Recyclable Copper Catalyzed Nitrogenation of Biphenyl Halides: A Direct Approach to Carbazole

(Supporting Information)

Yang Ou,[†] and Ning Jiao^{*,†,§}

[†]State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Xue Yuan Rd. 38, Beijing 100191, China, [§]State key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China.

Table of Contents

General remarks	S2
Screening of different reaction conditions	S3
Figure of Some biologically active molecules or	S3
medicines.	
Experimental procedure and characterization data	S4-S12
References	S12
¹ H NMR and ¹³ C NMR spectra for products	S13-S40

General remarks

All manipulations were conducted with schlenk tubes. ¹H-NMR spectra were recorded on a Bruker AVIII-400 spectrometers. Chemical shifts (in ppm) were calibrated with CDCl₃ and DMSO-d6. ¹³C-NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃ and DMSO-d6. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. The starting materials **1** and A21-CuI were prepared according to previously reported literatures.^{1, 2}

Figure S1. Some biologically active molecules or medicines.

Table S1 Optimization of reaction conditions for nitrogenation of biphenyl halides $2a.^{a}$

		t. (10 mol%) a <mark>N₃</mark> (2.0 eq) additives F (2 mL), T (⁰0		>	
	1a		2a		
entry	catalyst	temperature	additives	solvent	yield (%) ^b
1	none	100		DMSO	0
2 ^c	Cul	100	NaOH	DMSO	trace
3 ^c	Cul	100	NaOH, PEG-400	DMSO	trace
4	A21-Cul	100		DMF	34
5	A21-Cul	100		toluene	0
6	A21-Cul	130		DMF	55
7 ^d	Cul	130		DMF	53
9	Pd(OAc) ₂	130		DMF	0
10	$Rh(O_2CC_7H_{15})_4$	130		DMF	0
11 12		130 Sul 130		DMF	0
12	A 21 Cul	100			53
13 14	A21-Cul	130		NIVIP	57 0
15	A21-Cul	130		p-xyiene	57
16	A21-Cul. Pd(PPh ₂) ₄	130		DMF, PhCi	22
10	A_{24} -Cul	130			32 60
18	A _M -Cul	150	Nano ₂	DMF	61
19	A_{21} -Cul	150	4Å MS, NaNO ₂	DMF	65
20	A21-Cul	130	Na ₂ CO ₃	DMF	43
21	A21-Cul	130	AICI ₃	DMF	0
22	A21-Cul	130	FeCl ₂	DMF	trace
23 ^e	A21-Cul	130		DMF	0
24 ^f	A21-Cul	130		DMF	0

^{*a*} Reaction conditions: **1a** (0.5 mmol), sodium azide (1.0 mmol), additives, catalyst (10 mol %), in dry DMF (2.0 mL) under Ar for 48 h. ^{*b*} Isolated yields. ^{*c*} L-proline was added as a ligand. ^{*d*} Phen was added as a ligand. ^{*e*} TMSN₃ was added instead of NaN₃. ^{*f*} TosN₃ was added instead of NaN₃.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Experimental procedure and characterization data

1) 9H-Carbazole (2a)³

Typical procedure:

The reaction of 2-iodo-1,1'-biphenyl (**1a**) (0.5 mmol, 140 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL dry DMF at 150 °C under argon for 48 h. The resulting mixture was filtered, concentrated and purified by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10:1) to afford 54.6 mg (65%) of **2a** as solid: ¹H NMR (DMSO, 400 MHz): δ = 11.29 (s, 1H), 8.12 (d, *J* = 7.6 Hz, 2H), 7.53 (d, *J* = 8 Hz, 2H), 7.43-7.38 (m, 2H), 7.20-7.14 (m, 2H); ¹³C NMR (DMSO, 100 MHz): δ = 140.2, 126.0, 122.9, 120.6, 119.0, 111.4 ppm; IR (neat): v = 3479, 2250, 1242, 823, 761, 624 cm⁻¹. MS (70 eV): m/z (%) 167.0 (M+,100).

2) 2-Methyl-9H-carbazole (2b)³

The reaction of 2-iodo-4'-methyl-1,1'-biphenyl (**1b**) (0.5 mmol, 147 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) in 2 mL dry DMF at 150 °C under argon for 48 h afforded 75.3 mg (83%) of **2b** as solid: ¹H NMR (DMSO, 400 MHz): $\delta = 11.14$ (s, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.38-7.34 (m, 1H), 7.32 (s, 1H), 7.14 (t, J = 7.4 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 2.50(s, 3H); ¹³C NMR (DMSO, 100 MHz): $\delta = 140.7$, 140.2, 135.5, 125.4, 123.0, 120.7, 120.5, 120.3, 120.2, 118.9, 111.4, 111.3, 22.2; IR (thin film): 3467, 2251, 1658, 1243, 823, 761, 625 cm⁻¹; MS (70 eV): m/z (%) 181.1 (M+,100).

3) 2-Methoxy-9H-carbazole (2c)³

The reaction of 2-iodo-4'-methoxy-1,1'-biphenyl (**1c**) (0.5 mmol, 155 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL dry DMF at 150 °C under argon for 48 h afforded 79 mg (80%) of **2c** as solid: ¹H NMR (DMSO, 400 MHz): $\delta = 11.14$ (s, 1H), 8.00-7.95 (m, 2H), 7.46 (d, J = 8.0 Hz, 1H), 7.33-7.29 (m, 1H), 7.15-7.11 (m, 1H), 7.01 (d, J = 2.0 Hz, 1H), 6.79 (dd, $J_1 = 2.0$ Hz, $J_2 = 8.8$ Hz, 1H), 3.85 (s, 3H); ¹³C NMR (DMSO, 100 MHz): $\delta = 159.0$, 141.6, 140.2, 124.6, 123.2, 121.4, 119.7, 119.0, 116.7, 111.1, 108.2, 94.9, 55.7; IR (thin film): 3432, 2251, 1632, 1463, 823, 761, 625 cm⁻¹; MS (70 eV): m/z (%) 197.1 (M+,100).

4) 2-Fluoro-9H-carbazole (2d)³

The reaction of 4'-fluoro-2-iodo-1,1'-biphenyl (**1d**) (0.5 mmol, 149 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL dry DMF at 150 °C under argon for 48 h afforded 57.3 mg (62%) of **2d** as solid: ¹H NMR (DMSO, 400 MHz): $\delta = 11.40$ (s, 1H), 8.18-8.06 (m, 2.0 H), 7.50 (d, J = 8.0 Hz, 1H), 7.37 (t, J = 7.4 Hz, 1H), 7.28 (dd, $J_1 = 2.0$ Hz, $J_2 = 10.0$ Hz, 1H), 7.17 (t, J = 7.4 Hz, 1H), 7.10-6.80 (m, 1H); ¹³C NMR (DMSO, 100 MHz): $\delta = 161.6$ (d, J = 23.7 Hz), 140.8 (J = 1.20 Hz), 125.7, 122.5, 121.9 (d, J = 1.12 Hz), 120.4, 119.5 (d, J = 2.15 Hz), 111.5, 106.9 (d, J = 2.41 Hz), 97.8 (d, J = 2.58 Hz); IR (thin film): 3457, 2250, 1462, 823, 761 cm⁻¹; MS (70 eV): m/z (%) 185.1 (M+,100).

5) 2-Chloro-9H-carbazole (2e)⁴

The reaction of 4'-chloro-2-iodo-1,1'-biphenyl (**1e**) (0.5 mmol, 157 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL dry DMF at 150 °C under argon for 48 h afforded 55.6 mg (55%) of **2e** as solid: ¹H NMR (DMSO, 400 MHz): $\delta = 11.41$ (s, 1H), 8.11 (d, J = 8.4 Hz, 2H), 7.54-7.51 (m, 2H), 7.45-7.39 (m, 1H), 7.21-7.16 (m, 2H); ¹³C NMR (DMSO, 100 MHz): $\delta = 140.8$, 140.6, 130.3, 126.4, 122.3, 122.0, 121.8, 120.8, 119.6, 119.1, 111.7, 111.1; IR (thin film): 3457, 2250, 1462, 823, 761 cm⁻¹; MS (70 eV): m/z (%) 201.0 (M+,100).

6) 2-(Tert-butyl)-9H-carbazole (2f)³

The reaction of 4'-(tert-butyl)-2-iodo-1,1'-biphenyl (**1f**) (0.5 mmol, 168 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL dry DMF at 150 °C under argon for 48 h afforded 89 mg (79%) of **2f** as solid: ¹H NMR (DMSO, 400 MHz): $\delta = 11.11$ (s, 1H), 8.04 (d, J = 7.6 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.50-7.48 (m, 2H), 7.38-7.34 (m, 1H), 7.22 (d, J = 8.4 Hz, 1H), 7.14 (t, J = 7.6 Hz, 1H); 1.39 (s, 9H); ¹³C NMR (DMSO, 100 MHz): $\delta = 149.0$, 140.5, 140.4, 125.4, 122.9, 120.5, 120.3, 120.1, 118.8, 117.0, 111.3, 107.6, 35.2, 32.0; IR (thin film): 3450, 2250, 1659, 1462, 823, 761 cm⁻¹; MS (70 eV): m/z (%) 223.1 (M+,100).

13) 9H-Carbazol-2-amine (2g)⁶

The reaction of 2'-iodo-[1,1'-biphenyl]-4-amine (**1g**) (0.5 mmol, 147.5 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL dry DMF at 150 °C under argon for 48 h afforded 62 mg (68%) of **2g** as solid: ¹H NMR (DMSO, 400 MHz): $\delta = 10.74$ (s, 1H), 7.82 (d, J = 7.6 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.19-7.15 (m, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.63 (s, 1H), 6.49 (dd, $J_1 = 2.0$ Hz, $J_2 = 8.0$ Hz, 1H), 5.18 (brs, 2H); ¹³C NMR (DMSO, 100 MHz): $\delta = 148.2$, 142.4, 139.7, 124.0, 123.3, 121.0, 118.6, 118.5, 113.6, 110.5, 108.6, 94.8; IR (thin film): 3428, 2251, 1632, 1243, 824, 762, 626 cm⁻¹; MS (70 eV): m/z (%) 182.1 (M+,100).

14) 9H-Carbazol-2-ol (2h)⁷

The reaction of 2'-iodo-[1,1'-biphenyl]-4-ol (**1h**) (0.5 mmol, 148 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL dry DMF at 150 °C under argon for 48 h afforded 33.8 mg (37%) of **2h** as solid: ¹H NMR (DMSO, 400 MHz): $\delta = 10.95$ (s, 1H), 9.42 (s, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 7.6 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.24 (t, J = 7.6 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 6.83-6.82 (m, 1H), 6.65-6.62 (m, 1H); ¹³C NMR (DMSO, 100 MHz): $\delta = 156.9$, 141.9, 140.0, 124.2, 123.4, 121.3, 119.3, 118.8, 115.6, 110.8, 108.7, 96.7; IR (thin film): 3429, 2251, 1659, 824, 762, 625 cm⁻¹; MS (70 eV): m/z (%) 183.1 (M+,100).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

7) 4-Methoxy-9H-carbazole (2i)⁵

The reaction of 2-iodo-2'-methoxy-1,1'-biphenyl (**1i**) (0.5 mmol, 155 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL dry DMF at 150 °C under argon for 48 h afforded 73 mg (74%) of **2i** as solid: ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.42$ (d, J = 7.6 Hz, 1H), 7.92 (s, 1H), 7.45-7.33 (m, 4H), 7.01 (d, J = 8.0 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 4.12 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 156.2$, 140.8, 138.6, 126.6, 124.9, 123.0, 122.6, 119.5, 112.5, 109.9, 103.5, 100.3, 55.3; IR (thin film): 3403, 3229, 3176, 2959, 1734, 1456 cm⁻¹; MS (70 eV): m/z (%) 310.0 (M+,100).

8) 2-Fluoro-9H-carbazole (2d)³

The reaction of 4-fluoro-2-iodo-1,1'-biphenyl (**1j**) (0.5 mmol, 149 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL dry DMF at 150 $^{\circ}$ C under argon for 48 h afforded 51.6 mg (56%) of **2d** as solid.

9) 3-Methyl-9H-carbazole (2k)³

The reaction of 2-iodo-5-methyl-1,1'-biphenyl (1k) (0.5 mmol, 147 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL

dry DMF at 150 °C under argon for 48 h afforded 70.8 mg (78%) of **2k** as solid: ¹H NMR (DMSO, 400 MHz): $\delta = 11.14$ (s, 1H), 8.06 (d, J = 7.6 Hz, 1H), 7.90 (s, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.42-7.35 (m, 2H), 7.22 (d, J = 8.0 Hz, 1H), 7.16-7.12 (m, 1H), 2.48 (s, 3H); ¹³C NMR (DMSO, 100 MHz): $\delta = 140.5$, 138.5, 127.6, 127.3, 125.8, 123.1, 122.7, 120.5, 120.4, 118.7, 111.3, 111.1, 21.6; IR (thin film): 3464, 2250, 1660, 1242, 823, 761 cm⁻¹; MS (70 eV): m/z (%) 181.1 (M+,100).

10) 4-Methyl-9H-carbazole (2l)³

The reaction of 2-iodo-5-methyl-1,1'-biphenyl (**1**) (0.5 mmol, 147 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL dry DMF at 150 °C under argon for 48 h afforded 51 mg (56%) of **21** as solid: ¹H NMR (DMSO, 400 MHz): $\delta = 11.20$ (s, 1H), 8.09 (d, J = 7.6 Hz, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.42-7.38 (m, 1H), 7.21-7.14 (m, 2H), 7.08 (t, J = 7.6 Hz, 1H), 2.58(s, 3H); ¹³C NMR (DMSO, 100 MHz): $\delta = 140.3$, 139.5, 126.4, 125.8, 123.3, 122.5, 120.7, 120.5, 119.1, 119.0, 118.1, 111.5, 17.5; IR (thin film): 3432, 2251, 1659, 1239, 823, 761 cm⁻¹; MS (70 eV): m/z (%) 181.1 (M+,100).

11) 2-Isopropyl-6-methyl-9H-carbazole (2m)³

The reaction of 2-iodo-4'-isopropyl-5-methyl-1,1'-biphenyl (**1m**) (0.5 mmol, 168 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL dry DMF at 150 °C under argon for 48 h afforded 78 mg (70%) of **2m** as solid: ¹H NMR (DMSO, 400 MHz): $\delta = 10.98$ (s, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.84 (s, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.31 (s, 1H), 7.18 (dd, $J_1 = 1.6$ Hz, $J_2 = 8.0$ Hz 1H), 7.19 (dd, $J_1 = 1.2$ Hz, $J_2 = 8.0$ Hz 1H), 3.05-3.02(m, 1H), 2.47(s, 3H), 1,30(d, J =7.6 Hz, 6H); ¹³C NMR (DMSO, 100 MHz): $\delta = 146.6$, 140.9, 138.6, 127.4, 126.7, 123.2, 120.9, 120.3, 120.1, 117.8, 111.0, 108.5, 34.4, 24.8, 21.6; IR (thin film): 3431, 2251, 1659, 1246, 823, 761 cm⁻¹; MS (70 eV): m/z (%) 223.1 (M+,100).

12) 2-Methoxy-9H-carbazole (2c)³

The reaction of 2-iodo-4-methoxy-1,1'-biphenyl (**1n**) (0.5 mmol, 155 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL dry DMF at 150 $^{\circ}$ C under argon for 48 h afforded 68 mg (69%) of **2c**.

15) 2-Methyl-9H-carbazole (2b)³

The reaction of 2-iodo-4-methyl-1,1'-biphenyl (**10**) (0.5 mmol, 147 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL dry DMF at 150 $^{\circ}$ C under argon for 48 h afforded 73.3 mg (81%) of **2b**.

16) 9H-Carbazole $(2a)^3$

The reaction of 2-bromo-1,1'-biphenyl (**1p**) (0.5 mmol, 116.5 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL dry

DMF at 150 °C under argon for 72 h afforded 50.9 mg (61%) of 2p as white solid.

17) 2-Methoxy-9H-carbazole (2c)³

The reaction of 2-bromo-4'-methoxy-1,1'-biphenyl (**1q**) (0.5 mmol, 131 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL dry DMF at 150 $^{\circ}$ C under argon for 72 h afforded 75.8 mg (77%) of **2c**.

18) Pyrido[1,2-b]indazole (2r)⁸

The reaction of 2-(2-iodophenyl)pyridine (**1r**) (0.5 mmol, 140.5 mg), A21-CuI (0.025 mmol, 20mg), NaN₃ (1.0 mmol, 65 mg), 4 Å MS (100 mg) were stirred in 2 mL dry DMF at 150 °C under argon for 72 h afforded 53.8 mg (64%) of **2r** as solid: ¹H NMR (DMSO, 400 MHz): $\delta = 9.03$ (d, J = 6.8 Hz, 1H), 8.42 (d, J = 8.0 Hz, 1H), 8.27 (d, J = 7.6 Hz, 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.55-7.46 (m, 2H), 7.37-7.34 (m, 1H), 7.20(t, J = 7.6 Hz, 1H); ¹³C NMR (DMSO, 100 MHz): $\delta = 149.5$, 135.2, 128.7, 128.6, 123.0, 121.0, 119.7, 118.8, 117.5, 115.5, 115.2; IR (thin film): 3430, 2251, 1645, 824, 761, 625 cm⁻¹; MS (70 eV): m/z (%) 168.1 (M+,100).

3g

19) 9H-Carbazol-4-ol (3g)⁹

The reaction of 4-methoxy-9H-carbazole **2g**) (0.3 mmol, 59 mg), BBr₃ (0.25 mL), were stirred in 2 mL CH₂Cl₂ at -30 $^{\circ}$ C for 3 h afforded 49 mg (90%) of **3g** as solid: ¹H

NMR (DMSO, 400 MHz): $\delta = 11.13$ (s, 1H), 10.03 (s, 1H), 8.17 (d, J = 8.0 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.20-7.11 (m, 2H), 6.93 (d, J = 8.0 Hz, 1H), 6.59(d, J = 8.0 Hz, 1H); ¹³C NMR (DMSO, 100 MHz): $\delta = 153.9$, 142.0, 139.4, 139.3, 126.9, 124.7, 122.6, 118.8, 111.5, 110.6, 104.5, 102.4; IR (thin film): 3428, 2251, 1661, 824, 762, 624 cm⁻¹; MS (70 eV): m/z (%) 183.1 (M+,100).

Reference

- 1. Poriel, C.; Ferrand, Y.; Juillard, S.; Maux, P. L.; Simonneaux, G. *Tetrahedron* 2004, 60, 145.
- Girard, C.; Önen, E.; Aufort, M.; Beauvière, S.; Samson, E.; Herscovici, J. Org. Lett. 2006, 8, 1689.
- B. Stokes, J.; Jovanović, B.; Dong, H.; Richert, K. J.; Riell, R. D.; Driver, T. G. J. Org. Chem. 2009, 74, 3225.
- 4. Dodsworth, D. J.; Quesada P., A.; Rosa, M. D. J. Heterocycl. Chem. 1988, 25, 167.
- Tsang, W. C. P.; Munday, R. H.; Brasche, G.; Zheng, N.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7603.
- Lancelot, J. C.; Jean, C.; Gazengel, J. M.; Rault, S.; Robba, M. Chem. Pharm. Bull. 1983, 31, 45.
- 7. Bonesi, S. M.; Ponce, M. A.; Erra-Balsells, R.; J. Heterocycl. Chem. 2004, 41, 161.
- Zhao, J.; Wu, C.; Li, P.; Ai, W.; Chen, H.; Wang, C.; Larock, R. C.; Shi, F.; J. Org. Chem. 2011, 76, 6837.
- 9. Sissouma, D.; Maingot, L.; Collet, S.; Guingant, A. J. Org. Chem. 2006, 71, 8384.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

