Evolution and Application of Chiral Phosphoric Acid in the Enantioselective 1,3-Dipolar Cycloaddition of Methyleneindolinones and N,N'-Cyclic Azomethine Imines

Liang Hong,^{a,*} Ming Kai,^{a,‡} Chongyang Wu,^{a,‡} Wangsheng Sun,^a Gongming Zhu,^a Guofeng Li,^a Xiaojun Yao,^a and Rui Wang^{a,b,*}

[†]Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000 (P.R. China). [‡]State Key Laboratory of Chiroscience and Department of Applied Biology and Chemical Technology, The HongKong Polytechnic University, Kowloon, Hong Kong.

hongl@lzu.edu.cn; wangrui@lzu.edu.cn

Index:

Complete list of authors in references 9i-9k	S2
General methods	S3
General procedure and spectral data for the synthesis of catalyst 31	S4-S5
Catalyst screening and evolution	S6-S8
General procedureand spectral data for the synthesis of 4	S9-S22
General procedure and spectral data for the synthesis of 5	S23
General procedure and spectral data for the synthesis of 6	S24
The absolute configuration determination	S25-S28
MS experiment and DFT calculations	S29-S34
HPLC analytic conditions	S35-S38
Copies of HPLC data	S39-S56
Copies of ${}^{1}\text{H}$, ${}^{13}\text{C}$ and ${}^{31}\text{P}$ NMR of C , D and 3	S57-S63
Copies of ¹ H and ¹³ C NMR of 4aa-4ha , 5 and 6	S64-S104

The complete list of authors in references 9i – 9k :

(9i) K. Ding, Y. Lu, Z. Nikolovska-Coleska, S. Qiu, Y. Ding, W. Gao, J. Stuckey, K. Krajewski, P.
P. Roller, Y. Tomita, D. A. Parrish, J. R. Deschamps, S. Wang, *J. Am. Chem. Soc.* 2005, *127*, 10130.

(9j) S. Shangary, D. Qin, D. McEachern, M. Liu, R. S. Miller, S. Qiu, Z. Nikolovska-Coleska, K.

Ding, G. Wang, J. Chen, D. Bernard, J. Zhang, Y. Lu, Q. Gu, R. B. Shah, K. J. Pienta, X. Ling, S.

Kang, M. Guo, Y. Sun, D. Yang, S. Wang, Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 3933.

(9k) M. Rottmann, C. McNamara, B. K. S. Yeung, M. C. S. Lee, B. Zou, B. Russell, P. Seitz, D.

M. Plouffe, N. V. Dharia, J. Tan, S. B. Cohen, K. R. Spencer, G. E. González-Páez, S. B.

Lakshminarayana, A. Goh, R. Suwanarusk, T. Jegla, E. K. Schmitt, H.-P. Beck, R. Brun, F.

Nosten, L. Renia, V. Dartois, T. H. Keller, D. A. Fidock, E. A. Winzeler, T. T. Diagana, *Science*, **2010**, *329*, 1175.

General methods:

Unless stated otherwise, all reactions were carried out in flame dried glassware. All solvents were purified and dried according to standard methods prior to use. Methyleneindolinones1¹, N,N'-cyclic azomethine imines 2^2 and catalysts 3^3 were prepared according to literature. ¹H and ¹³C NMR spectra were recorded on a Varian instrument (300 MHz and 75 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet or unresolved, coupling constant(s) in Hz, integration). Data for ¹³C NMR and ³¹P are reported in terms of chemical shift (δ , ppm). IR spectra were recorded on a FT-IR spectrometer and only major peaks were reported in cm⁻¹. Optical rotations were reported as follows: [α]_D^{rt} (c: g/100 mL, in solvent). High resolution mass spectra (HRMS) were obtained by the ESI ionization sources. The ee value determination was carried out using chiral HPLC with Daicel Chiracel IA column on Waters with a 996 UV-detector.

Yokota, K. Fuchibe, Angew. Chem. Int. Ed. 2004, 43, 1566. (c) X.-H. Chen, W.-Q. Zhang, L.-Z.

⁽¹⁾ B. Tan, N. R. Candeias, C. F. Barbas III, Nat. Chem. 2011, 3, 473.

⁽²⁾ R. Shintani, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 10778.

^{(3) (}a) D. Uraguchi, M. Terada, J. Am. Chem. Soc. 2004, 126, 5356. (b) T. Akiyama, J. Itoh, K.

Gong, J. Am. Chem. Soc. 2008, 130, 5652.

General procedure and spectral data for the synthesis of catalyst 31

(*S*)-Tetranaphthol **D** was prepared in a modified procedure according to literature ⁴: From easily available starting materials **A** and **B**, compound **C** was prepared through typical Suzuki coupling reaction. Subsequent deprotection provided (*S*)-Tetranaphthol **D**.

Spectral data for compound C:

¹**H NMR (300 MHz, DMSO)** δ 8.19 (dd, *J* = 2.25, 6.9 Hz, 1H), 8.05 (s, 1H), 7.85 (d, *J* = 8.1 Hz, 1H), 7.81 (dd, *J* = 2.25, 5.49 Hz), 7.61 (s, 2H), 7.49 – 7.41 (m, 2H), 7.35 (dt, J = 1.8, 8.0 Hz, 1H), 7.29 – 7.20 (m, 1H), 3.63 (s, 1H), 3.16 (s, 1H);

¹³C NMR (75 MHz, DMSO) δ 153.4, 152.5, 133.5, 132.9, 131.1, 130.3, 129.5, 128.2, 127.3, 127.1, 126.8, 126.1, 125.4, 125.3, 125.0, 124.7, 124.4, 123.9, 122.4, 121.7, 60.2, 59.6;
IR: 2935, 1359, 908, 732 cm⁻¹;

HRMS (ESI): C₄₄H₃₄O₄+Na, Calc: 649.2349, Found: 649.2369.

Spectral data for compound D:

¹**H NMR (300 MHz, DMSO)** δ 7.99 (t, J = 3.3 Hz, 2H), 7.62 – 7.53 (m, 4H), 7.44 (d, J = 7.5 Hz, 1H), 7.41 (s, 2H), 7.19 (t, J = 7.5 Hz, 1H), 6.75 (bs, 1H), 6.61 (t, J = 6.75 Hz, 1H), 5.99 (bs, 1H); ¹³**C NMR (75 MHz, DMSO)** δ 150.4, 147.5, 134.1, 132.7, 129.8, 128.7, 128.2, 127.3, 127.1, 126.2, 126.1, 126.0, 125.2, 124.5, 122.5, 121.3, 120.7, 114.0; **IR:** 3399, 1251, 906, 732 cm⁻¹;

HRMS (ESI): C₄₀H₂₆O₄+Na, Calc: 593.1723, Found: 593.1741.

⁽⁴⁾ K. Ishihara, H. Kurihara, M. Matsumoto, H. Yamamoto, J. Am. Chem. Soc. 1998, 120, 6920.

D (2.0 mmol, 1.14g) was dissolved in pyridine (15 mL) under N₂ atmosphere in a flame-dried two necked 50-ml round-bottom flask equipped with a magnetic stir bar. To the resulting solution was added phosphorus oxychloride (5.0 equiv.) at room temperature and the reaction mixture was stirred at 70 °C for 20 h. Then water (15 mL) was added and the resulting suspension was stirred for additional 12 h. The resulting mixture was diluted with CH_2Cl_2 (100 mL), washed with 6N HCl (3×20 mL) to remove pyridine, and combined organic layers were concentrated under reduced pressure. The resultant solids were dissolved in MeOH (15 mL). To the resulting solution was added conc. HCl (10 mL) at room temperature, and stirred further at this temperature for 1 h. The mixture was extracted with CH_2Cl_2 (3×30 mL), and then, the organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration. The residual crude product was purified by column chromatography on silica gel with elution by $CH_2Cl_2/$ MeOH (100:1 - 20:1) to yield a white solid. The product was recrystallized from $CH_2Cl_2/$ hexane to give pure *(S)*-bis-phosphoric acid **31** as a white solid.

¹H NMR (300 MHz, DMSO) δ 8.40 (s, 1H), 8.32 (bs, 1H), 8.08 (d, J = 8.4 Hz, 1H), 8.04 (bs, 1H),
7.94 (s, 2H), 7.62 (bs, 2H), 7.42 (t, J = 7.2 Hz, 1H), 7.24 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 7.8 Hz,
1H), 3.43 (bs, 1H);

¹³**C NMR (75 MHz, DMSO)** δ 147.2 (d, J_{P-C} = 9.75 Hz), 145.9 (d, J_{P-C} = 8.25 Hz), 134.1, 132.9, 130.4, 130.3, 130.1, 128.3, 127.5, 127.3 (d, J_{P-C} = 2.25 Hz), 126.9, 126.4, 126.3, 126.2, 125.1 (d, J_{P-C} = 2.25 Hz), 124.9, 124.2, 123.5, 123.3, 123.2;

³¹P NMR (DMSO, 121.5 MHz) δ -3.05;

IR: 3421, 1627, 1255, 1091 cm⁻¹;

HRMS (ESI): C₄₀H₂₄O₈P₂-H, Calc: 693.0874, Found: 693.0871.

Catalyst screening and evolution:

Table 1.Catalyst Screening and Evolution.^a

entry	catalyst	solvent	additive	conversion $(\%)^b$	dr (4aa : 4aa') ^b	ee of $4aa(\%)^c$
1	3a	CH_2Cl_2	-	35	1:1	10
2	3b	CH_2Cl_2	-	42	1:1	17
3	3c	CH_2Cl_2	-	30	1:1	< 5
4	3d	CH_2Cl_2	-	29	1:1	< 5
5	3e	CH_2Cl_2	-	32	1:1	5
6	3f	CH_2Cl_2	-	30	1:1	11
7	3g	CH_2Cl_2	-	28	1:1	11
8	3b	Toluene	-	36	1:1	37
9	3b	Ether	-	28	1:1	47
10	3b	THF	-	34	1:1	rac
11	3b	MTBE	-	34	1:1	37

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

12	3b	DME	-	29	1:1	rac
13	3b	CPME	-	32	1:1	37
14	3b	Hexane	-	15	1:1	rac
15	3b	Ether	3A MS	26	1:1	46
16	3b	Ether	4A MS	28	1:1	45
17	3b	Ether	5A MS	28	1:1	43
18	3h	CH_2Cl_2	-	42	1:1	39
19	3h	Ether	-	34	1:1	72
20	3i	CH_2Cl_2	-	89	1:1	74
21	3i	Toluene	-	79	1:1	17
22	3i	Ether	-	62	1:1	13
23	3i	MTBE	-	70	1:1	rac
24	3i	CHCl ₃	-	87	1:1	56
25	3i	DCE	-	89	1:1	66
26	3i	Hexane	-	<10	1:1	n.d.
27	3i	THF	-	86	1:1	rac
28	3i	$CH_2Cl_2 \\$	3A MS	86	1:1	77
29	3i	CH_2Cl_2	4A MS	85	1:1	79
30	3i	CH_2Cl_2	5A MS	84	1:1	72
31 ^{<i>d</i>}	3i	CH_2Cl_2	-	65	1:1	80
32 ^e	3i	CH_2Cl_2	-	<15	n.d.	n.d.
33	3j	CH_2Cl_2	-	96	2:1	89
34	3k	$CH_2Cl_2 \\$	-	68	1:1	5
35 ^f	31	$CH_2Cl_2 \\$	-	>99	8:1	92
36 ^{<i>f</i>,<i>g</i>}	31	CH_2Cl_2	-	>99	16:1	94
37 ^{<i>f</i>,<i>h</i>}	31	CH_2Cl_2	-	95	8:1	97
38 ^{<i>f</i>,<i>g</i>,<i>i</i>}	31	CH_2Cl_2	-	>99	16:1	92
39 ^{<i>f</i>,<i>g</i>,<i>j</i>}	31	CH ₂ Cl ₂	-	>99 (93)	16:1	98

^a Unless otherwise specified, the reaction was carried out with 1a (0.05 mmol), 2a (0.05 mmol),

catalyst **3** (0.005 mmol) in solvent (1.0 mL) at room temperature for 72 h. ^{*b*} Determined by ¹H NMR spectroscopy of the crude mixture. ^{*c*} Determined by chiral HPLC on a Chiralcel IA column. ^{*d*}The reaction was was performed at 0 °C. ^{*e*}The reaction was was performed -40 °C. ^{*f*}The reaction was carried out for 4 h. ^{*g*} The reaction was performed at 15 °C. ^{*h*}The reaction was performed at 10 °C. ^{*i*}The reaction was carried out in 2 ml CH₂Cl₂. ^{*j*}The reaction was carried out in 0.1 M scale with a **1**/**2** = 1:1.3 ratio, the isolated yield is given in the parenthesis.

General procedure and spectral data for the synthesis of 4

In an ordinary vial, methyleneindolinone1 (0.1 mmol) was added to a stirred mixture of azomethine imine 2 (0.13 mmol) and catalyst 31 (0.01 mmol) in CH_2Cl_2 (1.0 mL) at 15 °C. The mixture was stirred at this temperature for 4 h. The reaction mixture was then directly purified by silica gel chromatography (petroleum ether/AcOEt 2:1 - 1:1) without workup and fractions were collected and concentrated in vacuo to provide the pure desired products 4.

(*1'S*, *2'S*, *3'R*)-1-tert-butyl 3'-ethyl 2,5'-dioxo-1'-phenyl-3',5',6',7'-tetrahydro-1'*H*-spiro[indoline-3,2'pyrazolo[1,2-*a*]pyrazole]-1,3'-dicarboxylate, **4aa**. (Table 2, entry 1)

4aa was isolated by column chromatography in 93% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.68 (d, *J* = 8.1 Hz, 1H), 7.40 (d, *J* = 7.5 Hz, 1H), 7.35 (td, *J* = 7.9, 1.3 Hz, 1H), 7.22 (ddd, *J* = 7.4, 6.3, 1.2 Hz, 2H), 7.13 (t, *J* = 7.2 Hz, 2H), 6.96 (d, *J* = 7.2 Hz, 2H), 4.68 (s, 1H), 4.30 - 4.19 (m, 1H), 4.15 - 4.04 (m, 1H), 4.12 (s, 1H), 3.64 (t, *J* = 8.4 Hz, 1H), 3.34 - 3.15 (m, 1H), 2.99 (dt, *J* = 13.5, 8.1 Hz, 1H), 2.79 (dd, *J* = 15.6, 7.5 Hz, 1H), 1.48 (s, 9H), 1.07 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (**75 MHz, CDCl₃**) δ 172.1, 166.4, 164.8, 148.2, 140.2, 130.2, 130.2, 129.0, 128.2, 127.2, 124.4, 123.7, 121.8, 114.9, 84.3, 77.2, 65.3, 62.2, 59.4, 52.6, 36.3, 27.8, 13.7;

IR: 2982, 2933, 2844, 1767, 1737, 1697, 1605, 1467, 1413, 1353, 1294, 1252, 1152, 1106, 1072, 841, 753, 700 cm⁻¹;

 $[\alpha]_{D}^{rt} = -17 (c = 0.99, CHCl_3);$

HRMS (ESI): C₂₇H₂₉N₃O₆+H, Calc: 492.2129, Found: 492.2134;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 7.1, t_{minor} = 9.1, 98% ee.

(1'R,2'S,3'R)-1-tert-butyl 3'-ethyl 1'-(2-chlorophenyl)-2,5'-dioxo-3',5',6',7'-tetrahydro-1'H-spiro [indoline-3,2'-pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, **4ab**. (Table 2, entry 2)

4ab was isolated by column chromatography in 89% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.82 (d, *J* = 7.5 Hz, 1H), 7.66 (d, *J* = 8.1 Hz, 1H), 7.46 (d, *J* = 7.5 Hz, 1H), 7.32 (t, *J* = 7.8 Hz, 1H), 7.22 (dd, *J* = 12.4, 4.5 Hz, 1H), 7.14 (t, *J* = 8.2 Hz, 3H), 4.91 (s, 1H), 4.70 (s, 1H), 4.32 – 4.16 (m, 1H), 4.16 – 4.00 (m, 1H), 3.48 (t, *J* = 8.0 Hz, 1H), 3.23 – 3.08 (m, 1H), 3.08 – 2.95 (m, 1H), 2.78 (dd, *J* = 14.4, 6.5 Hz, 1H), 1.52 (s, 9H), 1.05 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (**75** MHz, CDCl₃) δ 172.5, 166.2, 165.1, 148.2, 139.7, 134.5, 130.3, 130.1, 130.0, 129.7, 128.1, 126.7, 125.5, 124.2, 120.7, 114.5, 84.4, 71.3, 65.1, 62.1, 60.1, 52.1, 36.3, 27.9, 13.7; **IR**: 2982, 29322, 2852, 1792, 1765, 1738, 1707, 1605, 1477, 1412, 1354, 1294, 1252, 1199, 1152, 1108, 1071, 1039, 841, 756 cm⁻¹;

 $[\alpha]_{D}^{rt} = +1 (c = 1.02, CHCl_3);$

HRMS (ESI): C₂₇H₂₈ClN₃O₆+H, Calc: 526.1739, Found: 526.1735;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{maior} = 8.1, t_{minor} = 10.7, 97% ee.

(1'R,2'S,3'R)-1-tert-butyl 3'-ethyl 1'-(2-bromophenyl)-2,5'-dioxo-3',5',6',7'-tetrahydro-1'H-spiro [indoline-3,2'-pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, **4ac**. (Table 2, entry 3)

4ac was isolated by column chromatography in 92% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.81 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.67 (d, *J* = 8.2 Hz, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.29 – 7.23 (m, 1H), 7.20 – 7.05 (m, 2H), 4.93 (d, *J* = 2.6 Hz, 1H), 4.71 (d, *J* = 2.6 Hz, 1H), 4.31 – 4.17 (m, 1H), 4.14 – 4.04 (m, 1H), 3.46 (dd, *J* = 10.6, 5.0 Hz, 1H), 3.26 – 2.96 (m, 2H), 2.90 – 2.72 (m, 1H), 1.54 (d, *J* = 2.9 Hz, 9H), 1.05 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (75 MHz, CDCl₃) δ 172.5, 166.1, 165.1, 148.2, 133.1, 130.5, 130.3, 130.4, 130.3, 129.7, 127.3, 125.9, 124.8, 124.1, 120.5, 114.5, 84.4, 73.5, 65.2, 62.1, 60.1, 51.9, 36.2, 27.9, 13.7;
IR: 2981, 2930, 2852, 1765, 1736, 1707, 1605, 1469, 1412, 1367, 1353, 1294, 1251, 1198, 1152, 1107, 1071, 1021, 840, 756 cm⁻¹;

 $[\alpha]_{D}^{rt} = +11 (c = 1.03, CHCl_3);$

HRMS (ESI): C₂₇H₂₈BrN₃O₆+H, Calc: 570.1234, Found: 570.1241;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 7.9, t_{minor} = 10.8, 96% ee.

(1'S,2'S,3'R)-1-tert-butyl 3'-ethyl 1'-(3-bromophenyl)-2,5'-dioxo-3',5',6',7'-tetrahydro-1'H-spiro [indoline-3,2'-pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, **4ad**. (Table 2, entry 4)

4ad was isolated by column chromatography in 88% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.73 (d, *J* = 8.6 Hz, 1H), 7.36 (dd, *J* = 13.4, 6.1 Hz, 4H), 7.24 (dd, *J* = 15.6, 8.0 Hz, 1H), 6.96 (t, *J* = 7.8 Hz, 1H), 6.67 (d, *J* = 7.6 Hz, 1H), 4.66 (s, 1H), 4.33 – 4.19 (m, 1H), 4.16 – 3.96 (m, 1H), 4.08 (s, 1H), 3.65 (t, *J* = 8.1 Hz, 1H), 3.24 (td, *J* = 14.7, 8.4 Hz, 1H),

3.06 – 2.91 (m, 1H), 2.79 (dd, *J* = 15.5, 7.6 Hz, 1H), 1.52 (s, 9H), 1.08 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (**75** MHz, CDCl₃) δ 171.8, 166.5, 165.0, 148.2, 140.2, 132.7, 132.2, 130.5, 130.0, 129.7, 126.0, 124.6, 123.7, 122.5, 121.3, 115.1, 84.7, 76.3, 65.3, 62.3, 59.4, 52.7, 36.3, 27.8, 13.8; **IR:** 2980, 2927, 2853, 1767, 1737, 1700, 1603, 1569, 1468, 1413, 1352, 1336, 1294, 1252, 1198, 1151, 1076, 1070, 1011, 841, 795, 760 cm⁻¹;

 $[\alpha]_{D}^{rt} = -41 (c = 1.01, CHCl_3);$

HRMS (ESI): C₂₇H₂₈BrN₃O₆+Na, Calc: 592.1054, Found: 592.1048;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 7.6, t_{minor} = 9.3, 98% ee.

(1'S,2'S,3'R)-1-tert-butyl 3'-ethyl 1'-(3-methoxyphenyl)-2,5'-dioxo-3',5',6',7'-tetrahydro-1'H-spiro [indoline-3,2'-pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, **4ae**. (Table 2, entry 5)

4ae was isolated by column chromatography in 82% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.70 (d, *J* = 8.2 Hz, 1H), 7.37 (dd, *J* = 15.8, 7.9 Hz, 2H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.01 (t, *J* = 7.9 Hz, 1H), 6.75 (d, *J* = 8.1 Hz, 1H), 6.59 (s, 1H), 6.43 (d, *J* = 7.6 Hz, 1H), 4.67 (s, 1H), 4.33 – 4.22 (m, 1H), 4.19 – 4.01 (m, 1H), 4.09 (s, 1H), 3.66 (t, *J* = 8.4 Hz, 1H), 3.65 (s, 3H), 3.35 – 3.16 (m, 1H), 3.11 – 2.92 (m, 1H), 2.80 (dd, *J* = 15.6, 7.7 Hz, 1H), 1.49 (s, 9H), 1.07 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (**75** MHz, CDCl₃) δ 172.2, 166.5, 164.9, 159.4, 140.4, 131.7, 130.2, 129.2, 124.5, 123.8, 121.9, 119.6, 115.7, 115.1, 111.4, 84.4, 77.2, 65.4, 62.2, 59.5, 55.1, 52.7, 36.4, 27.8, 13.8; **IR:** 2925, 2854, 1741, 1699, 1603, 1463, 1414, 1369, 1354, 1294, 1254, 1199, 1153, 1107, 1071, 1043, 842, 801, 759 cm⁻¹;

 $[\alpha]_{D}^{rt} = -20 (c = 1.05, CHCl_3);$

HRMS (ESI): C₂₈H₃₁N₃O₇+Na, Calc: 544.2054, Found: 544.2061;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention

time: $t_{major} = 7.7$, $t_{minor} = 8.5$, 93% ee.

(1'S,2'S,3'R)-1-tert-butyl 3'-ethyl 1'-(4-fluorophenyl)-2,5'-dioxo-3',5',6',7'-tetrahydro-1'H-spiro [indoline-3,2'-pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, **4af**. (Table 2, entry 6)

4af was isolated by column chromatography in 92% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.69 (d, *J* = 8.1 Hz, 1H), 7.37 (dd, *J* = 11.6, 7.8 Hz, 2H), 7.23 (d, *J* = 7.6 Hz, 1H), 6.96 (dd, *J* = 8.4, 5.6 Hz, 2H), 6.83 (t, *J* = 8.5 Hz, 2H), 4.67 (s, 1H), 4.34 – 4.17 (m, 1H), 4.17 – 4.01 (m, 1H), 4.11 (s, 1H), 3.62 (t, *J* = 8.4 Hz, 1H), 3.22 (td, *J* = 14.5, 8.4 Hz, 1H), 3.09 – 2.92 (m, 1H), 2.79 (dd, *J* = 15.5, 7.6 Hz, 1H), 1.50 (s, 9H), 1.07 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (75 MHz, CDCl₃) δ 172.0, 166.4, 164.9, 163.1 (*J* = 246.75 Hz), 148.1, 140.4, 130.4, 129.0 (*J* = 9.0 Hz), 126.0 (*J* = 3.0 Hz), 124.6, 123.7, 121.6, 115.4, 115.1(*J* = 9.0 Hz), 84.5, 76.4, 65.2, 62.2, 59.4, 52.6, 36.3, 27.8, 13.8;

IR: 2980, 2926, 2853, 1792, 1766, 1739, 1696, 1605, 1510, 1466, 1414, 1370, 1351, 1335, 1294, 1252, 1200, 1153, 1105, 1072, 1013, 843, 757 cm⁻¹;

 $[\alpha]_{D}^{rt} = -25 (c = 0.96, CHCl_3);$

HRMS (ESI): C₂₇H₂₈FN₃O₆+Na, Calc: 532.1854, Found: 532.1862;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 7.0, t_{minor} = 11.5, >99% ee.

(1'S,2'S,3'R)-1-tert-butyl 3'-ethyl 1'-(4-chlorophenyl)-2,5'-dioxo-3',5',6',7'-tetrahydro-1'H-spiro [indoline-3,2'-pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, **4ag**. (Table 2, entry 7)

4ag was isolated by column chromatography in 93% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.63 (d, *J* = 8.1 Hz, 1H), 7.30 (t, *J* = 8.0 Hz, 2H), 7.15 (dt, *J* = 8.1, 0.9 Hz, 1H), 7.05 (d, *J* = 8.5 Hz, 2H), 6.83 (d, *J* = 8.4 Hz, 2H), 4.59 (s, 1H), 4.19 - 4.13 (m, 1H), 4.07 - 3.94 (m, 1H), 4.03 (s, 1H), 3.54 (t, *J* = 8.3 Hz, 1H), 3.27 - 3.04 (m, 1H), 2.92 (dt, *J* = 13.5, 8.0 Hz, 1H), 2.72 (dd, *J* = 15.6, 7.5 Hz, 1H), 1.43 (s, 9H), 0.99 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (**75** MHz, CDCl₃) δ 171.9, 166.4, 164.9, 148.0, 140.1, 135.0, 130.4, 128.9, 128.5, 128.4, 124.6, 123.7, 121.5, 115.0, 84.6, 76.3, 65.2, 62.2, 59.4, 52.6, 36.3, 27.8, 13.7;

IR: 2981, 2927, 2853, 1793, 1767, 1738, 1708, 1604, 1485, 1466, 1412, 1353, 1294, 1251, 1199, 1152, 1092, 1071, 1014, 840, 761 cm⁻¹;

 $[\alpha]_{D}^{rt} = -35 (c = 1.01, CHCl_3);$

HRMS (ESI): C₂₇H₂₈ClN₃O₆+H, Calc: 526.1739, Found: 526.1744;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 8.2, t_{minor} = 13.7, 97% ee.

(1'S,2'S,3'R)-1-tert-butyl 3'-ethyl 1'-(4-bromophenyl)-2,5'-dioxo-3',5',6',7'-tetrahydro-1'H-spiro [indoline-3,2'-pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, **4ah**. (Table 2, entry 8)

4ah was isolated by column chromatography in 94% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.63 (td, *J* = 7.8, 1.5 Hz, 1H), 7.36 – 7.08 (m, 5H), 6.77 (dd, *J* = 8.4, 2.7 Hz, 2H), 4.58 (d, *J* = 2.7 Hz, 1H), 4.20 – 4.10 (m, 1H), 4.07 – 3.96 (m, 1H), 4.02 (s, 1H), 3.54 (dt, *J* = 8.1, 2.1 Hz, 1H), 3.02 – 2.81 (m, 1H), 2.94 – 2.88 (m, 1H), 2.71 (ddd, *J* = 15.6, 7.6, 3.1 Hz, 1H), 1.43 (d, *J* = 3.5 Hz, 9H), 0.99 (dd, *J* = 8.9, 5.4 Hz, 3H);

¹³C NMR (75 MHz, CDCl₃) δ 171.9, 166.4, 164.9, 148.1, 140.2, 131.4, 130.5, 129.4, 128.8, 124.6, 123.7, 123.2, 121.5, 115.1, 84.6, 76.3, 65.2, 62.2, 59.4, 52.6, 36.3, 27.8, 13.7; IR: 2981, 293, 2846, 1793, 1767, 1737, 1705, 1604, 1483, 1467, 1412, 1352, 1294, 1251, 1198, 1152, 1104, 1071, 1011, 839, 759 cm⁻¹; [α]_D^{rt} = - 39 (c = 1.00, CHCl₃);

HRMS (ESI): C₂₇H₂₈BrN₃O₆+Na, Calc: 592.1054, Found: 592.1060;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 9.1, t_{minor} = 15.4, >99% ee.

(1'S,2'S,3'R)-1-tert-butyl 3'-ethyl 2,5'-dioxo-1'-(p-tolyl)-3',5',6',7'-tetrahydro-1'H-spiro[indoline-3,2'-pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, **4ai**. (Table 2, entry 9)

4ai was isolated by column chromatography in 91% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.70 (d, *J* = 7.8 Hz, 1H), 7.36 (ddd, *J* = 9.4, 8.4, 1.1 Hz, 2H), 7.21 (td, *J* = 7.8, 1.0 Hz, 1H), 6.94 (d, *J* = 7.8 Hz, 2H), 6.84 (d, *J* = 8.1 Hz, 2H), 4.67 (s, 1H), 4.29 – 4.18 (m, 1H), 4.17 – 4.02 (m, 1H), 4.19 (s, 1H), 3.62 (t, *J* = 8.4 Hz, 1H), 3.31 – 3.10 (m, 1H), 2.97 (dt, *J* = 13.5, 8.1 Hz, 1H), 2.78 (dd, *J* = 15.6, 7.6 Hz, 1H), 2.23 (s, 3H), 1.49 (s, 9H), 1.06 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (**75** MHz, CDCl₃) δ 172.3, 166.4, 164.8, 148.3, 140.2, 138.9, 130.2, 128.9, 127.1, 127.0, 124.5, 123.8, 121.9, 115.0, 84.2, 77.2, 65.3, 62.2, 59.4, 52.5, 36.4, 27.8, 21.0, 13.8;

IR: 2925, 2854, 1765, 1738, 1697, 1605, 1513, 1465, 1413, 1370, 1351, 1335, 1294, 1251, 1197, 1152, 1106, 1071, 1013, 840, 757 cm⁻¹;

 $[\alpha]_{D}^{rt} = -19 (c = 0.98, CHCl_3);$

HRMS (ESI): C₂₈H₃₁N₃O₆+H, Calc: 506.2286, Found: 506.2285;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 7.8, t_{minor} = 10.4, 95% ee.

(1'S,2'S,3'R)-1-tert-butyl 3'-ethyl 1'-(4-methoxyphenyl)-2,5'-dioxo-3',5',6',7'-tetrahydro-1'H-spiro

[indoline-3,2'-pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, 4aj. (Table 2, entry 10)

4aj was isolated by column chromatography in 86% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.69 (d, *J* = 8.1 Hz, 1H), 7.35 (dt, *J* = 8.1, 4.2 Hz, 2H), 7.20 (td, *J* = 7.5, 0.9 Hz, 1H), 6.89 (d, *J* = 8.7 Hz, 2H), 6.66 (d, *J* = 8.7 Hz, 2H), 4.67 (s, 1H), 4.26 – 4.18 (m, 1H), 4.15 – 4.03 (m, 1H), 4.07 (s, 1H), 3.71 (s, 3H), 3.61 (t, *J* = 8.4 Hz, 1H), 3.19 (dd, *J* = 14.5, 8.6 Hz, 1H), 2.97 (dt, *J* = 13.4, 8.1 Hz, 1H), 2.78 (dd, *J* = 15.6, 7.6 Hz, 1H), 1.50 (s, 9H), 1.06 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (**75** MHz, CDCl₃) δ 172.4, 166.5, 164.9, 160.1, 148.3, 140.2, 130.2, 128.5, 124.4, 123.7, 122.0, 121.9, 115.0, 113.6, 84.3, 66.3, 62.1, 59.5, 55.1, 52.5, 36.4, 28.0, 27.9, 13.8;

IR: 2956, 2926, 2854, 1792, 1764, 1735, 1699, 1609, 1513, 1464, 1369, 1351, 1295, 1252, 1173, 1152, 1102, 1030, 839, 800, 758 cm⁻¹;

 $[\alpha]_{D}^{rt} = -8 (c = 1.04, CHCl_3);$

HRMS (ESI): C₂₈H₃₁N₃O₇+Na, Calc: 544.2054, Found: 544.2060;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 8.4, t_{minor} = 10.4, 94% ee.

(1'R,2'S,3'R)-1-tert-butyl 3'-ethyl 1'-(furan-2-yl)-2,5'-dioxo-3',5',6',7'-tetrahydro-1'H-spiro [indoline-3,2'-pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, **4ak**. (Table 2, entry 11)

4ak was isolated by column chromatography in 68% yield;

¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, J = 8.4 Hz, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.35 (dd, J =

10.9, 3.8 Hz, 2H), 7.16 (t, *J* = 7.6 Hz, 1H), 6.30 (s, 2H), 4.99 (s, 1H), 4.25 (s, 1H), 4.09 – 3.79 (m, 2H), 3.36 (t, *J* = 8.4 Hz 2H), 2.72 (t, *J* = 6 Hz, 2H), 1.59 (s, 9H), 0.87 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (**75** MHz, CDCl₃) δ 170.9, 166.4, 148.7, 145.5, 143.7, 139.6, 130.0, 124.6, 124.4, 114.9, 114.6, 111.7, 110.6, 84.7, 77.2, 69.7, 62.9, 61.8, 61.5, 34.4, 28.0, 13.5;

IR: 2955, 2925, 2854, 1744, 1603, 1462, 1416, 1372, 1348, 1296, 1257, 1153, 1096, 1018, 799, 756 cm⁻¹;

 $[\alpha]_{D}^{rt} = -8 (c = 1.03, CHCl_3);$

HRMS (ESI): C₂₅H₂₇N₃O₇+Na, Calc: 504.1741, Found: 504.1748;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 6.6, t_{minor} = 8.9, 91% ee.

(1'S,2'S,3'R)-1-tert-butyl 3'-ethyl 5-chloro-2,5'-dioxo-1'-phenyl-3',5',6',7'-tetrahydro-1'H-spiro [indoline-3,2'-pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, **4ba**. (Table 2, entry 12)

4ba was isolated by column chromatography in 84% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.65 (d, *J* = 8.7 Hz, 1H), 7.39 (d, *J* = 2.1 Hz, 1H), 7.33 (dd, *J* = 8.7, 2.1 Hz, 1H), 7.27 (t, *J* = 8.8 Hz, 1H), 7.16 (t, *J* = 7.4 Hz, 2H), 7.00 (d, *J* = 7.2 Hz, 2H), 4.66 (s, 1H), 4.33 – 4.14 (m, 2H), 4.10 (s, 1H), 3.63 (t, *J* = 8.3 Hz, 1H), 3.32 – 3.12 (m, 1H), 3.00 (dt, *J* = 13.5, 8.0 Hz, 1H), 2.79 (dd, *J* = 15.6, 7.5 Hz, 1H), 1.48 (s, 9H), 1.13 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (**75** MHz, CDCl₃) δ 171.4, 166.4, 165.0, 148.0, 138.8, 130.3, 130.0, 129.9, 129.3, 128.4, 127.3, 124.0, 123.5, 116.3, 84.7, 77.2, 65.2, 62.5, 59.3, 52.6, 36.3, 27.8, 13.9;

IR: 2925, 2854, 1769, 1739, 1697, 1600, 1469, 1371, 1335, 1293, 1254, 1196, 1153, 1119, 1072, 1025, 827, 757 cm⁻¹;

 $[\alpha]_{D}^{rt} = -17 (c = 1.05, CHCl_3);$

HRMS (ESI): C₂₇H₂₈ClN₃O₆+Na, Calc: 548.1559, Found: 548.1561;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention

time: $t_{major} = 8.2$, $t_{minor} = 14.0$, 96% ee.

(1'S,2'S,3'R)-1-tert-butyl 3'-ethyl 5-bromo-2,5'-dioxo-1'-phenyl-3',5',6',7'-tetrahydro-1'H-spiro [indoline -3,2'-pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, **4ca**. (Table 2, entry 13)

4ca was isolated by column chromatography in 84% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.59 (d, *J* = 8.7 Hz, 1H), 7.52 (d, *J* = 1.8 Hz, 1H), 7.47 (dd, *J* = 8.7, 2.1 Hz, 1H), 7.26 (d, *J* = 5.5 Hz, 1H), 7.17 (t, *J* = 7.4 Hz, 2H), 7.00 (d, *J* = 7.2 Hz, 2H), 4.66 (s, 1H), 4.37 – 4.15 (m, 2H), 4.10 (s, 1H), 3.63 (t, *J* = 8.4 Hz, 1H), 3.33 – 3.10 (m, 1H), 3.00 (dt, *J* = 13.6, 8.1 Hz, 1H), 2.79 (dd, *J* = 15.5, 7.5 Hz, 1H), 1.47 (s, 9H), 1.14 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (**75** MHz, CDCl₃) δ 171.3, 166.4, 165.0, 148.0, 139.3, 133.2, 129.9, 129.3, 128.4, 127.3, 126.8, 123.9, 117.4, 116.6, 84.8, 77.2, 65.1, 62.6, 59.4, 52.6, 36.3, 27.8, 13.9;

IR: 2980, 2927, 2854, 1770, 1737, 1709, 1601, 1471, 1415, 1369, 1334, 1294, 1253, 1198, 1153, 1120, 1068, 1011, 837, 748, 701 cm⁻¹;

 $[\alpha]_{D}^{rt} = -14 (c = 0.99, CHCl_3);$

HRMS (ESI): C₂₇H₂₈BrN₃O₆+Na, Calc: 592.1054, Found: 592.1055;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{maior} = 7.7, t_{minor} = 13.2, 98% ee.

(1'S,2'S,3'R)-1-tert-butyl 3'-ethyl 5-methyl-2,5'-dioxo-1'-phenyl-3',5',6',7'-tetrahydro-1'H-spiro [indoline-3,2'-pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, **4da**. (Table 2, entry 14)

4da was isolated by column chromatography in 93% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.55 (d, *J* = 8.3 Hz, 1H), 7.26 – 7.19 (m, 2H), 7.14 (t, *J* = 7.4 Hz, 3H), 6.96 (dd, *J* = 8.4, 1.2 Hz, 2H), 4.66 (s, 1H), 4.26 – 4.07 (m, 2H), 4.10 (s, 1H), 3.64 (t, *J* = 8.4 Hz, 1H), 3.34 – 3.13 (m, 1H), 2.99 (dt, *J* = 13.6, 8.1 Hz, 1H), 2.79 (dd, *J* = 15.6, 7.5 Hz, 1H), 2.39 (s, 3H), 1.47 (s, 9H), 1.07 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (**75** MHz, CDCl₃) δ 172.2, 166.5, 164.9, 148.2, 137.8, 134.1, 130.7, 130.3, 129.0, 128.2, 127.2, 124.2, 121.7, 114.7, 84.1, 65.4, 62.1, 59.4, 52.6, 36.4, 27.8, 21.1, 13.7;

IR: 2980, 2926, 2854, 1768, 1735, 1696, 1598, 1491, 1454, 1414, 1369, 1338, 1284, 1251, 1195, 1155, 1125, 1072, 1030, 1011, 823, 753 cm⁻¹;

 $[\alpha]_{D}^{rt} = -26 (c = 0.98, CHCl_3);$

HRMS (ESI): C₂₈H₃₁N₃O₆+H, Calc: 506.2286, Found: 506.2293;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 7.4, t_{minor} = 9.2, 96% ee.

(1'S,2'S,3'R)-1-tert-butyl 3'-ethyl 5-methoxy-2,5'-dioxo-1'-phenyl-3',5',6',7'-tetrahydro-1'H-spiro [indoline-3,2'-pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, **4ea**. (Table 2, entry 15)

4ea was isolated by column chromatography in 87% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.61 (d, *J* = 9.0 Hz, 1H), 7.21 (dd, *J* = 4.9, 3.6 Hz, 1H), 7.18 – 7.11 (m, 2H), 6.98 (m, 3H), 6.86 (dd, *J* = 9.0, 2.7 Hz, 1H), 4.68 (s, 1H), 4.32 – 4.07 (m, 2H), 4.10 (s, 1H), 3.84 (s, 3H), 3.63 (t, *J* = 8.3 Hz, 1H), 3.34 – 3.11 (m, 1H), 2.99 (dt, *J* = 13.5, 8.1 Hz, 1H), 2.79 (dd, *J* = 15.6, 7.5 Hz, 1H), 1.47 (s, 9H), 1.10 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (75 MHz, CDCl₃) δ 172.2, 166.4, 164.8, 156.8, 148.3, 133.6, 130.3, 129.1, 128.3, 127.3, 123.0, 115.9, 115.0, 110.0, 84.1, 76.6, 65.6, 62.2, 59.5, 55.7, 52.6, 36.4, 27.9, 13.8.
IR: 2926, 2853, 1743, 1599, 1489, 1458, 1415, 1368, 1282, 1251, 1215, 1155, 1070, 1045, 1010, 840, 814, 746, 700 cm⁻¹;

 $[\alpha]_{D}^{rt} = -33 (c = 0.94, CHCl_3);$

HRMS (ESI): C₂₈H₃₁N₃O₇+Na, Calc: 544.2054, Found: 544.2061;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 9.4, t_{minor} = 15.9, 99% ee.

(1'S,2'S,3'R)-1-tert-butyl 3'-ethyl 6-bromo-2,5'-dioxo-1'-phenyl-3',5',6',7'-tetrahydro-1'H-spiro [indoline-3,2'-pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, **4fa**. (Table 2, entry 16)

4fa was isolated by column chromatography in 81% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.92 (d, J = 1.8 Hz, 1H), 7.37 (dd, J = 8.2, 1.7 Hz, 1H), 7.26 (dd, J = 10.9, 5.1 Hz, 2H), 7.17 (t, J = 7.4 Hz, 2H), 6.98 (d, J = 7.3 Hz, 2H), 4.65 (s, 1H), 4.33 – 4.14 (m, 1H), 4.13 – 4.03 (m, 1H), 4.08 (s, 1H), 3.63 (t, J = 8.4 Hz, 1H), 3.32 – 3.13 (m, 1H), 2.98 (dt, J = 13.5, 8.1 Hz, 1H), 2.79 (dd, J = 15.6, 7.7 Hz, 1H), 1.48 (s, 9H), 1.12 (t, J = 7.2 Hz, 3H); ¹³C **NMR (75 MHz, CDCl₃)** δ 171.6, 166.4, 164.9, 148.0, 141.3, 129.9, 129.3, 128.4, 127.5, 127.2, 125.1, 124.2, 120.8, 118.5, 84.9, 77.1, 65.1, 62.4, 59.3, 52.6, 36.3, 27.8, 13.9; **IR:** 2981, 2929, 2852, 1770, 1737, 1697, 1600, 1477, 1418, 1368, 1351, 1331, 1285, 1248, 1191, 1151, 1116, 1072, 1021, 981, 841, 754 cm⁻¹;

 $[\alpha]_{D}^{rt} = -28 (c = 1.00, CHCl_3);$

HRMS (ESI): C₂₇H₂₈BrN₃O₆+Na, Calc: 592.1054, Found: 592.1062;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 7.4, t_{minor} = 13.8, 97% ee.

(1'S,2'S,3'R)-1-tert-butyl 3'-methyl 2,5'-dioxo-1'-phenyl-3',5',6',7'-tetrahydro-1'H-spiro[indoline

-3,2'-pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, 4ga. (Table 2, entry 17)

4ga was isolated by column chromatography in 94% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.68 (dd, *J* = 7.8, 1.2 Hz 1H), 7.35 (t, *J* = 7.4 Hz, 2H), 7.24 (dd, *J* = 14.2, 6.7 Hz, 2H), 7.13 (t, *J* = 7.4 Hz, 2H), 6.95 (d, *J* = 7.2 Hz, 2H), 4.70 (s, 1H), 4.11 (s, 1H), 3.68 (s, 3H), 3.64 (t, *J* = 8.1 Hz, 1H), 3.34 – 3.14 (m, 1H), 3.00 (dt, *J* = 13.6, 8.1 Hz, 1H), 2.80 (dd, *J* = 15.6, 7.6 Hz, 1H), 1.48 (s, 9H);

¹³C NMR (**75** MHz, CDCl₃) δ 172.1, 167.0, 164.9, 148.2, 140.3, 130.3, 130.2, 129.1, 128.3, 127.2, 124.6, 123.5, 121.8, 115.1, 84.4, 77.2, 65.4, 59.3, 52.8, 52.7, 36.4, 27.8;

IR: 2925, 2853, 1742, 1696, 1604, 1463, 1414, 1358, 1340, 1295, 1252, 1213, 1153, 1107, 1072, 995, 841, 751 cm⁻¹;

 $[\alpha]_{D}^{rt} = -21 (c = 1.02, CHCl_3);$

HRMS (ESI): C₂₆H₂₇N₃O₆+H, Calc: 478.1973, Found: 478.1977;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 7.3, t_{minor} = 12.3, >99% ee.

(1'S,2'S,3'R)-di-tert-butyl 2,5'-dioxo-1'-phenyl-3',5',6',7'-tetrahydro-1'H-spiro[indoline-3,2'pyrazolo[1,2-a]pyrazole]-1,3'-dicarboxylate, **4ha**. (Table 2, entry 18)

4ha was isolated by column chromatography in 92% yield;

¹**H NMR (300 MHz, CDCl₃)** δ 7.67 (d, *J* = 7.7 Hz, 1H), 7.57 (dd, *J* = 7.7, 1.0 Hz, 1H), 7.35 (td, *J* = 7.9, 1.4 Hz, 1H), 7.26 - 7.17 (m, 2H), 7.13 (dd, *J* = 8.1, 6.7 Hz, 2H), 7.01 - 6.90 (m, 2H), 4.56

(s, 1H), 4.14 (s, 1H), 3.62 (t, *J* = 8.3 Hz, 1H), 3.29 – 3.11 (m, 1H), 2.98 (dt, *J* = 13.5, 8.1 Hz, 1H), 2.77 (dd, *J* = 15.6, 7.4 Hz, 1H), 1.48 (s, 9H), 1.39 (s, 9H);

¹³C NMR (**75** MHz, CDCl₃) δ 172.4, 165.6, 164.9, 148.3, 140.3, 130.4, 130.2, 129.0, 128.2, 127.3, 125.1, 124.3, 121.8, 114.7, 84.3, 84.2, 77.5, 65.3, 60.3, 52.6, 36.2, 27.9, 27.8;

IR: 2980, 2930, 2852, 1767, 1736, 1698, 1605, 1478, 1413, 1365, 1294, 1252, 1221, 1152, 1106, 1072, 843, 755 cm⁻¹;

 $[\alpha]_{D}^{rt} = -19 (c = 1.01, CHCl_3);$

HRMS (ESI): C₂₉H₃₃N₃O₆+H, Calc: 520.2442, Found: 520.2446;

HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: t_{major} = 5.9, t_{minor} = 6.6, 98% ee.

General procedure and spectral data for the synthesis of 5:

To a stirred solution of **4aa** (0.1 mmol, 49.1mg) was added 0.1 ml TFA slowly under 0 $^{\circ}$ C. The reaction mixture was stirred at this temperature and monitored by TLC, and extracted by CH₂Cl₂ after completion in 15 min. The combined organic layer was dried over anhydrous Na₂SO₄, concentrated after filtration and purified by silica gel chromatography (CH₂Cl₂:MeOH 20:1) and fractions were collected and concentrated in vacuo to provide the pure desired products **5** in 94% yield.

¹**H NMR (300 MHz, CDCl₃)** δ 8.69 (s, 1H), 7.34 (d, *J* = 7.5 Hz, 1H), 7.29 – 7.21 (m, 2H), 7.19 – 7.06 (m, 3H), 7.01 (d, *J* = 7.2 Hz, 2H), 6.78 (d, *J* = 7.5 Hz, 1H), 4.63 (s, 1H), 4.24 (s, 1H), 4.24 – 4.03 (m, 2H), 3.62 (t, *J* = 8.1 Hz, 1H), 3.20 – 3.02 (m, 1H), 2.96 (dd, *J* = 13.5, 8.1 Hz, 1H), 2.74 (dd, *J* = 15.3, 7.2 Hz, 1H), 1.03 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (75 MHz, CDCl₃) δ 176.4, 166.6, 165.4, 141.5, 130.7, 130.1, 128.9, 128.2, 127.3, 124.4, 123.2, 122.6, 110.5, 76.1, 65.0, 62.1, 59.3, 53.0, 36.3, 13.7;
IR: 3239, 1725, 1693, 1620, 1599, 1474, 1413, 1200, 912, 732 cm⁻¹;

HRMS (ESI): C₂₂H₂₁N₃O₄+Na, Calc: 414.1424, Found: 414.1429.

General procedure and spectral data for the synthesis of 6

To a stirred solution of **4aa** (0.1 mmol, 49.1mg) in MeOH (0.1 ml) was added a 0.1 M THF solution of SmI₂ (0.4 mmol, 4 ml) at room temperature. After stirring for 10 min at r.t., the reaction solution was poured into saturated NaHCO₃ aq. and extracted with EtOAc. The organic extracts were washed with brine, dried over Na₂SO₄ and evaporated in vacuo. The residue was purified by silica gel chromatography (CH₂Cl₂:MeOH 20:1), fractions were collected and concentrated in vacuo to provide the pure desired products **6** in 71% yield.

¹**H NMR (300 MHz, CDCl₃)** δ 8.19 (s, 1H), 7.39 (d, *J* = 7.3 Hz, 1H), 7.26 (dd, *J* = 11.8, 3.6 Hz, 1H), 7.20 (d, *J* = 8.7 Hz, 1H), 7.18 – 7.14 (m, 1H), 7.12 (s, 1H), 7.09 (d, *J* = 5.0 Hz, 1H), 6.98 (d, *J* = 7.4 Hz, 2H), 6.75 (d, *J* = 7.8 Hz, 1H), 5.06 (s, 1H), 3.91 (s, 1H), 3.80 (dt, *J* = 10.4, 6.2 Hz, 1H), 3.60 (s, 3H), 3.08 – 2.72 (m, 3H);

¹³C NMR (**75 MHz, CDCl₃**) δ 175.7, 174.3, 167.9, 141.2, 130.9, 129.7, 128.9, 128.2, 127.6, 127.4, 123.1, 122.7, 110.3, 80.2, 65.6, 62.0, 52.7, 46.4, 30.9;

IR: 3276, 1765, 1724, 1620, 1474, 1337, 1294, 1218, 1107, 1026, 910, 732 cm⁻¹;

HRMS (ESI): C₂₁H₁₉N₃O₄+Na, Calc: 400.1268, Found: 400.1272.

The absolute configuration determination:

X-ray Structure of **4ad**:

RES= 0 75 X

Chirality at C4	S	
Chirality at C5	S	
Chirality at C6	R	
6:05 2012 - (40712) 75 Y	NOROVE FORCED	Prob = 50 Temp = 293
e 05:		0.000

P2(1)2(1)2(1)R = 0.04

Datablock:

PLATON-Sep

Bond precisi	ion:	C-C =	0.0044	A		Wavelength=0.71073
Cell:	a=9.930(2)		b=11.1	63(3)	c=24.219(6)
	alpha=90		beta=90)	gamma=90)
Temperature	: 293 K					
		Calculat	ed			Reported
Volume		2684.6(1	11)			2684.7(11)
Space group		P 21 21 2	21			P2(1)2(1)2(
Hall group		P 2ac 2a	b			?
Moiety form	ula	C27 H28	8 Br N3	06		?
Sum formula	1	C27 H28	8 Br N3	06		C27 H28 Br N3 O6
Mr		570.42				570.43
Dx,g cm-3		1.411				1.411
Z		4				4
Mu (mm-1)		1.577				1.577
F000		1176.0				1176.0
F000'		1175.37				
h,k,lmax		11,13,28	3			11,13,28
Nref		2698[47	733]			4706
Tmin,Tmax		0.610,0.0	664			0.632,0.685
Tmin'		0.598				
Correction n	nethod= MUI	TI-SCAN	V			
Data comple	eteness= 1.74/	0.99		Theta(max)=	25.000	
R(reflections	s)= 0.0356(4	096)		wR2(ref	lections)= 0	.0923(4706)
S = 1.051		Npa	r= 338			

X-ray Structure of 7:

Datablock: 1

Bond precision:		C-C = 0.0047 A	Wavelength=0.71073	
Cell:	a=8.967(3)	b=11.953(4)	c=19.728(6)	
	alpha=90	beta=90	gamma=90	
Temperature	: 293 K			
		Calculated	Reported	
Volume		2114.5(12)	2114.4(11)	
Space group		P 21 21 21	P2(1)2(1)2(1	
Hall group		P 2ac 2ab	?	
Moiety form	ula	C22 H19 Br N3 O4	?	
Sum formula	ì	C22 H19 Br N3 O4	C22 H19 Br N3 O4	
Mr		469.30	469.31	

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Dx,g cm-3	1.474		1.474
Ζ	4		4
Mu (mm-1)	1.978		1.978
F000	956.0		956.0
F000'	955.25		
h,k,lmax	11,15,25		11,15,25
Nref	2629[4617]		4552
Tmin,Tmax	0.628,0.673		0.588,0.693
Tmin'	0.547		
Correction method= MUI	LTI-SCAN		
Data completeness= 1.73/	/0.99	Theta(max)= 26.970	
R(reflections)= 0.0398(3)	277)	wR2(reflections)= 0 .	0979(4552)
S = 1.005	Npar= 272		

MS experiment

The reaction mixture was monitored by MS (ESI) (negative).

The observed 346.0, 433.11, 520.1 and 591.6 are double charged.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

The DFT Calculation of Intermediates in the Reaction

To gain deeper insight into this asymmetric 1,3-dipolar cycloaddition reaction involving BINOL-derived bisphosphoric acid catalysts, the Gaussian 09 program package⁵ was employed and the DFT variant B3LYP⁶ was used in conjunction with the 6–31G(d) basis set⁷ to optimize all intermediates structures. The geometries of the reaction intermediates were identified using the IRC (intrinsic reaction coordinate) and IRCMAX method.⁸ The calculations are carried out without explicit consideration of solvent effects.

(8) a) C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154;

⁽⁵⁾ M. J. Frisch, et al., Gaussian 03, Revision C. 02, Gaussian, Inc., Wallingford CT, 2004.

⁽⁶⁾ A. D. Backe, J. Chem. Phys. 1983, 98, 5648.

⁽⁷⁾ P. M. W. Gill, B. G. Johnson, J. A. Pople, M. Frisch, J. Chem. Phys. Lett. 1992, 197, 499.

b) C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523.

Figure 1. Calculated structures of catalyst, substrates and products relative energies E in Hartree.

The **4ad** have its X-ray structure, the model of **4ad**' determined by X-ray structure of substrates 7, the model of our catalyst originated from X-ray structure of chiral bis-phosphoric acid catalyst.⁹ The optimized structures of the catalyst, cat1/cat2, the substrates **1a** and **2d**, the products **4ad** and **4ad**', are shown in Figure 1.

Because of both substrates can only offer O or N atom as the receptor of hydrogen bond which connected the substrates and catalyst, the two hydrogen atom donors should be provided by the two hydroxyls of phosphoric acid moiety of catalyst in this reaction.

Figure 2. Electron distribution of **2d**, N1 have one set lone pair electrons and O atoms have two set lone pair electrons. So N1 and O can from hydrogen bond with hydrogen atom donors in our catalyst.

⁽⁹⁾ N. Momiyama, T. Konno, Y. Furiya, T. Iwamoto, M. Terada, *J Am Chem Soc.* 2011, 133, 19294.

In the transition-state structures for the formation of both conformers **4ad** and **4ad'**, two substrates are clearly non-planar. The O atom on the oxo-indole ring of the **1a** connected the hydrogen atom on the hydroxyl of left phosphoric acid moiety, consistent with Gong's study.¹⁰ The N1 atom on the **2d** interact the hydrogen atom on the hydroxyl of right phosphoric acid moiety, by the reason of only N1 and O atoms in **2d** have lone pair electrons can from hydrogen bond with hydrogen atom donors (Figure 2) and our catalyst bond with N1 superior to O. (Figure 3)

Figure 3. Calculated structures of intermediates C relative distance in angstrom (Å). A is cat2 binding with N1 of 2d, B is cat1 binding with N1 of 2d, C is cat1 binding with O of 2d.

As illustrated in Figure 3B, the best transition structure for the reaction is intermediates C with cat1 bonding with N1 of substrate 2d. In this model, two substrates are tightly aligned, relative the N1- C5 (2.35 Å) and C3-C4 bonds (2.90 Å). The intermediates C with cat2 bonding with N1 of substrate 2d shown in Figure 3A, the relative position of two substrates are dislocated (both ~0.7Å), the bonds of N1-C5 > 4.9 Å and C3-C4 > 4.3Å, the reaction can't happen. In the

⁽¹⁰⁾ X.-H. Chen, Q. Wei, S.-W. Luo, H. Xiao, L.-Z. Gong, J. Am. Chem. Soc. 2009, 131, 13819.

intermediates C with cat1 bonding with O (Figure 3C), the substrate **2d** is about 2.3Å away from its "best location" and hardly attack the substrate 1a (N1-C5 > 4.0 Å and C3-C4 > 4.5Å). In summary, the asymmetric 1,3-dipolar cycloaddition reaction can be best explained by the proposed reaction models of activated intermediate C with cat1 bonding with N1 of substrate **2d**.

Notably, the formation of the stereochemical C3 center might lead to two different final products: **4ad** and **4ad'**. DFT calculations revealed that the 3-bromide-substituted phenyl ring on the **2d** had almost no interactions with the COOEt group (6.27 Å) under a *trans* relationship and had attractive interactions with ring A (3.81 Å) and ring B (4.76 Å) when (*S*)-C3 was formed in product **4ad**. Conversely, in product **4ad'** ((*R*)-C3), this 3-bromide-substituted phenyl ring underwent a steric repulsion with the COOEt group (4.21 Å) under a *cis* relationship and pointed away from ring A (4.60 Å) and ring B (4.76 Å). Compared to compound **4ad'**, the distance of adverse approach is longer (by 2.06 Å) in product **4ad** and the distance of beneficial approach is shorter (by 0.79 Å). Thus, structure **4ad** is more-favorably formed over **4ad'** in keeping with the experimental results (Figure 4).

Figure 4. Plausible reaction models for the asymmetric 1,3-DC reaction.

HPLC Analytic Conditions:

Unless otherwise specified, all products are separated by using DAICEL CHIRALCEL IA column, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min.

	1	Retention	ee
entry	product	time	(%)
1	EtOOC IIII. Boc 4aa	$t_{major} = 7.1$ $t_{minor} = 9.1$	98
2	EtOOC //// Boc 4ab	$t_{major} = 8.1$ $t_{minor} = 10.7$	97
3	EtOOC IIIII Boc 4ac	$t_{major} = 7.9$ $t_{minor} = 10.8$	96
4	EtOOC	$t_{major} = 7.6$ $t_{minor} = 9.3$	98

5	EtOOC	$t_{major} = 7.7$ $t_{minor} = 8.5$	93
6	EtOOC IIII. Boc 4af	$t_{major} = 7.0$ $t_{minor} = 11.5$	>99
7	EtOOC IIIII Boc 4ag	$t_{major} = 8.2$ $t_{minor} = 13.7$	97
8	EtOOC IIIII Boc 4ah	$t_{major} = 9.1$ $t_{minor} = 15.4$	>99
9	EtOOC	$t_{major} = 7.8$ $t_{minor} = 10.4$	95
10	EtOOC	$t_{major} = 8.4$ $t_{minor} = 10.4$	94
----	--------------------------------------	---	----
11	EtOOC III.I. Boc 4ak	$t_{major} = 6.6$ $t_{minor} = 8.9$	91
12	MeOOC IIIII H 6	$t_{major} = 8.2$ $t_{minor} = 14.0$	96
13	EtOOC	$t_{major} = 7.7$ $t_{minor} = 13.2$	98
14	EtOOC ///// Me N Boc 4da	$t_{major} = 7.4$ $t_{minor} = 9.2$	96

15	EtOOC M. N-N MeO Boc 4ea	$t_{major} = 9.4$ $t_{minor} = 15.9$	99
16	EtOOC	$t_{major} = 7.4$ $t_{minor} = 13.8$	97
17	MeOOC III. N-N Boc 4ga	$t_{major} = 7.3$ $t_{minor} = 12.3$	>99
18	^t BuOOC //// NNN Boc 4ha	$t_{major} = 5.9$ $t_{minor} = 6.6$	98

	Name	Retention time	Area	% Area	Height	Integral type
1		7.099	15828804	98.97	1328657	bb
2		9.104	165305	1.03	13328	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		8.085	2421415	50.49	169529	bb
2		10.633	2374205	49.51	119984	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		8.110	7157306	98.62	501657	bb
2		10.722	100167	1.38	5769	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		7.986	2361180	50.81	168214	bb
2		10.741	2285572	49.19	114658	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		7.989	13005704	97.94	928847	bb
2		10.793	273754	2.06	15465	bb

Chiralpak IA column, hexane/iPrOH (70:30), flow rate 1.0 mL/min

	Name	Retention time	Area	% Area	Height	Integral type
1		7.610	6256188	99.07	481125	bb
2		9.301	59026	0.93	4776	bb

Chiralpak IA column, hexane/iPrOH (70:30), flow rate 1.0 mL/min

	Name	Retention time	Area	% Area	Height	Integral type
1		6.981	9257452	99.69	789147	bb
2		11.534	28960	0.31	2368	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		8.120	4271995	49.90	306436	bb
2		13.349	4288418	50.10	158720	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		8.193	15540033	98.51	1081514	bb
2		13.721	234255	1.49	11487	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		9.089	12634095	99.61	698171	bb
2		15.394	49556	0.39	2366	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		7.812	13318845	97.30	948524	bb
2		10.397	369046	2.70	21858	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		8.546	6101557	50.39	411950	bb
2		10.604	6006282	49.61	304965	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		8.446	9867510	96.87	702638	bb
2		10.424	319296	3.13	20613	bb

Chiralpak IA column, hexane/iPrOH (70:30), flow rate 1.0 mL/min

	Name	Retention time	Area	% Area	Height	Integral type
1		6.570	1895159	49.99	157535	bb
2		8.789	1895856	50.01	109888	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		6.627	19129580	95.62	1576672	bb
2		8.906	875507	4.38	54373	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		8.192	6552697	97.81	491672	bb
2		13.994	146611	2.19	7007	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		7.635	5049104	50.38	407676	VB
2		13.572	4973409	49.62	193953	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		7.660	12734229	98.84	1109190	bb
2		13.156	148959	1.16	9024	bb

	Ivallie	Retention time	Alta	70 Alca	meight	integral type
1		7.398	22382356	97.94	1763685	bb
2		9.228	470838	2.06	32693	bb

Chiralpak IA column, hexane/iPrOH (70:30), flow rate 1.0 mL/min

	Name	Retention time	Area	% Area	Height	Integral type
1		9.419	7891394	50.23	468753	bb
2		15.558	7818975	49.77	229824	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		9.424	8190993	99.26	485232	bb
2		15.884	61115	0.74	2743	bb

0.20-

0.00

Chiralpak IA column, hexane/iPrOH (70:30), flow rate 1.0 mL/min

	Name	Retention time	Area	% Area	Height	Integral type
1		7.422	17491517	98.74	1290847	bb
2		13.768	222344	1.26	10405	bb

4ga (Table 2, entry 17)

	Name	Retention time	Area	% Area	Height	Integral type
1		7.335	3748475	51.07	290538	VV
2		12.320	3591842	48.93	160000	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		7.273	7537825	99.61	598751	bb
2		12.279	29532	0.39	1952	bb

4ha (Table 2, entry 18)

Chiralpak IA column, hexane/iPrOH (70:30), flow rate 1.0 mL/min

	Name	Retention time	Area	% Area	Height	Integral type
1		5.910	6008932	49.96	627254	bb
2		6.541	6019401	50.04	514127	bb

	Name	Retention time	Area	% Area	Height	Integral type
1		5.897	3963121	99.19	409516	bb
2		6.553	32253	0.81	3418	bb

mdd 0.0 000.0---0.5 1.0 1.5 2.0 2.5 3.0 5.96 ∠SI'8 -3.5 3.00 679°E — 4.0 OMe OMe 4.5 5.0 5.5 6.0 6.5

 FEE
 L

 SSE
 L

 SLE
 L

 SEE
 L

 SEF
 L
7.0 5.05 2.05 2.10 M. 7.5 2.02 8.0 66'0 _ Z 86.0 8.5

90°8-----

83	• 79 T	
4 S	.99T	

£1.272.13

28.43.47 26.58 77.00 77.42

24.42

23.911 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 24.92 25.92

6T.8PI -----

TS'7/T -----

T8.72-----

08.98-----

₽₽.62	
62.22	
₽2.23	

88. / G.	9 L 9 I	\geq
42 00	LL	7
₽5.	₽8	

£₽.161.43	_
ZL.431~	
68.₽ð1-	>
£₽.991 -	
T0.271 —	_

Þ	L	•	3	τ	

- 08.98 -----

££.	69	
₽2.	29	
8ī.	92	

EE'9L-	
LS'9L	_
00. LL	7
24. <i>TT</i>	
29.48 —	_

S0.841----

68.491 85.381 10.171

28.72-----

88.98-----

₽2.22----

£₽.62-	
SI.29-	
56.23-	

86	•	Þ	Ţ	Ţ		
₽6 94 95 75 75 21 25		T E を L L 8 0	3 Z Z Z Z Z 3 Z Z Z Z Z Z	ד ד ד ד ד ד ד ד	~ ~ / / / / / /	
88 52	•	8 0	£	T T	_	_

Ó

82.841 —

₽8°₽9T S₽°99T

08.372.30

9	L	•	3	Ţ	

- 98.72 -----
- 98**.**95

80.22	
9₽.62	
SI.29	
92.26	

89.97 00.77 88.64	
28. 4 8	

 b9:EII

 L6:bII

 b2:EII

 b4:EII

 b5:EII

 b5:EII

 b5:EII
JV 871 SI'081 140.21

82.8£1 -----

- ττ.09τ —— 28.401 74.001
- 98.272 —

_

£∠.£1 —	
80 . 12-	
18.72-	
LE.ƏE —	
- 25.62	
01.62-	

80.23	
88.38	

24. 00. 82.	9 L L L L L	\geq
60.	₽8	

-124.71 -121.68 -124.16	
- 128.18	\sum
28.751 - -130.91 -130.91 -128.97 -128.97 -128.97	

_____J48.23

88	• 79	τ	
9₽	•99	Ţ	

92.271 —

20.011	
96'7TT 76'STT	>

123.00	_
9Z.721 √	
	\geq
- 150·00	7
- 130·58	·
95.551	

TE.841-----

- T8.921 ——

000.0-----

0

N-N

EtoOC

0

6 T · 8 Þ T -----

68.491 10.791	
ZI.Z/I	

000.0-----

₽6E.I 674.1 €95'₽ Sy S 4
 Sy S
 Sy S
981.7 191.7 2.1.50 2.502 2.502 2.502 2.502 2.504 2

08.841 -----

68.491 19.291

SE.ST -----

z

N-N

^tBuOOC

mdd

bpm

000.0-----

mdd

