Supporting Information

for

Thermodynamic Control of Oxidative Addition and Reductive Elimination Processes in *cis*-Bis(dimethoxyboryl)bis(tricyclohexylphosphine)platinum(II)

Holger Braunschweig* and Alexander Damme

Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland, 97074 Würzburg (Germany) Fax: (+49)931-31-84623 E-Mail: h.braunschweig@uni-wuerzburg.de

Table of contents

Supporting Materials for cis-Bis(boryl)platinum complexes	3
Experimental Section	4
General considerations:	4
Synthesis of cis -[(Cy ₃ P) ₂ Pt{B(OMe) ₂ } ₂] (1):	4
Crystal structure determination	5
Computational Results	7
Wiberg bond indices:	7
Calculated B1-B2 bond distances:	7
Natural Charges:	7
Computational Details	13
Cartesian coordinates for 1_{OPT} and 1_{TS}	14
Cartesian coordinates for 4 _{OPT} and 4 _{TS}	16
Cartesian coordinates for 1 _{ADD} and 4 _{ADD}	18
Cartesian coordinates for [B ₂ (OMe) ₄] _{OPT} and [B ₂ Cat ₂] _{OPT}	20
Cartesian coordinates for 1'ADD and 4'ADD	21
Cartesian coordinates for [Pt(PCy ₃) ₂] _{OPT}	22
References	24

Supporting materials for cis-bis(boryl) platinum complexes

 $\begin{array}{l} \textbf{Table 1} Comparison of bond lengths [\AA] and angles [°] in cis-bis(boryl) platinum(II) complexes. (2: cis-[(Ph_3P)_2Pt(BCat')_2]; \textbf{3}: cis-[(Ph_3P)_2Pt(BCat)_2]; \textbf{4}: cis-[(Cy_3P)_2Pt(BCat')_2], \textbf{BCat'} = Cat-4-tBu; \textbf{6}: cis-[(Cy_2P)_2Pt(BCat)_2]). \\ \begin{array}{l} \textbf{4}: cis-[(Cy_3P)_2Pt(BCat')_2]; \textbf{5}: cis-[(Cy_3P)_2Pt(BCat')_2], \textbf{BCat'} = Cat-4-tBu; \textbf{6}: cis-[(Cy_2P)_2Pt(BCat)_2]). \\ \begin{array}{l} \textbf{4}: cis-[(Cy_3P)_2Pt(BCat')_2]; \textbf{5}: cis-[(Cy_3P)_2Pt(BCat')_2], \textbf{6}: cis-[(Cy_3P)_2Pt(BCat')_2]; \textbf{5}: cis-[(Cy_3P)_2Pt(BCat')_2], \textbf{6}: cis-[(Cy$

Complex	Pt1-B1 ^a	Pt1–B2 ^a	Pt1-P1 ^a	Pt1-P2 ^a	P1-Pt1-P2 ^b	B1-Pt-B2 ^b
1	2.093(5)	2.108(5)	2.372(1)	2.372(1)	109.58(4)	71.3(2)
2	2.04(1)	2.04(1)	2.344(3)	2.353(3)	104.3(1)	77.2(4)
3	2.040(6)	2.058(6)	2.354(2)	2.346(2)	107.14(4)	77.1(2)
4	2.039(5)	2.060(5)	2.384(1)	2.390(1)	109.11(4)	70.1(2)
5	2.044(3)	2.047(3)	2.397(1)	2.388(1)	110.29(4)	72.1(1)
6	2.045(4)	2.049(4)	2.3473(8)	2.3408(8)	102.56(3)	76.0(1)

 a distances given in Å. b angles given in degrees [°].

 $\label{eq:comparison} \textbf{Table 2} \ Comparison \ of \ {}^{31}P\{ {}^{1}H \} \ and \ {}^{11}B\{ {}^{1}H \} \ NMR \ signals \ of \ cis-bis(boryl) \ platinum(II) \ complexes \ at \ room \ temperature.$

Complex	${}^{31}\mathbf{P}\{{}^{1}\mathbf{H}\}^{a}$	${}^{1}J_{P-Pt}^{b}$	${}^{11}\mathbf{B}\{{}^{1}\mathbf{H}\}{}^{a}$
1	33.7	1442	45.8
2	29.0	1621	50.1
3	28.7	1639	47.0
4	35.4	1675	49.7
5	35.6	1683	49.9
6	9.8	1567	49.4

 a NMR shifts given in [ppm]. $^{b\ 1}J_{P-Pt}$ coupling constants given in [Hz].

Experimental Section

General considerations

All syntheses were carried out under an argon atmosphere with standard Schlenk and glovebox techniques. $[Pt(PCy_3)_2]^1$ and $B_2(OMe)_4$ were prepared according to published procedures.² Pentane was dried by distillation over sodium under argon and stored over molecular sieves. C_6D_6 was degassed by three freeze-pump-thaw cycles and stored over molecular sieves. NMR spectra were recorded on a Bruker Avance 500 NMR spectrometer (500.1 MHz for ¹H, 160.4 MHz for ¹¹B, 126 MHz for ¹³C{¹H}, 202.3 MHz for ³¹P{¹H}) at 233 K, 298 K, and 353 K. Chemical shifts (δ) are given in ppm and are referenced against external Me₄Si (¹H, ¹³C; *TMS*), [BF₃·Et₂O] (¹¹B) and 85% H₃PO₄ (³¹P). Elemental analyses were acquired on an Elementar Vario MICRO cube instrument.

Synthesis of cis-[(Cy₃P)₂Pt{B(OMe)₂}₂] (1)

Fig. 1 Synthesis of the cis-bis(boryl) platinum complex cis-[$(Cy_3P)_2Pt\{B(OMe)_2\}_2$] (1).

To a solution of $[Pt(PCy_3)_2]$ (50.6 mg, 66.9 µmol) in pentane (1 mL) an excess of B₂(OMe)₄ (20.0 mg, 137 µmol, 2 eq.) was added at RT. The mixture was stored overnight at -25 °C resulting in formation of colourless single crystals of **1**, also suitable for X-ray diffraction. The solvent was removed, the crystals were washed with pentane (3 × 1 mL) and all volatiles were removed under vacuum, yielding 99.4% (60.0 mg, 66.5 µmol) of analytically pure **1**.

NMR at room temperature, 25 °C:

¹**H NMR** (500.1 MHz, C₇D₈, 298 K, TMS): $\delta = 3.92$ (s, 12H; OCH₃), 2.42–1.14 (m; CH & CH₂; Cy of [Pt(PCy₃)₂] and **1**); ¹¹**B**{¹**H**} **NMR** (160.4 MHz, C₇D₈, 298 K, BF₃·OEt₂): $\delta = 45.8$ ppm (br s, Pt*B*); ¹³C{¹**H**} **NMR** (125.7 MHz, C₇D₈, 298 K, TMS): $\delta = 51.7$ ppm (br s, 4C; OCH₃); ³¹P{¹**H**} **NMR** (202.3 MHz, C₆D₈, 298 K, 85% H₃PO₄): $\delta = 62.14$ (s, ¹*J*_{P.} = 4180 Hz; [Pt(PCy₃)₂]), 33.7 ppm (s, ¹*J*_{P.Pt} = 1442 Hz).

NMR at 80 °C:

¹**H** NMR (500.1 MHz, $C_7D_{8,}$ 353 K, TMS): $\delta = 3.87$ (s, 6H; OCH₃), 3.44 (s, 6H; OCH₃); 2.29–2.15 (m, CH, Cy of [Pt(PCy₃)₂] and **1**), 1.99–1.53 (m, CH₂, Cy of [Pt(PCy₃)₂] and **1**), 1.41–1.10 ppm (m, CH₂, Cy of [Pt(PCy₃)₂] and **1**).

NMR at low temperature, -40 °C:

¹**H** NMR (500.1 MHz, C₇D₈, 233 K, TMS): δ = 4.26 (s, 6H; OCH₃), 3.76 (s, 6H; OCH₃), 3.22–2.07 (m, 6H; CH, Cy), 2.01– 1.03 ppm (m, 60H; CH₂, Cy); ¹³C{¹**H**} NMR (125.7 MHz, C₇D₈, 233 K, TMS): δ = 53.6 (br s, 2C; OCH₃), 50.0 (br s, 2C; OCH₃), 39.2–37.5 (m, 6C; CH, Cy), 33.0–25.3 ppm (br m, 30C, CH₂, Cy); ³¹P{¹**H**} NMR (202.3 MHz, C₆D₈, 298 K, 85% H₃PO₄): δ = 32.8 ppm (s, ¹J_{P-Pt} = 1460 Hz).

Free diborane(4), B₂(OMe)₄, at room temperature, 25 °C:

¹**H** NMR (500.1 MHz, C_7D_8 , 298 K, TMS): $\delta = 3.54$ ppm (s, 12H; OCH₃); ¹¹**B**{¹**H**} NMR (160.4 MHz, C_7D_8 , 298 K, F₃B·OEt₂): $\delta = 30.0$ ppm (s, *B*OMe); ¹³C{¹**H**} NMR (125.7 MHz, C_7D_8 , 298 K, TMS): $\delta = 51.6$ ppm (s, 4C; OCH₃). Elemental analysis for calcd (%) for $C_{40}H_{78}B_2O_4P_2Pt$ (901.70 g·mol⁻¹): C 53.28, H 8.72; found: C53.30, H 8.76.

Crystal structure determination

The crystal data of **1** were collected on a Bruker X8-APEX II diffractometer with a CCD area detector and multi-layer mirror monochromated $Mo_{K\alpha}$ radiation. The structure was solved using direct methods, refined with the ShelX software package (G. Sheldrick, *Acta Cryst.*, **2008**, *A64*, 112–122) and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factors calculations. All hydrogen atoms were assigned to idealised geometric positions.³

The displacement parameters of atoms C172 > C177, and C76 > C81 of the cyclohexyl groups were constrained to the same value.

The distances between C101 > C105, C111 > C115, and C121 > C125 of the three pentane solvent molecules were restrained during refinement to the same value with SADI restraint.

The Uii displacement parameters of all three pentane carbon atoms and of the cyclohexyl carbon atoms C76, and C172 > C176 were restrained with ISOR keyword to approximate isotropic behavior.

Crystal data for 1: $C_{95}H_{192}B_4O_8P_4Pt_2$, $M_r = 2019.79$, colourless block, $0.11 \times 0.24 \times 0.32$ mm³, monoclinic space group $P2_1/n$, a = 11.8325(2) Å, b = 41.1461(9) Å, c = 21.8039(5) Å, $\beta = 90.0190(10)^\circ$, V = 10615.5(4) Å³, Z = 4, $\rho_{calcd} = 1.264$ g·cm⁻³, $\mu = 2.741$ mm⁻¹, F(000) = 4248, T = 100(2) K, $R_I = 0.0742$, $wR^2 = 0.1231$, 20928 independent reflections $[20 \le 52.04^\circ]$ and 1064 parameters.

The unit cell contains 12 pentane molecules (3 per asymmetric unit) which have been treated as a diffuse contribution to the overall scattering without specific atom positions by SQUEEZE/PLATON.⁴

Crystal data for **1** (Squeezed): $C_{40}H_{78}B_2O_4P_2Pt$, $M_r = 901.67$, colourless block, $0.11 \times 0.24 \times 32 \text{ mm}^3$, monoclinic space group $P2_1/n$, a = 11.8325(2) Å, b = 41.1461(9) Å, c = 21.8039(5) Å, $\beta = 90.0190(10)^\circ$, V = 10615.5(4) Å³, Z = 4, $\rho_{calcd} = 1.128 \text{ g}\cdot\text{cm}^{-3}$, $\mu = 2.734 \text{ mm}^{-1}$, F(000) = 3744, T = 100(2) K, $R_I = 0.0664$, $wR^2 = 0.0779$, 21788 independent reflections $[2\theta \le 5288^\circ]$ and 880 parameters.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC-913240 (1). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif

Fig. 2 Molecular structure of **1** in the crystal. Thermal ellipsoids are displayed at the 50% probability level. For clarity, the three solvent molecules pentane and the second molecule of **1** in the asymmetric unit have been omitted. Hydrogen atoms and thermal ellipsoids of the carbon atoms have been omitted. Selected bond lengths [Å] and bond angles [°]: Pt1–B1 2.093(5), Pt1–B2 2.108(5), Pt1–P1 2.3723(10), Pt1–P2 2.3724(10), B1 \cdots B2 2.451, B1–O1 1.384(5), B1–O2 1.383(5), B2–O3 1.369(5), B2–O4 1.36(6), B1–Pt1–B2 71.39(18), B1–Pt1–P1 89.76(12), P1–Pt1–P2 109.58(4), P2–Pt1–B1 159.52(12), P1–Pt1–B2 159.08(13), P2–Pt1–B2 90.35(13), O1–B1–O2 113.0(4), O3–B2–O4 113.9(4).

Computational Results

Wiberg bond indices

 $\label{eq:table_stability} \textbf{Table 3} Calculated \textit{Wiberg bond indices (WBIs)} for the free diboranes B_2(OMe)_{4,} and B_2Cat_2 and the diborane parts of the transition states 1_{TS} and 4_{TS}.$

WBIs ^a	B1–B2	B101	B1-O2	B2-O3	B204
B ₂ (OMe) ₄ ^b	0.9288	0.9565	0.9565	0.9565	0.9665
$\left[B_2(OMe)_4 \right]^{\dagger_c}$	0.9690	0.9282	0.9498	0.9289	0.9479
$\mathbf{B}_2(\mathbf{Cat})_2^{\ b}$	0.9869	0.9260	0.9261	0.9260	0.9269
$\left[\mathbf{B}_2(\mathbf{Cat})_2\right]^{\mathbf{t}_c}$	0.9704	0.9006	0.9012	0.8985	0.9016

^a WBI = Wiberg Bond Index; ^b free optimized diboranes(4) at the ground state; ^c Single-Point calculations at the diborane part of the transition states $\mathbf{1}_{TS}$ and $\mathbf{4}_{TS}$ without geometry optimization.

Calculated B1-B2 bond distances

Table 4 Calculated B1-B2 bond distances for the free diboranes B2(OMe)₄, and B2Cat2 and the diborane parts of the transition states 1_{TS} and 4_{TS}.

	d (B1–B2) ^a
B ₂ (OMe) ₄ ^b	1.72751
$\left[B_2(OMe)_4 \right]^{\dagger_c}$	1.73936
$\mathbf{B}_2(\mathbf{Cat})_2^b$	1.68422
$\left[\mathbf{B}_2(\mathbf{Cat})_2\right]^{\mathbf{t}_c}$	1.89945

 a [Å]: b free optimized diboranes(4) in the ground state; c Single-Point calculations at the diborane part of the transition states $\mathbf{1}_{TS}$ and $\mathbf{4}_{TS}$ without geometry optimization.

Natural Charges

Fig. 3 Labeling of the calculated diboranes of Table 5.

 $\label{eq:constraint} \textbf{Table 5} Calculated \textit{Natural Charges (NC)} for the free diboranes B_2(OMe)_{4,} and B_2Cat_2 and the diborane parts of the transition states \textbf{1}_{TS} and \textbf{4}_{TS}.$

NC ^a	B1	B2	01	C1	02	C2	03	C3	04	C4
$B_2(OMe)_4^{\ b}$	0.79517	0.79513	-0.68824	-0.35758	-0.68819	-0.35764	-0.68819	-0.35763	-0.68823	-0.35759
$\left[B_2(OMe)_4\right]^{\sharp_c}$	0.77704	0.77679	-0.69538	-0.35949	-0.69722	-0.35139	-0.69844	-0.35263	-0.69614	-0.35810
$\mathbf{B}_2(\mathbf{Cat})_2^{\ b}$	0.75740	0.75740	-0.61250	0.25143	-0.61249	0.25146	-0.61249	0.25145	-0.61250	0.25143
$[\mathbf{B}_2(\mathbf{Cat})_2]^{\mathbf{t}_c}$	0.78414	0.78378	-0.62944	0.25706	-0.63020	0.25930	-0.63094	0.25939	-0.62891	0.25746

^{*a*} Natural Charges; ^{*b*} free optimized diboranes(4) at the ground state; ^{*c*} Single-Point calculations at the diborane part of the transition states $\mathbf{1}_{TS}$ and $\mathbf{4}_{TS}$ without geometry optimization.

Calculated energy for the HOMO-LUMO-Gaps

Table 6 Calculated energy for the HOMO–LUMO gaps of the free diboranes $B_2(OMe)_{4_1}$ and B_2Cat_2 and the diborane parts of the transition states 1_{TS} and 4_{TS} .

	E (HOMO) ^a	E (LUMO) ^a	ΔE (HOMO–LUMO) ^a	$\Delta E (\text{HOMO-LUMO})^b$
B ₂ (OMe) ₄ ^c	-0.21528	-0.02081	0.19447	5.29
$\left[B_2(OMe)_4 \right]^{\dagger d}$	-0.21431	-0.03538	0.17893	4.86
$B_2(Cat)_2^c$	-0.20237	-0.07377	0.12860	3.49
$\left[\mathbf{B}_2(\operatorname{Cat})_2\right]^{*d}$	-0.20153	-0.06842	0.13311	3.62

^{*a*} Energy in *atomic units* [a.u.]; ^{*b*} Energy in eV; ^{*c*} free optimized diboranes(4) at the ground state; ^{*d*} Single-point calculations at the diborane part of the transition states $\mathbf{1}_{TS}$ and $\mathbf{4}_{TS}$ without geometry optimization.

Fig. 4 Bonding interaction in 1'ADD and 4'ADD.

Bonding interaction in HOMO and LUMO orbitals

Table 6 Rendered HOMO-1, HOMO-5 (selected) and LUMO+1 orbitals of the free diboranes $B_2(OMe)_{4}$, and B_2Cat_2 and the diborane parts of the transition states 1_{TS} and 4_{TS} .

Computational Details

The geometries of B₂(OMe)₄, B₂(Cat)₂, [Pt(PCy₃)₂], *cis*-[(Cy₃P)₂Pt{B(OMe)₂}₂] (1_{cal}), and *cis*-[(Cy₃P)₂Pt{Bcat}₂] (4_{cal}) were optimized without symmetry restraints using Turbomole 5.10.⁵ Subsequent final optimizations were conducted with the Gaussian09 program package.^{6a} Frequency calculations were used to verify that the final geometries represent energy minima. The computations were performed using DFT methods, applying the Perdew–Burke–Ernzerhof (PBE) exchange correlation functional using 6-31G(d,p) basis sets for H, B, C, O, P Stuttgart relativistic, small core ECP basis sets for Pt.⁷ The transition state 1_{TS} was localized applying the *Synchronous-Guided Quasi-Newton* method embedded within the Gaussian09 software package (QST2 option) or direct methods,⁸ while the nature of the transition state was further verified by frequency calculations. The pre-configured adducts 1_{ADD} und 4_{ADD} were calculated by the *intrinsic reaction coordinate* method in Gaussian09 by starting from the corresponding transition state, and a subsequent final optimization and frequency analysis was also conducted within the Gaussian09 program package.⁶ Calculations of 1^{*}_{ADD} and 4^{*}_{ADD} using the NBO program (version 5.0) embedded within the Gaussian03 software package.⁶ Calculations of the *WBIs* were performed on *single-point* calculations of the transition state 1_{TS} using the NBO program (version 5.0) embedded within the Gaussian09 software package.⁶⁶

For the calculation of the energy values of the Gibbs free energy (ΔG_{Total} , 1 atm, 298 K) the values of the SCF energy *E* were corrected by the correlation energy ΔG_{corr} (thermal and entropic correction of the Gibbs free energy values), the dispersion energy ΔE_{Disp} derived from the XYZ-Viewer on the PBE0 level of theory,¹⁰ and the solvation energy ΔE_{solv} for toluene.

Absolute energies of all calculated species:

Table 6 Calculated SCF energy *E*, thermal correction to Gibbs free energy ΔG_{Corr} , solvation energy ΔE_{Solv} and dispersion energy ΔE_{Disp} (PBE / H, C, B, O, P 6-31G(d,p); Pt Stutt, Stutt-ECP; T = 298.15 K).

No.	Compound ^a	E (SCF) ^b	$\Delta G_{\rm Corr}^{b}$	$\Delta E_{\rm Solv}^{c}$	$\Delta E_{\rm Disp}^{c}$
	B ₂ (OMe) ₄	-509.74935285	0.131921	-5.537556	-10.022765
	B_2Cat_2	-811.91260541	0.141070	-6.902501	-10.083750
	$[Pt(PCy_3)_2]$	-2211.56270310	0.862423	-2.013973	-85.635090
1_{ADD}	$[(Cy_3P)_2Pt+B_2(OMe)_4]$	-2721.33336024	1.015602	-2.466978	-104.451736
4_{ADD}	cis-[(Cy ₃ P) ₂ Pt···(BCat) ₂]	-3023.49867160	1.030818	-2.911412	-114.699986
1_{OPT}	$\textit{cis-[(Cy_3P)_2Pt\{B(OMe)_2\}_2]}$	-2721.31777232	1.023651	-1.978732	-118.159872
4 _{OPT}	cis-[(Cy ₃ P) ₂ Pt(BCat) ₂]	-3023.50822196	1.034153	-3.918540	-119.835057
1_{TS}	$[(Cy_3P)_2Pt\{B(OMe)_2\}_2]$	-2721.31522994	1.026336	-1.600237	-118.986974
4_{TS}	[(Cy ₃ P) ₂ Pt(BCat) ₂]	-3023.49336086	1.032530	-3.009034	-115.059012

Cartesian coordinates for $\mathbf{1}_{\text{OPT}}$ and $\mathbf{1}_{\text{TS}}$

	1007		1.75
Pt	-0.07593800 0.96559200 -0.22908500	Pt	-0.08136700 0.34070400 -0.12286600
Р	0.48450400 -0.72333000 -1.87051900	Р	0.49462800 -0.77960400 -2.06539700
P	-0.43817200 0.06501400 1.98110300	P	-0.52383400 0.04926400 2.13520200
В	0.22082000 2.91834300 0.45327000	В	-0.27473500 3.08292600 0.22686500
В	-0.59771600 2.41413900 -1.64937500	В	-0.27236400 2.66526900 -1.46160200
0	-0.81134800 3.81779800 0.75505100	0	-1.51163600 3.50684600 0.72911900
С	5.12817300 -0.14717100 -1.90371600	С	5.13501300 -1.19934200 -1.80389400
С	4.65042800 -1.44731600 -2.60044800	С	4.43679200 -2.41124400 -2.47765300
С	3.16240500 -1.36273300 -3.02824600	С	3.04522600 -2.03420200 -3.04575900
С	-0.01137400 -5.38106400 -1.49281900	С	-1.06997700 -5.20421900 -1.74535500
С	2.37035000 -0.54997200 -1.98226100	С	2.37415200 -1.01867300 -2.09208400
С	-1.30797700 -4.58345000 -1.77602300	С	-2.14020000 -4.12824600 -2.05211400
С	2.82278600 0.93403600 -2.04828200	С	3.13008000 0.33267900 -2.17117100
С	4.32671800 1.06132200 -2.40997700	С	4.64806900 0.12337500 -2.41627900
С	-0.63018900 4.99662400 1.54060900	С	-1.59935500 4.48132100 1.76824800
С	0.18012000 1.21101800 3.36074500	С	-0.03702400 1.35696100 3.42742200
С	1.70390500 1.47219100 3.32195100	С	1.49224100 1.49804500 3.58289000
С	-0.27966100 0.93227600 4.80684200	С	-0.69521800 1.32062900 4.82556900
С	2.07307900 2.65090300 4.24092100	С	1.84557900 2.78496500 4.34920400
С	0.08983800 2.10982700 5.73158600	С	-0.34505900 2.59745400 5.61828500
С	-0.92490600 -2.36279000 3.63643200	С	0.02704800 -2.06873400 4.11616400
С	1.59545300 2.41727600 5.68378400	С	1.17346900 2.80774000 5.73178500
С	-0.04740000 -1.72990800 2.53198700	С	0.26214100 -1.59743500 2.66521200
С	1.44786600 -1.90570400 2.87762600	С	1.76233500 -1.69652000 2.30752200
C	-0.54764000 -3.83893900 3.87444300	С	0.55017200 -3.50474000 4.31928400
С	1.82439800 -3.37768400 3.12691900	С	2.28973200 -3.12799900 2.51445900
C	0.94058600 -4.00121600 4.21808000	C	2.03747500 -3.62053600 3.94908700
C	-2.31852000 0.13089300 2.20669400	C	-2.35434900 -0.23445700 2.52939300
С	-2.88492200 1.56578400 2.14946800	С	-3.1840/200 1.04/80/00 2.300/9/00
С	-3.00449900 -0.75059100 1.13821900	С	-2.95431300 -1.39417000 1.70816400
C	-4.41811800 1.57115900 2.29454600	C	-4.6/156100 0.82832900 2.63166900
C	-4.53/14/00 -0.73/63/00 1.27659500	C	-4.4416/200 -1.61822000 2.036/5100
C	-5.09110600 0.69414300 1.22808900	C	-5.26388400 -0.33782500 1.82624400
C	-0.20401900 -0.32337500 -3.59893300	C	0.00021200 -0.09970800 -3.77308600
C	0.21551000 -1.20007700 -4.79510500	C	0.80887500 -0.35159000 -5.00075000
C	-1.74692900 -0.19391800 -3.59243500	C	-1.50995300 -0.26416200 -4.05297900
C	-0.28102500 -0.00042700 -0.12434000 0.20154200 2.61528800 1.70762000	C	0.30091100 0.20091300 $-0.270428000.12882700$ 2.57262000 2.07052600
C	0.30154300 - 2.01528800 - 1.79703900 1.27627000 - 2.20287000 - 0.80022500	C	-0.12882700 -2.57203900 -2.07052000 0.64800600 -2.45655100 -1.05442200
C	1.27027900 - 5.29587900 - 0.80022500 1.12729000 - 2.07174900 - 1.49244900	C	1,62165200, 2,60040600, 1,74280100
C	-1.15726900 -5.07174600 -1.46244600 0.70106700 4.70504600 0.27200600	C	-1.05105500 -2.09949000 -1.74580100 0.14285200 4.71874400 0.62208700
C	0.79190700 -4.70304000 -0.57290000 1.56602200 -2.27712400 -0.61815100	C	-0.14383300 -4.71874400 -0.02208700 0.82074100 -2.50561600 -0.06024600
C	2.00177800 4.55810200 0.27506100	C	2 16240800 2 26570800 0 55256800
C O	2.09177800 4.55810500 0.27590100	C O	2.10349800 5.20570800 0.55550800
0	1.07464100 - 2.54550000 - 2.53544000	0	1 20785200 2 55842400 2 27106000
C	-1.57404100 2.54550500 $-1.872084000.02142900 3.94027300 3.52701100$	C	-1.59785200 2.55842400 -2.27190900
C	2.64442400 3.78705900 2.07808600	C	2 68838300 2 26729200 1 73922500
C	2.25657200 0.42292700 4.90709300	C	1 94037700 0 53329900 5 29603500
C	1 80//6900 0 39536600 6 12696500	C	-1.94037700 0.03329900 -5.29003000 1 14268400 0.09473000 6 53321300
н	4 99088400 -0.23133300 -0.80942000	н	4 91598800 -1 19121000 -0 71971700
н	6.21041100 -0.00231600 -0.00942000	н	6.23116100 -1.29205400 -1.89144900
н	5.26952300 -1.65050100 -3.49288500	н	5.06445200 -2.80505200 -3.29715600
н	4 79359900 -2 30778800 -1 92150800	н	4 33117900 -3 23200100 -1 74486300
Н	2.75864300 -2.37756700 -3.18212200	Н	2.43901800 -2.94115700 -3.20222100
н	3 09412100 -0 85056300 -4 00479300	н	3 17396500 -1 58233300 -4 04256000
н	-0.25038000 -6.42612500 -1.23075700	н	-1 54756300 -6 16297800 -1 47948500
н	0.61338900 -5.42864300 -2.40423900	н	-0.46194400 -5.40412700 -2.64753600
н	2.65957800 -0.93675500 -0.98455000	Н	2.52123700 -1.40977200 -1.06613800
н	-1.60930400 -4.72754500 -2.82922500	Н	-2.44601300 -4.19811500 -3.11196900
н	-2.13641800 -4.97891600 -1.16107200	н	-3.05043600 -4.31918300 -1.45499500
Н	2.21717800 1.49165800 -2.78277000	Н	2.71268900 0.96987700 -2.97050000
H	2.60723400 1.41239800 -1.07768200	H	2.95658900 0.88284800 -1.23189600

Н	4.73008800	2.00079700	-1.99352500	Н	5.21476600 0.97725600 -2.00642400
Н	4.45258600	1.13587900	-3.50707500	Н	4.85848800 0.11184400 -3.50225800
Н	-0.32893600	5.86177300	0.92236400	Н	-0.72443700 5.15248100 1.77523100
Н	0.12652700	4.85269000	2.33289500	Н	-1.67189800 4.00206100 2.76278100
Н	-1.59588300	5.23333900	2.01769900	Н	-2.51780500 5.06941100 1.60439900
Н	-0.29910900	2.15887500	3.04018500	Н	-0.37872200 2.27815900 2.92056000
Н	2.02603000	1.67885700	2.28879400	Н	1.98204500 1.48622200 2.59547900
Н	2.25064800	0.57708000	3.66723200	Н	1.88464800 0.63147300 4.14872300
Н	0.21406800	0.01646400	5.18363100	Н	-0.34106500 0.43829400 5.38903500
Н	-1.36767400	0.74877400	4.85303400	Н	-1.79196700 1.22857600 4.75622000
Н	1.60805000	3.57511000	3.84424200	Н	1.50891200 3.65334600 3.75171700
Н	3.16502000	2.81804500	4.21919600	Н	2.94199900 2.87448400 4.45539800
Н	-0.47631500	3.00701000	5.41231100	Н	-0.79466500 3.47104000 5.10635600
Н	-0.22760300	1.89158600	6.76730100	Н	-0.80468200 2.55324700 6.62223400
Н	-0.80359900	-1.80473400	4.58243400	Н	0.56115800 -1.39547300 4.81248400
Н	-1.99375700	-2.30410200	3.37114400	Н	-1.04271200 -2.01940300 4.38501100
Н	1.82875700	3.29161800	6.31776800	Н	1.39089900 3.75652600 6.25423100
Н	2.15202500	1.56130900	6.11393400	Н	1.60423800 2.00016300 6.35610900
Н	-0.23974000	-2.29712900	1.59917500	Н	-0.26273600 -2.30762400 1.99353300
Н	2.07987200	-1.47151000	2.08110800	Н	1.90690700 -1.35745500 1.26497400
Н	1.67098500	-1.33781600	3.79899800	Н	2.34743100 -1.00949800 2.94409000
Н	-0.77498400	-4.42172900	2.95974400	Н	-0.03875800 -4.19672600 3.68554000
Н	-1.17941700	-4.26029500	4.67709200	Н	0.38578200 -3.82064600 5.36519800
H	1.70864400	-3.95516600	2.19106800	Н	1.78460000 -3.81185900 1.80466700
Н	2.89100800	-3.44586700	3.40740600	Н	3.36820100 -3.16991400 2.27701900
Н	1.19124700	-5.06801700	4.35689600	H	2.38352800 -4.66288800 4.06738900
Н	1.14671900	-3.50102300	5.18482100	H	2.63446900 -3.00895500 4.65382700
Н	-2.54562500	-0.28654400	3.20779900	Н	-2.41649100 -0.50409300 3.60307800
Н	-2.59105400	2.02962700	1.19112700	Н	-3.07320600 1.36013600 1.24694800
Н	-2.44375300	2.18922700	2.94703400	H	-2.79145600 1.88344500 2.90453400
Н	-2.63567500	-1.79081600	1.19482800	Н	-2.39483300 -2.33093600 1.88059100
Н	-2.71001600	-0.36518000	0.14254900	Н	-2.83895700 -1.14914100 0.63549300
H	-4.79195800	2.60918900	2.23342300	Н	-5.23684600 1.75782100 2.43938800
Н	-4.696/0400	1.19623400	3.29995800	Н	-4.//948/00 0.613/6900 3./1359500
H	-4.98905000	-1.3562/100	0.48031500	H	-4.84064400 -2.44149300 1.41708500
H	-4.82387600	-1.20618700	2.23937300	H	-4.53850500 -1.94400500 3.09135400
Н	-4.89390/00	1.12489200	0.22721400	H	-5.25/09400 -0.0755/200 0.75009800
H	-6.18/6/900	0.68977000	1.36380100	H	-6.31991700 -0.50524400 2.10391700
H	0.20825900	0.69419500	-3./6111000	H	0.1/559800 0.98033800 -3.62923500
н	1.30617700	-1.34238000	-4.84000600	H	1.88385100 -0.37221000 -4.85120900
н	-0.22635800	-2.2151/400	-4.080/6/00	H	0.085/2100 - 1.04103200 - 5.16449400
н u	-2.19303100	-1.2012/600	-3.49039900	H U	-1.75575500 -1.55551000 -4.25175000
n u	-2.08485000	0.40587000	-2./3304100	H U	-2.09705200 -0.05250200 -5.17057900 -0.02820700 -0.16104200 -7.14742000
H	0.02194500	-1.24/02500	-0.90/52300	H	0.93820700 -0.16194200 -7.14743000
н	0.21909000	0.3/311800	-0.28209300	H	0.05199100 1.27595200 -0.15851200
п u	0.3321/400	-2.90941200	-2.01001100	п v	0.04376700 -2.75153000 -3.0785000
п U	2.2/389300	-3.3/3//300	-1.2004/300	п v	1.01001300 -3.70340400 -1.48308800
п Ц	1.40134300	-2.00010200	2 04625000	л ц	0.07374400 -2.04932400 -0.10041200
ц	1 3/12/14/00	2.42542100	-2.0+023000	и ц	-2.27570500 -1.20101500 -2.27704700 1 75087200 -2.46518100 -0.67254100
н	-1.34242400	-2.03740300	0.41703100	11 11	-1.75067200 -2.40516100 -0.07250100 -0.75563500 -4.49434000 -0.27231500
н	1 65705000	-7.02978000	-0.07557700	н Ц	-0.75505500
н	2 11716700	5 24480600	1 14208500	н Ц	2 32024800 2 19113000 0 37718600
н	2.11/10/00	5.03064200	-0 53970300	и Ц	2.32024000 2.19113300 0.34718000 2.82926800 3.58122800 1.3770/200
Н	3 12694000	4 41314800	-0.035770300	н	2.02720000 5.50122000 1.57404200 2.40370700 3.83291800 _0.359749900
н	_0 71189/00	3 41867600	-4 16822600	н Н	-0.10489100 3.55450000 -3.90266400
Н	-0.71109400	4 94108300	-3 28219200	н	-0.10+0.100 - 3.50+0000 - 3.50200400 - 1.40067200 - 4.46467800 - 3.52164400
н	0.95464200	4 07300000	-2.20219200	н	1.5007200 4.40407800 -5.52104400
н	-2 70979300	4 05930200	-3 14837100	H	-2 65937600 1 33017200 -1 15027200
н	-2.15399500	4 60897700	-1 52715400	н	-3 38174700 2 14422500 -2 58814300
н	-3 67140300	3 68144600	-1 68988100	Н	-3 04180900 -3 08193800 -1 08697600
н	-1 86959600	1 45768400	-4 99240600	Н	-1 77627600 1 61046200 -5 10264400
н	-3 35820600	0 50393900	-4 88310600	н	-3 02385700 0 40249100 -5 46960600
н	-2 12610100	0.09088000	-7.06560400	Н	-1 42749400 0 69494300 -7 41582200
Н	-2.30142100	-1 38514600	-6 10039900	Н	-1 39553600 -0 95691800 -6 77313100
11	-2.50142100	1.30314000	0.10039900	11	1.57555000 -0.75071000 -0.77513100

Cartesian coordinates for $4_{\mbox{\scriptsize OPT}}$ and $4_{\mbox{\scriptsize TS}}$

Pt		ULI					
	0.40008200	-0.35977000	0.10601300	Pt	0.03411700	0.01677600	-0.13865500
Р	-2.02316100	-0.36139900	0.45321400	Р	-2.31557400	-0.30173600	0.16461000
Р	0.92349200	2.02880600	-0.02902300	Р	1.09067500	2.06359300	0.46457000
С	-4.26232200	-4.47677300	1.67398700	С	-3.60765300	-3.38779900	3.65017600
С	-2.86006700	-4.48913700	1.04752400	С	-2.16191100	-3.32159400	3.13452000
С	-2.57223400	-3.17578500	0.29695900	С	-2.07821900	-2.65777900	1.74874600
С	-4.01007700	2.51913300	3.76595000	С	-4.88812100	3.62661800	1.34384200
С	-2.71504800	-1.95150800	1.23282000	С	-2.73148800	-1.25818400	1.75109600
С	-2.55016300	2.05964100	3.89809300	С	-3.40716400	3.48820300	1.73082800
С	-4.14639500	-1.93173600	1.81971700	С	-4.19445100	-1.35045700	2.24289700
С	-4.44938700	-3.24449800	2.57137900	С	-4.25785500	-1.99555100	3.64233200
С	1.02053500	2.70486600	1.73959400	С	0.81637400	2.50578800	2.28714400
С	1.70796400	4.06758300	1.98595000	С	1.76279100	3.52233400	2.96394800
С	1.61295200	1.63968100	2.69743600	С	0.70747300	1.22926800	3.15463300
С	1.55247200	4.50102400	3.45746000	С	1.27252700	3.86093400	4.38645100
С	1.48223200	2.06984600	4.16898300	С	0.22484500	1.55995700	4.57746600
С	3.79028500	1.92298700	-0.12759400	С	3.66755900	1.03762400	0.99683300
С	2.11997900	3.44594400	4.41976600	С	1.13260300	2.60022600	5.25418500
С	2.55778700	2.43293900	-0.91217300	С	2.94896900	2.08704500	0.11517400
С	2.81838900	3.88771600	-1.36946000	С	3.72353300	3.42337100	0.10260900
С	5.06710300	1.99319500	-0.98540800	С	5.12582900	0.83599800	0.54966700
С	4.09799700	3.97188100	-2.22720400	С	5.17972300	3.19998000	-0.35551800
С	5.32494900	3.42268500	-1.48433500	С	5.89984700	2.16303600	0.52013500
С	-0.40772000	3.06771400	-0.90897200	С	0.30559600	3.48866400	-0.50678200
С	-0.38973200	2.79386200	-2.43176000	С	0.62537500	3.34437600	-2.01219300
С	-0.54255600	4.57428300	-0.59421300	С	0.49118200	4.94305900	-0.02219400
C	-1.59629700	3.43906800	-3.13889600	C	-0.19589400	4.33390800	-2.85794400
С	-1.75589400	5.18/85600	-1.32112200	С	-0.33746000	5.91650800	-0.88498800
C	-1.69524000	4.94193000	-2.83592600	C	-0.00304400	5./814/100	-2.3/868800
С	-2.84909900	-0.11899500	-1.23602700	С	-3.18572900	-1.06965900	-1.34423700
C	-4.3485//00	-0.4609/300	-1.3928/000	C	-4.55216500	-1./4941400	-1.10061300
C	-2.03110200	-0.824/3/00	-2.34/68100	C	-2.27648400	-2.01384900	-2.15526100
C	-4.85829700	-0.06337200	-2.79269400	C	-5.222/5400	-2.13906000	-2.43299100
C	-2.05198400	1.06422400	1.54/64100	C	-3.22190800	1.37069900	0.32203900
C	-4.10821200	1.30097200	1.40724500	C	-4./1/91000	1.49211300	-0.04312300
C	-2.20171000	0.82308400	2 20657500	C	-2.93831000	2.01043000	0.01642600
C	-4.50227000	2.79434600	2.29037300	C	-3.10390200	2.90810500	2 48588700
Ċ	-4.04465700	-0.74386300	-3 90443600	C	-4 31895800	-3.05361200	-3 27331100
C	3 92162700	1 45300200	1 95640100	C C	1 88577000	0.57042500	3 81322300
C	4 34317000	-1.81414100	-0.66561600	Ċ	3.08770500	-0.37042300	-3.09142600
0 0	3 34418000	-1.52017000	0.23860900	Ő	2 81995500	-0.53808200	-1 74510600
õ	2 65120500	-0.92203300	-1 89116100	õ	0.84067700	-0.73269500	-2 93922900
C	4 73645900	-1.63387200	-3 07147300	Č	1 85883000	-0.73209500	-5.20577200
Č	6.00880200	-2 19675200	-2 84375300	č	3 09619300	-0 35448500	-5 85837200
C	0.83082800	-4 24157000	1 71816000	C	1 77471100	-3 58336000	0.98153700
č	0.97087200	-4.58658200	0.36358500	č	0.91958100	-4.16904000	0.03031900
õ	0.60260500	-2.88585400	1 82389000	õ	1 79732700	-2.22337100	0 79905400
ŏ	0.83793000	-3.45352500	-0.41136600	ŏ	0.37480000	-3.18642000	-0.75994700
č	1.19985500	-5.89865300	-0.04154400	č	0.71131700	-5.54627400	-0.02242900
C	1.28636300	-6.87069600	0.97547900	C	1.39815200	-6.32777500	0.92678900
С	1.14645600	-6.52630100	2.33118900	С	2.25239200	-5.74197800	1.87911400
Ċ	0.91400100	-5.19439000	2.73056700	Ĉ	2.45763100	-4.34952000	1.92482000
С	6.42989200	-2.55676100	-1.55178100	С	4.29853300	-0.24706700	-5.13633400
С	5.59760900	-2.36988500	-0.42970300	С	4.31656600	-0.29935700	-3.72870700
В	0.61287000	-2.36807500	0.49187400	В	0.88586900	-1.93601900	-0.27740100
В	2.26443400	-0.96365000	-0.51589200	В	1.39527300	-0.68339500	-1.61132900
Н	-5.02248400	-4.45781300	0.86817000	Н	-4.19602800	-4.06565300	3.00105200
Н	-4.43878600	-5.40232600	2.25025200	Н	-3.63753100	-3.82159300	4.66555300
Н	-2.74996500	-5.34272300	0.35582400	Н	-1.71517200	-4.33033400	3.08983900
Н	-2.09951200	-4.63040100	1.83823600	Н	-1.54784200	-2.73797600	3.84845300
Н	-3.29409500	-3.08291100	-0.53625800	Н	-2.58338200	-3.30125200	1.00271400

Н	-1.57194100	-3.21058000	-0.16225100	Н	-1.02705000 -2.57627400 1.43226500
Н	-4.68035100	1.73099000	4.16149400	Н	-5.51175500 3.13847500 2.11820200
Н	-4.18805300	3.41950700	4.38014300	Н	-5.18625200 4.68987200 1.32533400
Н	-2.00586800	-2.10577500	2.07162200	Н	-2.17711400 -0.65067600 2.49758900
Н	-2.30502700	1.83717200	4.95199600	Н	-3.22715600 3.91609300 2.73372800
Н	-1.88376700	2.89004000	3.59107200	Н	-2.78901600 4.07527800 1.02243300
Н	-4.28657400	-1.08582800	2.51031900	Н	-4.66922900 -0.35573000 2.27324600
Н	-4.88376600	-1.80169600	1.00686400	Н	-4.78946800 -1.96324300 1.54480600
Н	-3.77033800	-3.32249500	3.44287800	Н	-3.73339300 -1.34325200 4.36831200
Н	-5.47688400	-3.21027600	2.97625400	Н	-5.30897800 -2.05584600 3.97722200
Н	-0.05263900	2.81919000	2.00412300	Н	-0.19203000 2.96993300 2.25815900
Η	1.31188500	4.85046400	1.32045200	Н	1.85080600 4.44598100 2.36919300
Н	2.78588500	3.97791200	1.75938800	Н	2.77827400 3.09108200 3.03149700
Н	2.68147600	1.48851500	2.45818200	Н	1.69631500 0.73680700 3.20668000
Н	1.12576400	0.66266300	2.51827000	Н	0.03413800 0.50308000 2.66199600
Н	0.47790700	4.65896300	3.67817300	Н	0.29037300 4.36957100 4.31911200
Н	2.04951500	5.47529000	3.61332600	Н	1.96516000 4.58039500 4.85880100
Н	0.41019700	2.11253000	4.44407100	Н	-0.80853100 1.95779600 4.52677300
Н	1.94224600	1.30623700	4.82094200	Н	0.17709800 0.63740600 5.18332000
Н	3.93629600	2.55214100	0.77063500	Н	3.66327900 1.37441200 2.05144700
Н	3.63126200	0.89572700	0.23604000	Н	3.12343100 0.07827600 0.95942600
Н	1.96724900	3.75890700	5.46803000	Н	0.74349700 2.86245500 6.25414900
Н	3.21476300	3.37242500	4.26962800	Н	2.13506600 2.15702400 5.41271700
Н	2.47352400	1.80108000 -	1.82000900	Н	2.97193700 1.68634900 -0.91653200
Н	1.97255900	4.28373700 -	1.95259000	Н	3.24066900 4.14804900 -0.57420100
Н	2.92980700	4.54470400 -	0.48770100	Н	3.72918500 3.88067200 1.10780900
Н	4.96286700	1.31005400 -	1.84915600	Н	5.12377300 0.38299600 -0.45915200
Н	5.92733500	1.62362500 -	-0.40009500	Н	5.62388400 0.11171900 1.21883000
Н	3.94445900	3.38923200 -	-3.15652800	Н	5.17599200 2.84816100 -1.40584900
Н	4.26725900	5.01874700 -	2.53746100	Н	5.72426000 4.16140500 -0.34758700
Н	6.21480000	3.45163200 -	2.13794100	Н	6.93048500 2.00286200 0.15581700
Н	5.54847800	4.07734400 -	0.61890500	Н	5.98972000 2.55835800 1.55142300
Н	-1.33336600	2.59245400 -	-0.52753700	Н	-0.77076700 3.24880900 -0.38498000
Н	-0.37452900	1.70421100 .	-2.61194200	Н	0.42862500 2.30562000 -2.33441200
Н	0.53656800	3.19569500 -	2.88073200	Н	1.70243300 3.53402100 -2.18380200
Н	0.36921700	5.11985400 -	-0.89438000	Н	1.55527500 5.23526800 -0.07024700
Н	-0.65901300	4.72499600	0.49289600	Н	0.18255300 5.03889600 1.03332400
Н	-2.52816900	2.94336100 .	-2.80151600	Н	-1.26894300 4.06723500 -2.78626700
Н	-1.52727100	3.26431600 .	-4.22746700	Н	0.08125500 4.23668300 -3.92247500
Н	-2.68575200	4.73876700 -	-0.91835900	Н	-1.41495800 5.70475200 -0.73468400
Н	-1.81182500	6.26927200 .	-1.10333200	Н	-0.17211200 6.95328300 -0.54133600
Н	-2.57959800	5.37813900 -	-3.33311100	Н	-0.62481500 6.47242000 -2.97524800
Н	-0.81075700	5.46006200 ·	-3.25557800	Н	1.04977100 6.08306500 -2.54477900
Н	-2.73667200	0.97497900 -	-1.39499500	Н	-3.36039000 -0.17172400 -1.97574500
Н	-4.96093500	0.02723900 -	-0.61871800	Н	-5.23134800 -1.10834100 -0.51694300
Н	-4.48909600	-1.54960200	-1.26457100	Н	-4.38984400 -2.66805800 -0.50560800
Н	-2.10596700	-1.91966000	-2.21628000	Н	-2.05982900 -2.92000700 -1.56171300
Н	-0.95747600	-0.58316900	-2.23258800	Н	-1.30438000 -1.53521800 -2.34538000
Н	-4.78658800	1.03673400 ·	-2.90655400	Н	-5.44818400 -1.21819000 -3.00664000
Н	-5.92950200	-0.31741100	-2.88500800	Н	-6.19332600 -2.62769500 -2.23232700
Н	-2.01058300	1.89682400	1.19629900	Н	-2.66138300 1.96579700 -0.42960800
Н	-4.31832100	1.82396500	0.35624500	Н	-4.91420600 1.07450000 -1.04673700
Н	-4.82205500	0.76542500	1.68406300	Н	-5.33600000 0.91586300 0.66817300
Н	-2.82665200	-0.03359500	3.43426100	Н	-3.51149600 1.46156600 2.47887400
Н	-1.19362000	0.54867600	3.08714700	Н	-1.88783700 1.92855500 1.94700500
Н	-3.74669400	3.63992300	1.92924600	Н	-4.62315600 3.52320900 -0.80685100
Н	-5.41612400	3.11119600	2.20081400	Н	-6.23948500 3.03733400 -0.26719300
Н	-2.36616000	0.62886200 ·	-3.92796200	Н	-3.05087200 -1.51061100 -4.11937700
Н	-1.96227100	-0.99351200	-4.51456700	Н	-2.27343500 -3.10062100 -4.03778900
Н	-4.40280900	-0.41909000	-4.89761000	Н	-4.79753600 -3.28354100 -4.24214500
Н	-4.20811600	-1.83800700	-3.85326300	Н	-4.19393200 -4.01982600 -2.74637100
Н	4.39791100	-1.35399700 -	-4.07244300	Н	0.91959300 -0.60744000 -5.75759600
Н	6.67975100	-2.35812800 -	-3.69263600	Н	3.12065500 -0.31221000 -6.95119800
Н	1.31041200	-6.15395800 -	-1.09848500	Н	0.04628600 -5.99072100 -0.76726900
Н	1.46838900	-7.91401800	0.70155700	Н	1.26393700 -7.41339900 0.92139500
Н	1.22167700	-7.30612400	3.09475800	Н	2.77104400 -6.38088300 2.59987600

Н	0.80754700 -4.91545500 3.78211200	Н	3.12054900 -3.88504200 2.65924300
Н	7.42310000 -2.99342000 -1.41193200	Н	5.24099800 -0.12168800 -5.67722800
Н	5.91280300 -2.64909500 0.57887100	Н	5.24606600 -0.22112100 -3.15874300

Cartesian coordinates for 1_{ADD} and 4_{ADD}

	1_{ADD}			4	OPT	
Pt	0.376764 -0.680513	0.152649	Pt	-0.035004	0.099543	-0.084121
Р	1.069559 -1.147583	-1.970216	Р	-2.332698	-0.467990	-0.185985
Р	-0.379042 -0.265355	2.266840	Р	1.383930	1.793668	0.701625
В	-1.299097 4.689650	-1.283677	С	-3.795958	-2.679480	3.841448
В	0.378054 4.329559	-1.050476	С	-2.330687	-2.730474	3.380178
0	-1.935482 4.074205	-2.347769	С	-2.191987	-2.403967	1.882652
С	5.426183 0.416663	-2.674836	С	-4.889269	3.637911	-0.107533
С	4.961130 -0.639826	-3.708958	С	-2.837837	-1.040090	1.547156
С	3.419879 -0.823854	-3.713661	С	-3.446371	3.586008	0.418889
С	1.055781 -5.804441	-2.403972	С	-4.321397	-1.025111	1.979688
С	2.849694 -0.618092	-2.297402	С	-4.442286	-1.330600	3.486458
С	-0.308189 -5.101859	-2.618010	С	1.037188	2.062958	2.545166
С	3.065163 0.850651	-1.838171	С	1.981354	2.978428	3.357381
С	4.338283 1.478250	-2.458084	С	0.848377	0.715128	3.281276
С	-3.340312 4.271516	-2.559262	С	1.434345	3.199954	4.782011
С	0.728586 0.929458	3.228172	С	0.310139	0.927998	4.706573
С	2.138240 0.340697	3.452925	С	3.927607	0.674436	1.322223
С	0.189894 1.568916	4.525667	С	1.214483	1.869260	5.519187
С	3.109755 1.412660	3.978494	С	3.252553	1.725349	0.410077
С	1.164917 2.644539	5.045331	С	4.063785	3.040407	0.426143
С	-1.034194 -1.721123	4.747484	С	5.378002	0.413984	0.878197
С	2.577137 2.075756	5.259511	С	5.521518	2.781596	-0.008321
С	-0.648306 -1.848927	3.260343	С	6.201341	1.711210	0.859348
С	0.505910 -2.860221	3.079623	С	0.718883	3.365860	-0.133653
С	-1.416296 -3.095129	5.333137	С	1.047835	3.363395	-1.643222
С	0.126588 -4.231773	3.665986	С	0.990429	4.742162	0.514872
С	-0.287276 -4.121968	5.143545	С	0.332998	4.507296	-2.383016
С	-2.068555 0.576077	2.314639	С	0.269213	5.868327	-0.253809
С	-1.994107 1.944159	1.598479	С	0.636819	5.871229	-1.745344
С	-3.151452 -0.308152	1.655920	С	-3.126163	-1.587327	-1.503679
С	-3.362472 2.647201	1.551013	С	-4.552652	-2.111534	-1.214346
С	-4.518193 0.399018	1.604036	С	-2.235031	-2.769953	-1.936671
С	-4.428758 1.758081	0.893732	С	-5.150706	-2.797413	-2.458789
С	0.069721 -0.311083	-3.345407	C	-3.186558	1.213184	-0.476656
С	0.054593 -1.007248	-4.723704	C	-4.644633	1.255816	-0.984179
С	-1.373367 -0.004641	-2.882845	C	-3.019031	2.143952	0.744777
С	-0.693317 -0.150815	-5.764657	С	-5.066913	2.702189	-1.312816
C	1.092363 -2.985406	-2.369067	C	-2.820384	-3.474447	-3.174095
С	2.159/35 -3./04904	-1.492551	C	-4.261984	-3.952049	-2.944374
С	-0.291874 -3.627374	-2.143723	С	0.726481	-0.114731	-4.065504
С	1.798470 -5.184198	-1.212350	C	1.949824	0.443294	-3.647704
0	-2.090182 5.497959	-0.495949	0	2.195670	0.091964	-2.346104
С	-1.600213 6.232533	0.626405	0	0.172998	-0.834238	-3.039045
0	0.821726 4.249148	0.256597	C	0.231550	0.084555	-5.353372
0	1.3116/5 4.085041	-2.035123	C	1.014051	0.869888	-6.222896
C	2.176787 3.882493	0.553310	C	2.378016	-3.117899	0.798477
С	1.03/8/5 4.2014/4	-3.430073	C	1.180019	-3.776028	0.465250
С	-2.132378 0.836710	-3.923460	0	2.430841	-1.910624	0.151842
C	-2.125696 0.170511	-5.309159	0	0.453546	-2.99/6/1	-0.398136
H	5.642415 -0.072533	-1.706520	C	0.863918	-5.031611	0.982459
H	0.3/331/ 0.8/9343	-3.001993	C	1.804824	-5.015/29	1.853459
H	5.290156 -0.346992	-4.722256	C	3.003288	-4.958578	2.184/98
H	5.449208 -1.60/214	-3.493639	C	3.313534	-3.688171	1.660504
H	3.168641 -1.821050	-4.114907	C	2.235902	1.42/545	-5.806111
H	2.958310 -0.087780	-4.39/543	C	2.728381	1.223687	-4.5016/2
H	0.910953 -6.889117	-2.259852	B	1.194735	-1.775781	-0.576909
H	1.683626 -5.696529	-3.308662	B	1.053876	-0.680778	-1.904775
<u> </u>	5.417088 -1.273712	-1.609295	H	-4.361957	-3.492448	5.5456/4

Н	-0.584927 -5.149871 -3.686760	Н	-3.866784	-2.865803 4.927868
Н	-1.100498 -5.643238 -2.070368	Н	-1.890285	-3.721609 3.588405
н	2 192611 1 479651 -2 089329	н	-1 739484	-1 996440 3 962971
и П	2.172011 1.479031 -2.009329	и и	2 684020	2 108224 1 280004
11	4.702789 2.205026 1.812020	11	-2.004939	-3.176324 1.269004
H	4.703788 2.293926 -1.813039	н	-1.131034	-2.402532 1.583920
Н	4.095057 1.945804 -3.431221	Н	-5.581950	3.328321 0.699491
Н	-3.592262 5.343628 -2.622537	Н	-5.165466	4.672332 -0.378461
Н	-3.930616 3.828233 -1.738661	Н	-2.312910	-0.280508 2.163341
Н	-3.604571 3.771840 -3.503757	Н	-3.337597	4.222837 1.315394
н	0.840798 1.741641 2.481175	н	-2.764867	4 002873 -0 349065
н	2 507558 -0 100923 2 509339	н	-4 793495	-0.053008 1.758263
11	2.007558 -0.100925 2.509559	11	4.793493	1 794722 1 419114
н	2.081251 -0.481060 4.192594	H	-4.888272	-1./80/22 1.418114
Н	0.060815 0.795631 5.304306	H	-3.945662	-0.524511 4.062002
Н	-0.803970 2.020184 4.361376	Н	-5.505728	-1.320235 3.785636
Н	3.248941 2.186339 3.197972	Н	0.040059	2.553308 2.510385
Н	4.104285 0.966725 4.159490	Н	2.131793	3.949101 2.858739
н	1 213116 3 471667 4 309750	н	2,977337	2 505240 3 429877
и Ц	0.778247 2.081822 5.082467	и и	1 817464	0 182885 2 20200
11	0.778247 5.081855 5.785407 0.172504 1.220565 5.215742	11	0.171152	0.165665 5.529500
H	-0.1/3504 -1.320505 5.315/42	н	0.171152	0.068046 2.692528
н	-1.865451 -1.006516 4.884187	Н	0.4/2860	3.747085 4.719851
Н	3.264786 2.871160 5.598610	Н	2.125737	3.846957 5.351026
Н	2.544853 1.322081 6.070823	Н	-0.707843	1.362748 4.648248
Н	-1.518241 -2.282432 2.724872	Н	0.206894	-0.045447 5.218866
н	0.754830 -2.933880 -2.004782	н	3 939140	1 040888 2 366093
11	1 414577 2 499497 2 590407	11	2 255776	0.264760 1.201424
п	1.4143// -2.40046/ 5.30949/	п	5.555720	-0.204700 1.501454
Н	-2.3313// -3.460946 4.82/3//	Н	0.785000	2.050610 6.520520
Н	-1.669499 -2.992803 6.403823	Н	2.194302	1.379151 5.681070
Н	-0.715969 -4.653357 3.082820	Н	3.279899	1.322763 -0.622159
Н	0.969222 -4.937567 3.554420	Н	3.618229	3.789570 -0.248257
Н	-0.596385 -5.108141 5.533914	Н	4.058784	3.479631 1.441009
ц	0.590208 3.808271 5.742670	н	5 367378	0.035594 0.132945
11	0.570208 -5.808271 5.742070	11	5.507578	0.220000 1.540147
н	-2.54/248 0.741255 5.575488	Н	5.840204	-0.329880 1.348147
н	-1.62396/ 1.//1008 0.568576	н	5.524296	2.44/466 -1.064306
Н	-1.253664 2.605515 2.080773	Н	6.092654	3.726979 0.023350
Н	-3.258571 -1.263959 2.198371	Н	7.226187	1.517357 0.495442
Н	-2.815425 -0.562436 0.631342	Н	6.302163	2.093267 1.894471
Н	-3.266416 3.603549 1.006749	Н	-0.372478	3.188412 -0.052290
и	3 684142 2 896895 2 581963	ц	0.760038	2 391701 2 077448
11	5 255 412 0 252888 1 102000	11	0.700058	2.462827 1.706201
н	-5.255415 -0.255888 1.105009	н	2.138805	3.403837 -1.790201
Н	-4.888260 0.554/2/ 2.636882	Н	2.073205	4.95/806 0.534638
Н	-4.160259 1.594935 -0.168920	Н	0.646344	4.746085 1.563304
Н	-5.412163 2.261896 0.898915	Н	-0.760740	4.329999 -2.354719
Н	0.586876 0.664797 -3.463907	Н	0.624281	4.496614 -3.448039
н	1 077180 -1 217737 -5 078263	н	-0.825588	5 732475 -0 151597
ц	0.456281 1.985216 4.635348	н	0.507407	6 842789 0 208992
11	1010728 0057428 0716165	11	0.00/717	6.676124 2.070924
п	-1.912/38 -0.93/428 -2./10103	п	0.094717	0.070134 -2.272824
н	-1.342069 0.501976 -1.901625	н	1./16294	6.094458 -1.855651
Н	-0.704180 -0.669350 -6.740415	Н	-3.180259	-0.893685 -2.370170
Н	-0.138292 0.795867 -5.918208	Н	-5.227277	-1.313789 -0.868100
Н	1.361015 -3.099035 -3.436992	Н	-4.494501	-2.856096 -0.398088
Н	3 139272 -3 653573 -2 001321	Н	-2.148834	-3 492265 -1 104548
н	2 265760 -3 167690 -0 530360	н	-1 219586	-2 421888 -2 157906
11	1.095721 2.061502 2.660150	11	-1.217500	2.421000 -2.157700
Н	-1.085731 -3.001502 -2.000159	н	-5.25/45/	-2.048407 -3.208201
Н	-0.526129 -3.551307 -1.065994	н	-6.169650	-3.159191 -2.230952
Н	1.155958 -5.249018 -0.314310	Н	-2.549839	1.625084 -1.287082
Н	2.714731 -5.752706 -0.976417	Н	-4.766523	0.630508 -1.884324
Н	-0.522839 6.073216 0.788918	Н	-5.327906	0.849053 -0.215222
Н	-2.147819 5.909738 1.528552	Н	-3.637916	1.772441 1.583518
н	-1 800616 7 305561 0 463808	н	-1 968278	2 112198 1 088405
11	2 882170 / 202822 0 197977	11 TT	1.500270	2.072222 2.155961
н	2.0021/7 4.272023 -0.18/8//	н	-4.431032	2.712962 1.661272
н	2.41//15 4.2/690/ 1.553/90	H	-6.115032	2./13803 -1.0012/2
Н	2.274975 2.783236 0.565603	Н	-2.800364	-2.769313 -4.028732
Н	1.260129 3.236645 -3.919010	Н	-2.172269	-4.322840 -3.456758
Н	1.703005 4.968870 -3.863018	Н	-4.677799	-4.398617 -3.865308
Н	-0.013047 4.465169 -3.627789	Н	-4.262237	-4.752397 -2.178635
н	-1 665363 1 838348 -3 985129	н	-0 717283	-0.357590 -5.668623
11	1.0000000 1.0000010 -0.000120	11	0.111203	0.001070 0.000020

Н	-3.171221 1.000761 -3.582901	Н	0.662944 1.046191 -7.243830
Н	-2.629401 0.814231 -6.052686	Н	-0.067893 -5.536498 0.714565
Н	-2.707923 -0.770903 -5.263287	Н	1.597921 -6.602546 2.277820
		Н	3.712330 -5.443155 2.862375
		Н	4.244768 -3.171953 1.908409
		Н	2.819460 2.030090 -6.508331
		Н	3.678928 1.649689 -4.169662

Cartesian coordinates for [B₂(OMe)₄]_{OPT} and [B₂Cat₂]_{OPT}

$[B_2(OMe)_4]_{OPT}$		[B ₂ Cat ₂] _{OPT}		
		В	-0.31257200 0.16571800 1.71061300	
		В	0.72949700 1.48228000 1.57883600	
В	0.01777100 -0.02910100 0.01362900	0	0.32411100 2.82390600 1.63016700	
В	0.01355800 1.69839900 0.01808200	0	2.11731700 1.38196700 1.40312000	
0	-0.93223800 2.29977000 0.82264400	Ο	-1.70040900 0.26609200 1.88618000	
0	0.95636500 2.30841700 -0.78334700	0	0.09276200 -1.17592400 1.65934800	
0	-0.88242600 -0.63892600 0.86287300	С	-1.06726200 -1.91317600 1.80616100	
0	0.92079000 -0.63050700 -0.83862600	С	-2.15593400 -1.03759700 1.94384600	
С	1.22339700 -2.01320400 -0.98504100	С	2.57278600 2.68567800 1.34545100	
С	-1.17967300 -2.02330200 1.00344000	С	1.48410100 3.56120900 1.48333600	
С	1.12722300 3.69272400 -1.06463400	С	3.87626600 3.14714500 1.18030900	
С	-1.10841100 3.68218600 1.11035400	С	4.04605200 4.54389300 1.15873500	
Н	2.21208500 -2.08802900 -1.46773600	С	2.95418500 5.42194300 1.29700600	
Н	1.27123500 -2.54860500 -0.02127800	С	1.64085900 4.94478100 1.46339800	
Н	0.48895000 -2.52180000 -1.63608000	С	-1.22407900 -3.29674200 1.82609100	
Н	-2.16841200 -2.10401000 1.48509500	С	-2.53744100 -3.77384700 1.99235900	
Н	-1.22466600 -2.55509300 0.03753800	С	-3.62928800 -2.89575200 2.13048900	
Н	-0.44367200 -2.53160100 1.65297200	С	-3.45945000 -1.49901100 2.10886000	
Н	1.71119700 3.77323300 -1.99663200	Н	4.71558500 2.45627700 1.07400200	
Н	0.17139200 4.22413200 -1.21217300	Н	5.05117700 4.95533400 1.03142100	
Н	1.69475300 4.20146800 -0.26398400	Н	3.12888700 6.50118100 1.27483500	
Н	-1.69273600 3.75613900 2.04266900	Н	0.78612100 5.61617400 1.57161500	
Н	-1.67781700 4.19244300 0.31201200	Н	-0.36936000 -3.96817100 1.71795500	
Н	-0.15459600 4.21646500 1.26043300	Н	-2.71218700 -4.85307800 2.01455000	
		Н	-4.63443900 -3.30715000 2.25773800	
		Н	-4.29875500 -0.80810600 2.21504000	

Cartesian coordinates for $1'_{\text{ADD}}$ and $4'_{\text{ADD}}$

-	1' _{ADD}	4' _{ADD}
		Pt -0.035004 0.099543 -0.084121
		P -2.332698 -0.467990 -0.185985
Pt	0.376764 -0.680513 0.152648	P 1.383930 1.793668 0.701625
Р	1.069559 -1.147583 -1.970216	C 0.726481 -0.114731 -4.065504
Р	-0.379042 -0.265355 2.266839	C 1.949824 0.443294 -3.647704
В	-1.299096 4.689649 -1.283674	O 2.195670 0.091964 -2.346104
В	0.378056 4.329558 -1.050474	O 0.172998 -0.834238 -3.039045
0	-1.935481 4.074204 -2.347766	C 0.231550 0.084555 -5.353372
С	-3.340311 4.271515 -2.559258	C 1.014051 0.869888 -6.222896
0	-2.090181 5.497956 -0.495944	C 2.378016 -3.117899 0.798477
С	-1.600211 6.232530 0.626410	C 1.180019 -3.776028 0.465250
0	0.821728 4.249147 0.256599	O 2.430841 -1.910624 0.151842
0	1.311676 4.085040 -2.035121	O 0.453546 -2.997671 -0.398136
С	2.176789 3.882492 0.553311	C 0.863918 -5.031611 0.982459
С	1.037875 4.201473 -3.430071	C 1.804824 -5.615729 1.853459
Н	-3.592262 5.343627 -2.622532	C 3.003288 -4.958578 2.184798
Н	-3.930615 3.828231 -1.738657	C 3.313534 -3.688171 1.660504
Н	-3.604570 3.771840 -3.503754	C 2.235902 1.427545 -5.806111
Н	-0.522837 6.073213 0.788923	C 2.728381 1.223687 -4.501672
Н	-2.147817 5.909733 1.528557	B 1.194735 -1.775781 -0.576909
Н	-1.800614 7.305557 0.463815	B 1.053876 -0.680778 -1.904775
Н	2.882181 4.292822 -0.187876	Н -0.717283 -0.357590 -5.668623
Н	2.417718 4.276905 1.553791	Н 0.662944 1.046191 -7.243830
Н	2.274978 2.783235 0.565603	Н -0.067893 -5.536498 0.714565
Н	1.260129 3.236645 -3.919008	Н 1.597921 -6.602546 2.277820
Н	1.703005 4.968869 -3.863016	Н 3.712330 -5.443155 2.862375
Н	-0.013047 4.465169 -3.627787	Н 4.244768 -3.171953 1.908409
С	1.092232 -2.974908 -2.366789	Н 2.819460 2.030090 -6.508331
Н	1.432117 -3.117689 -3.371274	Н 3.678928 1.649689 -4.169662
Н	1.752611 -3.478183 -1.691871	C 0.729544 3.340658 -0.120264
Н	0.104941 -3.374432 -2.264136	Н -0.282715 3.505636 0.184720
С	0.082848 -0.322065 -3.327353	Н 1.329752 4.178478 0.167325
Н	0.496876 -0.583373 -4.278773	Н 0.767159 3.223035 -1.183113
Н	-0.934432 -0.650215 -3.278794	C 3.230372 1.726160 0.413538
Н	0.121513 0.739749 -3.201036	Н 3.435044 1.878740 -0.625562
С	-0.645637 -1.833234 3.250497	Н 3.709139 2.491800 0.987540
Н	-0.972482 -1.583362 4.238239	Н 3.603453 0.769313 0.713795
Н	-1.389522 -2.433677 2.769870	C -3.169616 1.179826 -0.470889
Н	0.272551 -2.379792 3.306222	Н -4.227332 1.034965 -0.542665
С	0.715872 0.915746 3.217136	Н -2.954084 1.835429 0.346810
Н	0.747800 1.857987 2.711110	Н -2.806309 1.611952 -1.379831
Н	0.321692 1.053176 4.202344	C -2.831505 -1.032919 1.525432
Н	1.704625 0.511892 3.281706	Н -3.883757 -1.226038 1.544712
С	-2.052400 0.568030 2.314182	Н -2.300068 -1.927526 1.774735
H	-2.340318 0.732435 3.331519	Н -2.596105 -0.268441 2.236107
Н	-1.998142 1.506336 1.802774	C -3.112682 -1.568310 -1.481292
Н	-2.7/6223 -0.057824 1.835342	Н -4.140130 -1.736668 -1.234497
С	2.834767 -0.622533 -2.294658	H -3.048863 -1.093439 -2.438018
H	3.102399 -0.873166 -3.299873	Н -2.595355 -2.504417 -1.512525
Н	2.923885 0.434543 -2.154841	C 1.041780 2.059392 2.520752
Н	3.488056 -1.128547 -1.614905	H 1.685129 2.827537 2.896192
		H 0.021284 2.352831 2.652590
		Н 1.223151 1.149853 3.054365

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Cartesian coordinates for [Pt(PCy₃)₂]_{OPT}

[Pt(PCv ₂) ₂] _{OPT}					
Pt	-1 13873400	-0.20070800	-0.42663000		
P	-0.76892100	-0.07845700	-2 67331900		
P	-1 45913400	-0.18311600	1 84213000		
Ċ	-1 53265000	-4 18221600	-5 07093900		
Č	-1 79188900	-4 09327200	-3 55737000		
C	1.03555800	2 91/10300	2 91977600		
C	3 / 388/ 900	3 76925700	3 3/369100		
C	1 20244200	1 58676700	2 62468000		
C	1 01801000	-1.38070700	2 51529400		
C	-1.91891900	1 67612100	5 12525600		
C	-1.09/20000	-1.0/013100	-5.15555000		
C	-1.86050600	-2.85400200	-5.77311000		
C	-3.11/52400	0.02325700	2.25850600		
C	-3.45012300	1.0359/100	3.70822600		
C	-4.2/101200	-0.19692/00	1.63508300		
C	-4.78798900	1.80129600	3.76529100		
С	-5.60406100	0.56785200	1.70758100		
С	-1.73243000	-3.00669200	1.68717800		
С	-5.93691000	0.98808000	3.14840900		
С	-1.31400400	-1.88295500	2.66388400		
С	-1.98416500	-2.10073200	4.03796500		
С	-1.39012700	-4.39528500	2.25406800		
С	-1.63378300	-3.48908000	4.60960400		
С	-2.02147300	-4.61562700	3.63867100		
С	-0.09657100	0.84303200	2.66077600		
С	0.15193800	0.71542100	4.17861000		
С	-0.21180500	2.32206100	2.23136100		
С	1.38923000	1.53324900	4.60125100		
С	1.02262600	3.13033200	2.66789100		
С	1.27088400	3.00655500	4.18001800		
С	1.05196600	0.24479800	-3.06959600		
С	1.44361600	0.66714100	-4.50158900		
С	1.95685400	-0.90253300	-2.57077400		
С	2.93041000	1.07178200	-4.55927000		
C	-1.65816900	1.36181700	-3.51047000		
C	-3.18969000	1.23741800	-3.34536400		
C	-1.16883900	2.70343800	-2.91824500		
Č	-3.93399600	2.44491700	-3.94366000		
Č	3.44144200	-0.50154000	-2.63418200		
Č	3.84477400	-0.05412600	-4.04908300		
н	-0.46581600	-4 42690900	-5 24195200		
н	-2 11805200	-5.00639100	-5 51638200		
н	-1 50561700	-5 03837900	-3.06214600		
н	-2 87781700	-3.96250500	-3 38109800		
н	0.05255000	-3.09808400	-2 99713000		
н	-1 26611900	-2 82520800	-1 84254700		
н	-3 68728500	3 79541800	-2 26473300		
н	-3.96066400	4 62434600	-3 80941500		
и И	2 40024500	1 46528400	3 50562700		
и Ц	1 55867600	1 84040800	3 04540200		
11 11	-1.55602000	3 08865000	-3.04349200		
п U	-1.0010000	0.72201700	-4.39403200		
п	-1.33032300	-0.73391700	-3.03033900		
н	-0.01298600	-1.83421000	-3.28/30000		
н	-2.94880300	-2.00092800	-3./0036400		
н	-1.02451800	-2.91814500	-0.85004/00		
H	-3.03548000	1.55419500	1.05958200		
H	-2.6495/400	1.66852300	4.12/44400		
H	-3.51951800	0.14252200	4.35338600		
Н	-4.37768400	-1.15689700	2.17/24100		
Н	-4.01290800	-0.44498000	0.58887800		
Н	-4.68177700	2.75545000	3.21253800		
Н	-5.02129800	2.06963300	4.81136100		
Н	-5.53538800	1.47199300	1.07118600		

Н	-6.41713100	-0.05084500	1.28735900
Н	-2.82231700	-2.94307100	1.50304900
Н	-1.24569200	-2.83705100	0.70947700
Н	-6.87626900	1.56878600	3.17547400
Н	-6.11016400	0.08138400	3.76099600
Н	-0.21478100	-1.97143500	2.80330200
Н	-1.69570300	-1.31599900	4.75672400
Н	-3.08221100	-2.03352300	3.91922900
Н	-0.28922500	-4.48962400	2.33711700
Н	-1.71931200	-5.18126700	1.55101300
Н	-0.54434500	-3.53408200	4.80572300
Н	-2.13328100	-3.62987500	5.58507400
Н	-1.72384400	-5.59690100	4.04968200
Н	-3.12402800	-4.63950500	3.53478000
Н	0.79608100	0.43137200	2.14532600
Н	0.29992800	-0.34130100	4.46134600
Н	-0.72712500	1.07538500	4.74431600
Н	-1.11476000	2.77303800	2.68802800
Н	-0.34597000	2.36756200	1.13453900
Н	2.28949900	1.09281000	4.12952200
Н	1.53646900	1.45260200	5.69325600
Н	1.91015100	2.75650800	2.12075600
Н	0.90016300	4.19021500	2.38142400
Н	2.18017200	3.56272400	4.47007700
Н	0.42852800	3.47457900	4.72665800
Н	1.24908400	1.10877300	-2.40157500
Н	0.81702300	1.50467200	-4.85495000
Н	1.27376300	-0.17034600	-5.20206600
Н	1.80106700	-1.79754100	-3.20351100
Н	1.66407800	-1.17844600	-1.54130700
Н	3.08285600	1.97493300	-3.93617900
Н	3.20411600	1.35378800	-5.59190300
Н	-1.41680300	1.34050900	-4.59275700
Н	-3.55943400	0.31079500	-3.81834400
Н	-3.41413100	1.15162000	-2.26370200
Н	-1.32028400	2.66661700	-1.82104900
Н	-0.08379000	2.82908400	-3.08042500
Н	-3.77936100	2.46326800	-5.04073800
Н	-5.02080000	2.32838100	-3.78311600
Н	3.62072400	0.32884900	-1.92332400
Н	4.07518400	-1.34276100	-2.30069500
Н	4.90038100	0.27107700	-4.06619600
Н	3.77166600	-0.91927500	-4.73719700

23

References

- (1) T. Yoshida, S. Otsuka, Inorg. Synth. 1979, 19, 101.
- (2) (a) R. J. Brotherton, A. L. McClosekey, L. L. Petterson, H. Steinberg, J. Am. Chem. Soc. 1960, 82, 6242; (b) A. Moezzi, M. M. Olmstead, R. A. Bartlett, P. P. Power, Organometallics 1992, 11, 2383.
- (3) G. Sheldrick, Acta Cryst. 2008, A64, 112.
- (4) A. L. Spek, J. Appl. Cryst. 2003, 36, 7.
- (5) a) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kçlmel, *Chem. Phys. Lett.* 1989, 162, 165; b) TURBOMOLE V5.10; <u>http://www.turbomole.com.</u>
- (6) a) Gaussian 03 & 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009; b) NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold.
- (7) a) J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* 1996, **77**, 3865; b) J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* 1997, **78**, 1396. c) K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T. L. Windus, *J. Chem. Inf. Model.* 2007, **47**, 1045.
- a) C. Peng, H. B. Schlegel, *Israel J. Chem.* 1993, 33, 449; b) C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, *J. Comp. Chem.* 1996, 17, 49.
- a) H. P. Hratchian, H. B. Schlegel, J. Chem. Phys. 2004, 120, 9918; b) H. P. Hratchian, H. B. Schlegel, J. Chem. Theory and Comput. 2004, 1, 61.
- 10) S. Grimme, J. Comput. Chem. 2006, 27, 1787.

Formatted: German (Germany)