (s, 1H), 6.40 (s, 1H), 4.31 (m, 2H), 4.06 (dd, J = 12.0, 2.1 Hz, 1H), 3.84 (s, 1H), 3.54 (dd, J = 12.0, 2.4 Hz, 1H), 2.80 (dt, J = 12.0, 16.0 Hz, 1H), 2.26 (d, J = 16.0 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 136.2, 136.0, 135.8, 135.2, 132.7, 131.7, 131.3, 131.2, 130.5, 130.2, 129.9, 128.8, 127.1, 127.0, 112.3, 111.9, 110.8, 110.5, 62.5, 52.8, 50.4, 44.7, 43.4, 43.3, 29.8, 14.0; HRMS-ESI calcd for C₂₇H₂₀C₁₂N₄O₂ [M + Na]⁺ 525.0856, found 525.0860.

3d, 110 mg, 88% yield; as a white solid, mp 221–223 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 7.44 (s, 4H), 6.82 (s, 1H), 6.36 (s, 1H), 4.29 (m, 2H), 4.03 (d, J = 12.0 Hz, 1H), 3.81 (s, 1H), 3.54 (d, J = 12.0 Hz, 1H), 2.79 (dt, J = 12.0, 16.0 Hz, 1H), 2.24 (d, J = 16.0 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 137.8, 136.2, 136.1, 132.7, 131.0, 130.7, 130.3, 130.0, 129.5, 129.3, 112.4, 111.9, 110.9, 110.7, 62.5, 53.0, 50.4, 45.0, 43.4, 43.3, 29.9, 14.0; HRMS-ESI calcd for C₂₇H₂₀Cl₂N₄O₂ [M + Na]⁺ 525.0856, found 525.0853.

3e, 80 mg, 54% yield; as a white solid, mp 198–201 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.46 (d, *J* = 7.9 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.73 (m, 2H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.44 (m, 2H), 7.31 (t, *J* = 7.5 Hz, 1H), 6.80 (s, 1H), 6.31 (s, 1H), 4.87 (s, 1H), 4.42 (d, *J* = 12.0 Hz, 1H), 4.32 (m, 2H), 4.10 (d, *J* = 12.0 Hz, 1H), 2.75 (dt, *J* = 12.0, 16.0 Hz, 1H), 2.18 (d, *J* = 16.0 Hz, 1H), 1.36 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.3, 136.0, 134.4, 134.0, 133.8, 132.4, 131.1, 130.9, 130.2, 129.2, 128.9, 128.5, 128.4, 127.5, 125.8, 111.3, 111.2, 111.0(2C), 62.4, 50.3, 48.6, 44.3, 43.1, 42.8, 30.8, 14.0; HRMS-ESI calcd for C₂₇H₂₀Br₂N₄O₂ [M + Na]⁺ 612.9845, found 612.9840.

3f, 130 mg, 88% yield; as a white solid, mp 191–193 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.93 (m, 2H), 7.72 (d, J = 7.9 Hz, 1H), 7.64 (s, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 7.35 (t, J = 7.8 Hz, 1H), 6.83 (s, 1H), 6.37 (s, 1H), 4.31 (m, 2H), 4.00 (d, J = 12.0 Hz, 1H), 3.71 (s, 1H), 3.49 (d, J = 12.0 Hz, 1H), 2.78 (dt, J = 12.0, 16.0 Hz, 1H), 2.26 (d, J = 16.0 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.5, 136.3, 136.0, 134.7, 133.3, 132.9, 132.8, 131.7, 131.6, 131.0, 130.8, 127.5(2C), 123.9, 123.3, 112.3, 111.8, 110.8, 110.5, 62.5, 53.2, 50.7, 44.7, 43.6, 43.2, 29.9, 14.1; HRMS-ESI calcd for C₂₇H₂₀Br₂N₄O₂ [M + Na]⁺ 612.9845, found 612.9841.

3g, 90 mg, 77% yield; as a white solid, mp 223–226 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J* = 7.7 Hz, 1H), 7.56 (m, 2H), 7.44 (m, 1H), 7.29 (t, *J* = 7.8 Hz, 2H), 7.23 (d, *J* = 9.4 Hz, 1H), 7.17 (t, *J* = 8.2 Hz, 1H), 6.84 (s, 1H), 6.39 (s, 1H), 4.30 (m, 2H), 4.07 (d, *J* = 12.0 Hz, 1H), 3.86 (s, 1H), 3.57 (d, *J* = 12.0 Hz, 1H), 2.80 (dt, *J* = 12.0, 16.0 Hz, 1H), 2.28 (d, *J* = 16.0 Hz, 1H), 1.33 (q, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 164.1 (d, *J*_{CF} = 14.6 Hz), 161.6 (d, *J*_{CF} = 13.3 Hz), 136.5 (d, *J*_{CF} = 7.1 Hz), 136.1, 132.9 (d, *J*_{CF} = 7.1 Hz), 131.8 (d, *J*_{CF} = 8.2 Hz), 131.1, 130.9 (d, *J*_{CF} = 8.2 Hz), 125.2 (d, *J*_{CF} = 2.5 Hz), 124.5 (d, *J*_{CF} = 2.8 Hz), 118.6 (d, *J*_{CF} = 20.7 Hz), 117.1 (d, *J*_{CF} = 20.9 Hz), 116.8 (d, *J*_{CF} = 23.3 Hz), 115.8 (d, *J*_{CF} = 22.7 Hz), 112.3, 111.9, 110.9, 110.6, 62.5, 52.9, 50.4, 44.7, 43.3(2C), 29.9, 14.0; ¹⁹F NMR (376 MHz, CDCl₃): δ 141.1, 139.5; HRMS-ESI calcd for C₂₇H₂₀F₂N₄O₂ [M + Na]⁺ 493.1447, found 493.1449.

3h, 99 mg, 84% yield; as a white solid, mp 214–215 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.88 (dd, J = 8.3, 4.9 Hz, 2H), 7.50 (dd, J = 8.4, 5.1 Hz, 2H), 7.25 (d, J = 6.7 Hz, 2H), 7.16 (t, J = 8.4 Hz, 2H), 6.82 (s, 1H), 6.36 (s, 1H), 4.29 (m, 2H), 4.03 (d, J = 12.0 Hz, 1H), 3.80 (m, 1H), 3.55 (d, J = 12.0 Hz, 1H), 2.79 (dt, J = 12.0, 16.0 Hz, 1H), 2.25 (d, J = 16.0 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.6 (d, $J_{CF} = 4.8$ Hz), 165.1 (d, $J_{CF} = 79.4$ Hz), 162.6 (d, $J_{CF} = 77.2$ Hz), 136.2,

131.5 (d, $J_{CF} = 8.7$ Hz), 130.9, 130.5 (d, $J_{CF} = 8.4$ Hz), 130.2, 126.9, 117.3 (d, $J_{CF} = 22.0$ Hz), 116.4 (d, $J_{CF} = 21.8$ Hz), 112.6, 112.0, 111.0, 110.8, 62.4, 52.9 (d, $J_{CF} = 9.1$ Hz), 50.3 (d, $J_{CF} = 5.5$ Hz), 45.4, 43.5(2C), 30.1, 14.1; ¹⁹F NMR (376 MHz, CDCl₃): δ 141.8, 139.4; HRMS-ESI calcd for C₂₇H₂₀F₂N₄O₂ [M + Na]⁺ 493.1447, found 493.1448.

3i, 90 mg, 78% yield; as a white solid, mp 212–213 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 6.79 (s, 1H), 6.36 (s, 1H), 4.29 (m, 2H), 4.03 (d, *J* = 12.0 Hz, 1H), 3.77 (s, 1H), 3.51 (d, *J* = 12.0 Hz, 1H), 2.81 (dt, *J* = 12.0, 16.0 Hz, 1H), 2.40 (s, 3H), 2.37 (s, 3H), 2.22 (d, *J* = 16.0 Hz, 1H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 141.4, 139.8, 136.5, 131.6, 130.7, 130.5, 129.8, 129.2, 128.5, 128.2, 112.9, 112.3, 111.3, 111.2, 62.3, 53.5, 50.7, 45.6, 43.64, 43.59, 30.1, 21.3, 21.2, 14.0; HRMS-ESI calcd for C₂₉H₂₆N₄O₂ [M + Na]⁺ 485.1948, found 485.1948.

3j, 85 mg, 69% yield; as a white solid, mp 217–219 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, J = 7.6 Hz, 1H), 7.58 (d, J = 7.3 Hz, 1H), 7.48 (t, J = 7.4 Hz, 1H), 7.38 (t, J = 7.4 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 7.05 (dd, J = 14.3, 7.7 Hz, 2H), 6.96 (d, J = 8.3 Hz, 1H), 6.75 (s, 1H), 6.31 (s, 1H), 4.80 (s, 1H), 4.32 (m, 3H), 4.02 (d, J = 12.0 Hz, 1H), 3.95 (s, 3H), 3.89 (s, 3H), 2.75 (dt, J = 12.0, 16.0 Hz, 1H), 2.07 (d, J =

16.0 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 157.5, 156.8, 136.6, 131.9, 130.5, 130.3, 128.2, 127.8, 123.4, 121.7, 121.0, 120.0, 112.4, 112.2, 112.0, 111.6(2C), 111.1, 62.2, 56.2, 55.6, 44.1, 43.9, 43.3, 43.0, 42.0, 30.4, 14.1; HRMS-ESI calcd for C₂₉H₂₆N₄O₄ [M + Na]⁺ 517.1846, found 517.1847.

3k, 103 mg, 84% yield; as a white solid, mp 158–162 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.37 (m, 4H), 7.06 (m, 3H), 6.96 (d, *J* = 8.0 Hz, 1H), 6.81 (s, 1H), 6.37 (s, 1H), 4.31 (m, 2H), 4.06 (d, *J* = 12.0 Hz, 1H), 3.82 (s, 7H), 3.52 (d, *J* = 12.0 Hz, 1H), 2.80 (dt, *J* = 12.0, 16.0 Hz, 1H), 2.26 (d, *J* = 16.0 Hz, 1H), 1.34 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 160.2, 159.9, 136.3, 136.0, 132.4, 130.9(2C), 130.2, 121.6, 120.9, 116.8, 115.0, 114.7, 114.6, 112.7, 112.2, 111.3, 111.2, 62.4, 55.4, 55.3, 53.4, 50.9, 45.0, 43.48(2C), 30.1, 14.0; HRMS-ESI calcd for C₂₉H₂₆N₄O₄ [M + Na]⁺ 517.1846, found 517.1846.

31, 50 mg, 40% yield; as a white solid, mp 127–129 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.02 (d, J = 8.4 Hz, 2H), 6.95 (d, J = 8.4 Hz, 2H), 6.79 (s, 1H), 6.35 (s, 1H), 4.29 (m, 2H), 4.01 (d, J = 12.0 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.76 (s, 1H), 3.49 (d, J = 12.0 Hz, 1H), 2.78 (dt, J = 12.0, 16.0 Hz, 1H), 2.21 (d, J = 16.0 Hz, 1H), 1.33 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 161.4, 160.5, 136.5, 130.7, 130.6, 129.8, 126.6, 123.0, 115.2,

114.4, 113.0, 112.3, 111.3(2C), 62.3, 55.3(2C), 53.1, 50.4, 46.0, 43.8, 43.6, 30.2, 14.0; HRMS-ESI calcd for $C_{29}H_{26}N_4O_4$ [M + Na]⁺ 517.1846, found 517.1852.

3m, 104 mg, 73% yield; as a white solid, mp 194–195 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.68 (d, J = 8.0 Hz, 1H), 8.10 (d, J = 7.9 Hz, 1H), 7.86 (m, 3H), 7.72 (m, 2H), 7.58 (t, J = 7.6 Hz, 1H), 6.82 (s, 1H), 6.30 (s, 1H), 4.32 (m, 2H), 4.16 (s, 1H), 3.95 (m, 2H), 2.83 (dt, J = 12.0, 16.0 Hz, 1H), 2.26 (d, J = 16.0 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.9, 135.7, 133.7, 133.3, 132.9, 131.3, 131.1, 130.6 (q, $J_{CF} = 29.7$ Hz), 129.9, 129.5, 129.4 (q, $J_{CF} = 29.4$ Hz), 128.5, 128.4, 127.9 (q, $J_{CF} = 5.7$ Hz), 127.2 (q, $J_{CF} = 5.8$ Hz), 123.8 (q, $J_{CF} = 274.3$ Hz), 123.6 (q, $J_{CF} = 274.6$ Hz), 112.0, 111.3, 111.0, 110.7, 62.4, 47.9, 46.5, 45.0, 43.8, 43.2, 31.9, 14.0; HRMS-ESI calcd for C₂₉H₂₀F₆N₄O₂ [M + Na]⁺ 593.1383, found 593.1378.

3n, 135 mg, 95% yield; as a white solid, mp 157–159 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J* = 8.1 Hz, 2H), 7.83 (d, *J* = 8.2 Hz, 2H), 7.74 (d, *J* = 8.1 Hz, 2H), 7.65 (d, *J* = 8.2 Hz, 2H), 6.85 (s, 1H), 6.40 (s, 1H), 4.30 (m, 2H), 4.11 (d, *J* = 12.0 Hz, 1H), 3.96 (d, *J* = 3.3 Hz, 1H), 3.67 (d, *J* = 12.0 Hz, 1H), 2.87 (dt, *J* = 12.0, 16.0 Hz, 1H), 2.30 (d, *J* = 16.0 Hz, 1H), 1.34 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.9, 138.0, 136.0, 134.6, 133.5 (q, *J*_{CF} = 33.3 Hz), 132.3 (q, *J*_{CF} = 32.9 Hz), 131.3, 130.1, 129.3, 127.0 (q, *J*_{CF} = 3.5 Hz), 126.3 (q, *J*_{CF} = 4.0 Hz), 123.4 (q, *J*_{CF} = 272.5

Hz), 123.3 (q, $J_{CF} = 272.7$ Hz), 112.2, 112.0, 110.8, 110.5, 62.6, 52.7, 50.3, 44.4, 43.22, 43.18, 29.8, 14.0; ¹⁹F NMR (376 MHz, CDCl₃): δ 186.9, 186.8; HRMS-ESI calcd for C₂₉H₂₀F₆N₄O₂ [M + Na]⁺ 593.1383, found 593.1387.

30, 110 mg, 84% yield; as a white solid, mp 132–134 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.44 (d, *J* = 8.6 Hz, 2H), 8.35 (d, *J* = 8.6 Hz, 2H), 8.12 (d, *J* = 8.6 Hz, 2H), 7.74 (d, *J* = 8.6 Hz, 2H), 6.88 (s, 1H), 6.42 (s, 1H), 4.31 (m, 2H), 4.15 (d, *J* = 12.0 Hz, 1H), 4.11 (s, 1H), 3.79 (d, *J* = 12.0 Hz, 1H), 2.90 (dt, *J* = 12.0, 16.0 Hz, 1H), 2.35 (d, *J* = 16.0 Hz, 1H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 149.7, 148.9, 140.6, 137.0, 135.7, 131.4, 130.8, 129.9, 125.1, 124.5, 111.9, 111.5, 110.6, 110.2, 62.7, 52.7, 50.3, 44.0, 43.2, 42.9, 29.6, 14.0; HRMS-ESI calcd for C₂₇H₂₀N₆O₆ [M + Na]⁺ 547.1337, found 547.1335.

3p, 45 mg, 40% yield; as a white solid, mp 235–237 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 7.84 (d, J = 4.2 Hz, 1H), 7.66 (s, 2H), 7.43 (s, 1H), 7.28 (s, 1H), 7.16 (s, 1H), 6.68 (s, 1H), 6.44 (s, 1H), 5.54 (s, 1H), 4.30 (d, J = 12.0 Hz, 1H), 4.22 (m, 2H), 4.10 (d, J = 12.0 Hz, 1H), 2.71 (dt, J = 12.0, 16.0 Hz, 1H), 2.39 (d, J = 16.0 Hz, 1H), 1.27 (t, J = 6.7 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ 164.7, 137.3, 136.2, 132.5, 131.2, 129.9, 129.1, 127.7, 127.6, 127.0, 126.7, 113.1, 112.4, 111.4, 111.1, 61.1, 46.5, 44.5, 44.2, 43.0, 41.2, 29.9, 13.5; HRMS-ESI calcd for C₂₃H₁₈N₄O₂S₂ [M + Na]⁺ 469.0763, found 469.0765.

3q, 61 mg, 56% yield; as a white solid, mp 205–207 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.97 (s, 1H), 8.84 (d, *J* = 3.6 Hz, 1H), 8.79 (s, 1H), 8.67 (d, *J* = 3.2 Hz, 1H), 8.38 (d, *J* = 7.8 Hz, 1H), 8.13 (d, *J* = 7.6 Hz, 1H), 7.74 (m, 1H), 7.57 (m, 1H), 6.73 (s, 1H), 6.61 (s, 1H), 5.34 (s, 1H), 4.18 (m, 4H), 3.05 (dt, *J* = 12.0, 16.0 Hz, 1H), 2.31 (d, *J* = 16.0 Hz, 1H), 1.27 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.6, 151.7, 149.9(2C), 149.6, 136.12, 136.08, 135.3, 131.5, 131.0, 128.0, 124.3, 123.3, 112.4, 112.1, 111.0(2C), 61.0, 45.8, 45.2, 44.3, 42.7, 41.3, 27.5, 13.4; HRMS-ESI calcd for C₂₅H₂₀N₆O₂ [M + Na]⁺ 437.1720, found 437.1717.

3r, 115 mg, 99% yield; as a white solid, mp 235–237 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.87 (d, *J* = 7.0 Hz, 2H), 7.62 (dd, *J* = 15.2, 7.2 Hz, 5H), 7.47 (m, 3H), 6.61 (s, 1H), 6.45 (s, 1H), 5.05 (s, 1H), 4.11 (d, *J* = 11.1 Hz, 1H), 4.04 (d, *J* = 10.8 Hz, 1H), 2.89 (q, *J* = 13.0 Hz, 1H), 2.20 (d, *J* = 15.0 Hz, 1H), 1.48 (s, 9H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 163.7, 137.5, 135.4, 132.2, 130.2(2C), 129.2, 128.7(2C), 128.5, 128.2, 112.9, 112.4, 111.5, 111.4, 81.2, 48.4, 47.4, 44.7, 43.0, 41.2, 28.3, 27.0; HRMS-ESI calcd for C₂₉H₂₆N₄O₂ [M + Na]⁺ 485.1948, found 485.1950.

3s, 101 mg, 99% yield; as a white solid, mp 222–225 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.87 (d, *J* = 6.7 Hz, 2H), 7.60 (t, *J* = 7.3 Hz, 5H), 7.46 (m, 3H), 6.84 (s, 1H), 6.76 (s, 1H), 5.05 (s, 1H), 4.26 (d, *J* = 12.0 Hz, 1H), 4.02 (d, *J* = 12.0 Hz, 1H), 2.88 (dt, *J* = 12.0, 16.0 Hz, 1H), 2.43 (s, 3H), 2.10 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 197.0, 143.6, 135.4, 132.27, 131.9, 130.2, 129.1, 128.7, 128.6, 128.5, 128.2, 112.8, 112.5, 111.6, 111.5, 48.4, 47.4, 44.6, 42.8, 28.3, 25.0 (one carbon was overlapped by signals of DMSO-*d*₆); HRMS-ESI calcd for C₂₆H₂₀N₄O [M + Na]⁺ 427.1529, found 427.1532.

6a, 67 mg, 79% yield; as a light yellow solid, mp 186-187 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.23 (s, 1H), 7.93 (dd, J = 7.8, 1.7 Hz, 1H), 7.74 (d, J = 8.3 Hz, 2H), 7.44–7.38 (m, 1H), 7.36 (d, J = 8.1 Hz, 2H), 7.06 – 7.00 (m, 1H), 6.87 – 6.83 (m, 1H), 6.24 (s, 1H), 5.84 (s, 1H), 5.19 (d, J = 4.2 Hz, 1H), 4.72 (ddd, J = 10.8, 5.8, 1.0 Hz, 1H), 2.45 (s, 4H), 2.39 (s, 3H), 1.71 (ddd, J = 13.2, 11.0, 5.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 179.8, 160.5, 145.4, 144.8, 135.3, 134.5, 133.6, 130.4, 127.4, 127.2, 122.5, 122.1, 117.6, 112.2, 69.6, 52.3, 29.4, 26.3, 21.7; HRMS-ESI calcd for C₂₃H₂₁NO₅S [M + Na]⁺ 446.1033, found 446.1029.

6b, 70 mg, 77% yield; as a light yellow solid, mp 234-236 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.25 (s, 1H), 7.88 (d, J = 2.6 Hz, 1H), 7.74 (d, J = 8.3 Hz, 2H), 7.39–7.31 (m, 3H), 6.81 (d, J = 8.8 Hz, 1H), 6.24 (s, 1H), 5.83 (s, 1H), 5.19 (d, J = 4.2 Hz, 1H), 4.71 (dd, J = 10.9, 5.8 Hz, 1H), 2.48–2.42 (m, 5H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.5, 178.7, 158.9, 145.5, 144.7, 135.0, 134.4, 130.4, 127.4, 127.2, 126.7, 123.3, 119.3, 111.2, 69.8, 52.3, 29.3, 26.3, 21.6; HRMS-ESI calcd for C₂₃H₂₀ClNO₅S [M + Na]⁺ 480.0643, found 480.0643.

6c, 71 mg, 71% yield; as a light yellow solid, mp 225-227 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.25 (s, 1H), 8.03 (d, J = 2.2 Hz, 1H), 7.74 (d, J = 8.3 Hz, 2H), 7.47 (dd, J = 8.7, 2.5 Hz, 1H), 7.37 (d, J = 8.1 Hz, 2H), 6.76 (d, J = 8.7 Hz, 1H), 6.24 (s, 1H), 5.82 (s, 1H), 5.19 (d, J = 4.3 Hz, 1H), 4.71 (dd, J = 10.6, 5.6 Hz, 1H), 2.49–2.41 (m, 4H), 2.39 (s, J = 10.3 Hz, 3H), 1.71 (ddd, J = 13.2, 11.0, 5.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 197.5, 178.6, 159.3, 145.5, 144.7, 137.8, 134.4, 130.4, 129.8, 127.4, 127.2, 123.8, 119.6, 114.6, 111.1, 69.8, 52.3, 29.3, 26.3, 21.6; HRMS-ESI calcd for C₂₃H₂₀BrNO₅S [M + Na]⁺ 524.0138, found 524.0134.

6d, 66 mg, 76% yield; as a light yellow solid, mp 218-220 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.22 (s, 1H), 7.75 (s, 1H), 7.73 (s, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.22 (dd, J = 8.4, 2.1 Hz, 1H), 6.75 (d, J = 8.4 Hz, 1H), 6.23 (s, 1H), 5.84 (s, 1H), 5.18 (d, J = 4.3 Hz, 1H), 4.70–4.63 (m, 1H), 2.46–2.40 (m, 4H), 2.38 (s, 3H), 2.30 (s, 3H), 1.69 (ddd, J = 13.2, 11.0, 5.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 197.5, 180.0, 158.5, 145.3, 144.8, 136.3, 134.6, 133.4, 131.5, 130.3, 127.3, 127.2, 127.0, 122.1, 117.3, 112.4, 69.4, 52.3, 29.4, 26.3, 21.6, 20.4; HRMS-ESI calcd for C₂₄H₂₃NO₅S [M + Na]⁺ 524.0138, found 524.0134.

6e, 92 mg, 97% yield; as a light yellow solid, mp 147-149 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.39 (d, J = 8.7 Hz, 1H), 8.26 (s, 1H), 7.85 (d, J = 9.0 Hz, 1H), 7.77 (s, 1H), 7.75–7.71 (m, 2H), 7.66–7.60 (m, 1H), 7.42 (t, J = 7.1 Hz, 1H), 7.35 (d, J = 8.1 Hz, 2H), 6.99 (d, J = 8.9 Hz, 1H), 6.25 (s, 1H), 5.91 (s, 1H), 5.21 (d, J = 4.3 Hz,

1H), 4.76 (dd, J = 10.5, 5.6 Hz, 1H), 2.50 (ddd, J = 13.1, 5.9, 2.2 Hz, 1H), 2.44 (s, 3H), 2.38 (s, 3H), 1.75 (ddd, J = 13.1, 11.0, 5.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 180.6, 162.5, 145.2, 144.8, 136.7, 134.7, 132.9, 131.7, 130.3, 129.6, 129.3, 128.3, 127.5, 127.2, 126.3, 125.0, 118.5, 114.7, 113.6, 69.5, 52.2, 29.2, 26.3, 21.6; HRMS-ESI calcd for C₂₇H₂₃NO₅S [M + Na]⁺ 496.1189, found 496.1197.

6f, 61 mg, 75% yield; as a light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.24 (s, 1H), 7.94 (dd, J = 7.8, 1.6 Hz, 1H), 7.88–7.83 (m, 2H), 7.67 (t, J = 7.4 Hz, 1H), 7.58 (t, J = 7.7 Hz, 2H), 7.44–7.38 (m, 1H), 7.06–7.00 (m, 1H), 6.86 (d, J = 8.3 Hz, 1H), 6.23 (s, 1H), 5.83 (d, J = 9.5 Hz, 1H), 5.21 (d, J = 4.3 Hz, 1H), 4.73 (ddd, J = 10.8, 5.8, 1.0 Hz, 1H), 2.46 (ddd, J = 13.2, 5.9, 2.3 Hz, 1H), 2.40–2.37 (m, 3H), 1.72 (ddd, J = 13.2, 10.9, 5.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 197.5, 179.8, 160.5, 144.7, 137.5, 135.3, 134.1, 133.4, 129.7, 127. 3, 127.3, 127.1, 122.4, 122.0, 117.6, 112.4, 69.5, 52.3, 29.3, 26.3; HRMS-ESI calcd for C₂₂H₁₉NO₅S [M + Na]⁺ 432.0876, found 436.0871.

6g, 42 mg, 46% yield; as a light yellow oil; ¹H NMR (300 MHz, CDCl₃): δ 8.20 (s, 1H), 7.94 (dd, J = 7.8, 1.6 Hz, 1H), 7.76 (d, J = 8.3 Hz, 2H), 7.45–7.38 (m, 1H), 7.36 (d, J = 8.1 Hz, 2H), 7.08–6.99 (m, 1H), 6.86 (d, J = 8.3 Hz, 1H), 6.34 (s, 1H), 5.59 (d, J = 1.3 Hz, 1H), 5.15 (d, J = 4.0 Hz, 1H), 4.79 (dd, J = 10.4, 5.4 Hz, 1H), 4.32–4.19 (m, 2H), 2.59 (ddd, J = 13.2, 5.9, 2.3 Hz, 1H), 2.45 (s, 3H), 1.75 (ddd, J = 13.2, 11.0, 5.3 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 179.8, 164.6, 160.5, 145.3, 136.7, 135.3, 134.6, 133.3, 130.3, 127.4, 127.2, 126.7, 122.4, 122.0, 117.5, 112.4, 69.4, 61.4, 53.2, 29.3, 21.6, 14.1; HRMS-ESI calcd for

 $C_{24}H_{23}NO_6S [M + Na]^+ 476.1138$, found 476.1137.

6h, 42 mg, 46% yield; as a light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.22 (s, 1H), 8.03 (d, J = 2.5 Hz, 1H), 7.75 (d, J = 8.3 Hz, 2H), 7.48 (dd, J = 8.8, 2.6 Hz, 1H), 7.36 (d, J = 8.1 Hz, 2H), 6.77 (d, J = 8.8 Hz, 1H), 6.33 (s, 1H), 5.56 (d, J = 1.3 Hz, 1H), 5.15 (d, J = 4.0 Hz, 1H), 4.81–4.73 (m, 1H), 4.31–4.20 (m, 2H), 2.59 (ddd, J = 13.2, 5.9, 2.3 Hz, 1H), 2.45 (s, J = 8.8 Hz, 3H), 1.76 (ddd, J = 13.2, 11.0, 5.3 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 178.6, 164.6, 159.4, 145.5, 137.8, 136.7, 134.5, 134.1, 130.4, 129.8, 127.3, 126.7, 123.8, 119.6, 114.6, 111.4, 69.7, 61.5, 53.2, 29.3, 21.7, 14.1; HRMS-ESI calcd for C₂₄H₂₂BrNO₆S [M + Na]⁺ 554.0243, found 554.0247.

6i, 41 mg, 47% yield; as a light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.20 (s, 1H), 7.93 (d, J = 7.6 Hz, 1H), 7.75 (d, J = 8.0 Hz, 2H), 7.41 (t, J = 7.6 Hz, 1H), 7.36 (d, J = 7.9 Hz, 2H), 7.03 (t, J = 7.4 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 6.34 (s, 1H), 5.60 (s, 1H), 5.15 (s, 1H), 4.78 (dd, J = 10.6, 5.7 Hz, 1H), 3.82 (s, 3H), 2.59 (dd, J = 13.1, 4.0 Hz, 1H), 2.45 (s, 3H), 1.76 (td, J = 12.9, 5.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 179.7, 165.1, 160.5, 145.3, 136.5, 135.3, 134.6, 133.3, 130.3, 127.4, 127.2, 127.0, 122.4, 122.0, 117.5, 112.4, 69.4, 53.2, 52. 3, 29.3, 21.1; HRMS-ESI calcd for C₂₃H₂₁NO₆S [M + Na]⁺ 462.0982, found 462.0981.

6j, 47 mg, 46% yield; as a light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.22 (s, 1H), 8.03 (d, J = 2.5 Hz, 1H), 7.75 (d, J = 8.3 Hz, 2H), 7.48 (dd, J = 8.8, 2.5 Hz,

1H), 7.37 (d, J = 8.1 Hz, 2H), 6.76 (d, J = 8.8 Hz, 1H), 6.34 (s, 1H), 5.58 (d, J = 1.2 Hz, 1H), 5.15 (d, J = 4.0 Hz, 1H), 4.82–4.72 (m, 1H), 3.82 (s, 3H), 2.59 (ddd, J = 13.2, 5.9, 2.3 Hz, 1H), 2.45 (s, 3H), 1.76 (ddd, J = 13.2, 11.0, 5.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 178.5, 165.0, 159.4, 145.5, 137.8, 136.4, 134.5, 134.1, 130.4, 129.8, 127.3, 127.1, 123.8, 119.6, 114.6, 111.4, 69.7, 53.2, 52.4, 29.3, 21.7; HRMS-ESI calcd for C₂₃H₂₀BrNO₆S [M + Na]⁺ 540.0087, found 540.0082.

5. ORTEP Drawings for 3a and 6a

Table S3. Crystal data and structure refinement for 3a				
Identification code	3a			
Empirical formula	$C_{27}H_{23}N_4O_2$			
Formula weight	435.49			
Temperature	113(2) K			
Wavelength	0.71073 Å			
Crystal system, space group	Monoclinic, P2(1)/c			
Unit cell dimensions	$a = 11.699(5)$ Å, $\alpha = 90^{\circ}$.			
	$b = 15.495(7 \text{ Å}, \beta = 95.201(8)^{\circ}.$			
	$c = 12.654(6) \text{ Å}, \gamma = 90^{\circ}.$			
Volume	2284.5(17) Å ³			
Z, Calculated density	4, 1.266 Mg/m ³			
Absorption coefficient	0.082 mm^{-1}			
F(000)	916			
Crystal size	0.20 x 0.18 x 0.12 mm ³			
Theta range for data collection	1.75 to 25.02°.			
Limiting indices	-13<=h<=13, -18<=k<=18, -14<=l<=14			
Reflections collected / unique	20084 / 4030 [R(int) = 0.0657]			
Completeness to the $\theta = 25.02^{\circ}$	99.9 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.9902 and 0.9838			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	4030 / 32 / 308			
Goodness-of-fit on F ²	1.169			
Final R indices[I>2o(I)]	R1 = 0.0792, $wR2 = 0.1929$			
R indices (all data)	R1 = 0.0920, wR2 = 0.2026			
Largest diff. peak and hole	0.516 and -0.588 e. Å ⁻³			

Figure S1. ORTEP Drawing for 3a

Identification code	6a
Empirical formula	$C_{23}H_{21}NO_5S$
Formula weight	423.47
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	$a = 7.8575(16)$ Å, $\alpha = 100.47(3)^{\circ}$.
	$b = 8.2529(17) \text{ Å}, \beta = 92.60(3)^{\circ}.$
	$c = 17.024(3) \text{ Å}, \gamma = 108.88(3)^{\circ}.$
Volume	$1020.7(4) \text{ Å}^3$
Z, Calculated density	2, 1.378 Mg/m ³
Absorption coefficient	0.194 mm^{-1}
F(000)	444
Crystal size	$0.20 \ge 0.18 \ge 0.14 \text{ mm}^3$
Theta range for data collection	2.45 to 27.91°.
Limiting indices	-10<=h<=10, -10<=k<=10, -22<=l<=22
Reflections collected / unique	10574 / 4800 [R(int) = 0.0550]
Completeness to the $\theta = 27.91^{\circ}$	98.2 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9733 and 0.9622
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4800 / 0 / 273
Goodness-of-fit on F ²	0.964
Final R indices[I>2 σ (I)]	R1 = 0.0442, wR2 = 0.0951
R indices (all data)	R1 = 0.0865, wR2 = 0.1081
Largest diff. peak and hole	0.245 and -0.358 e. Å ⁻³

Table S4. Crystal data and structure refinement for 6a

Figure S2. ORTEP Drawing for 6a

6. NMR Spectra for Compounds 3, 4a, and 6

