Supplementary Information

Assembly-driven synthesis of hybrid molecular capsules controlled by chiral sorting

Michał Wierzbicki, Agnieszka Szumna

Table of contents

Experimental procedures for synthesis of molecular capsules	2
Synthesis of homochiral capsules	2
Synthesis of hydrid capsules –procedure A (Fig. 3a)	2
Synthesis of hydrid capsules –procedure B (Fig. 3b)	2
Analytical data	3
(L-2b) ₂	3
(L-2c) ₂	4
(L-2d)(D-2d)	6
(L-2e)(D-2d)	7
(L-2a)(D-2d)	8
Reaction kinetics - 2D NMR spectra	9

List of figures

Figure 1. ¹ H NMR spectrum of (L-2b) ₂	3
Figure 2. ¹³ C NMR spectrum of (L-2b) ₂	3
Figure 3. ¹ H NMR spectrum of (L-2c) ₂	4
Figure 4. HSQC spectrum of (L-2c) ₂ (CDCl ₃ , 298 K, 600 MHz)	4
Figure 5. DOSY spectrum of (L-2c) ₂ (CDCl ₃ , 298 K, 600 MHz)	5
Figure 6. ¹ H NMR spectrum of (L-2d)(D-2d)	6
Figure 7. ¹³ C NMR spectrum of (L-2d)(D-2d)	6
Figure 8. ¹ H NMR spectrum of (L-2e)(D-2d)	7
Figure 9. ¹³ C NMR spectrum of (L-2e)(D-2d)	7
Figure 10. ¹ H NMR spectrum of (L-2a)(D-2d)	8
Figure 11. ¹³ C NMR spectrum of (L-2a)(D-2d)	8
Figure 12. HSQC spectrum of a reaction mixture after 1 day (CDCl ₃ , 298 K, 600 MHz)	9
Figure 13. DOSY spectrum of a reaction mixture after 1 day (CDCl ₃ , 298 K, 600 MHz)	9

Experimental procedures for synthesis of molecular capsules

Synthesis of homochiral capsules

Resorcin[4]arene (0.1 mmol, 75 mg), D- or L-amino acid (0.425 mmol) and HCHO_{aq} (37%, 0.4 mmol, 0.03 ml) were stirred overnight in chloroform (2 ml) at room temperature, then for 24h at 65°C. After cooling, the mixture was dried with anhydrous MgSO₄ and filtered. The filtrate was evaporated to dryness. Acetonitrile was added to the residue and it was treated with ultrasound. The precipitate was collected by filtration and vacuum dried.

Synthesis of hydrid capsules – procedure A (Fig. 3a)

Resorcin[4]arene (0.05 mmol, 38mg), D-valine (0.2125 mmol, 25mg), HCHO_{aq} (37%, 0.4 mmol, 0.03 ml) and (L-**2a**)₂ capsule (0.05 mmol, 71mg) were stirred overnight at room temperature in CHCl₃ and then at 65°C for 24h. It was then dried with anhydrous MgSO₄. The solvent was evaporated from the filtrate, acetonitrile was added to the residue and it was treated with ultrasound. The precipitate was collected through filtration and vacuum dried.

Synthesis of hydrid capsules – procedure B (Fig. 3b)

D- and L-amino acids (0.425 mmol) were put in separate Schlenck tubes. Resorcin[4]arene (0.1 mmol, 75 mg) and HCHO_{aq} (37%, 0.4 mmol, 0.03 ml) were added to both of them and the mixtures were stirred in CHCl₃ overnight at room temperature and then at 65°C for 24h. The resulting mixtures were poured together in a round bottom flask and allowed to equilibrate at room temperature for 24h. The reaction mixture was then dried with anhydrous MgSO₄ and filtered. The filtrate was evaporated to dryness, acetonitrile was added to the residue and it was treated with ultrasound. The precipitate was separated through filtration and vacuum dried.

Analytical data

(L-2b)₂

¹H NMR (CDCI₃/400MHz): δ 7.44 (bd, 4H), 7.23 (bs, 4H), 6.70 (bt, 4H), 4.48 (bm, 4H), 4.15 (bm, 4H), 4.05 (bt, 4H), 3.61 (bm, 4H), 2.06 (bm, 8H), 1.58 (bd, 12H), 1.45 (bm, 4H), 0.95 (bd, 24H)

¹³C NMR (CDCl₃/125MHz): δ 172.9, 151.5, 151.3, 125.0, 124.7, 105.9, 58.7, 42.1, 40.6, 31.4, 26.0, 22.8, 22.7, 12.8

HRMS (ESI) calculated for $C_{60}H_{85}N_4O_{16}$ [M+H]⁺: 1117.5961; found: 1117.5967.

Figure 1. ¹H NMR spectrum of (L-**2b**)₂

Figure 2. ¹³C NMR spectrum of (L-**2b**)₂

(L-2c)₂

¹H NMR (CDCI₃, 600MHz): complicated spectrum with many overlapping signals HRMS (ESI) calculated for $C_{72}H_{109}N_4O_{16}$ [M+H]⁺: 285.7839; found: 1285.7832.

Figure 4. HSQC spectrum of (L-2c)₂ (CDCl₃, 298 K, 600 MHz)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Figure 5. DOSY spectrum of (L-**2c**)₂ (CDCl₃, 298 K, 600 MHz)

(L-2d)(D-2d)

¹H NMR (CDCl₃/400MHz): δ 12.8 (bs, 4H), 9.97 (bm, 4H), 9.12 (bs, 4H), 7.29 (s, 4H), 6.30 (bm, 4H), 4.46 (bt, 4H), 4.09 (bm, 8H), 3.38 (bd, 4H), 2.42 (bm, 4H), 2.09 (bm, 4H), 2.00 (bm, 4H), 1.42 (bm, 4H), 1.31 (bd, 12H), 1.16 (bd, 12H), 0.94 (bd, 24H),

¹³C NMR (CDCl₃/150MHz): δ 171.3, 152.1, 150.3, 125.4, 124.6, 123.5, 104.7, 65.4, 42.8, 38.7, 31.1, 26.0, 25.1, 22.9, 22.7, 20.6, 17.3,

HRMS (ESI) calculated for C₆₈H₁₀₁N₄O₁₆ [M+H]⁺: 1229.7213; found: 1229.7240.

Figure 6. ¹H NMR spectrum of (L-2d)(D-2d)

Figure 7. ¹³C NMR spectrum of (L-2d)(D-2d)

(L-2e)(D-2d)

¹H NMR (CDCl₃/400MHz): δ 12.8 (bs, 4H), 10.97 (bm, 8H), 9.11 (bs, 8H), 7.28 (s, 8H), 6.30 (bm, 8H), 4.46 (bt, 8H), 4.08 (bm, 16H), 3.42 (bdd, 8H), 2.41 (bm, 4H), 2.08 (bm, 12H), 1.99 (bm, 8H), 1.71 (bm, 8H), 1.41 (bm, 8H), 1.30 (bd, 12H), 1.15 (bt, 24H), 1.01 (bt, 12H), 0.94 (bd, 48H)

¹³**C NMR (CDCl₃/100MHz):** 171.4, 171.3, 152.0, 150.3, 125.4, 125.3, 124.5, 123.5, 104.6(3), 104.6(1), 77.2, 65.3, 64.2, 42.7, 38.6, 38.5, 32.0, 31.0, 27.6, 26.0, 26.0, 25.0, 22.9(1), 22.9(0), 22.6(8), 22.6(6), 20.6, 17.4, 14.7, 12.5

 $\begin{array}{ll} \mbox{HRMS (ESI)} & \mbox{calculated for $C_{68}H_{101}N_4O_{16}$ $[M_{2d}$ + H]^+$: 1229.7213; found: 1229.7194.} \\ & \mbox{calculated for $C_{72}H_{109}N_4O_{16}$ $[M_{2e}$ + H]^+$: 1285.7839; found: 1285.7814.} \end{array}$

Figure 8. ¹H NMR spectrum of (L-2e)(D-2d)

Figure 9. ¹³C NMR spectrum of (L-2e)(D-2d)

(L-2a)(D-2d)

¹H NMR (CDCl₃/400MHz): δ 10.36 (bs, 4H), 10.00 (bs, 4H), 9.09 (bs, 4H), 7.40 – 7.13 (m, 28H), 6.22 (bs, 4H), 5.92 (bq, 4H), 4.39 (bm, 8H), 4.03 (bt, 8H), 3.88 (bt, 4H), 3.78 (bm, 4H), 3.62 (bm, 4H), 3.45 (bd, 4H), 3.26 (bdd, 4H), 3.05 (bd, 4H), 2.34 (bt, 4H), 2.12 – 1.79 (bm, 16H), 1.35 (bm, 8H), 1.22 (bd, 12H), 1.11 (bd, 12H), 1.02 – 0.70 (bm, 48H)

¹³C NMR (CDCl₃/125MHz): δ 173.7, 170.8, 152.1, 151.6, 150.3, 149.9, 138.5, 129.0, 128.6, 127.0, 125.6, 125.4, 124.7, 124.6, 124.0, 123.6, 105.6, 104.9, 66.1, 62.4, 42.7, 42.6, 40.1, 39.2, 36.6, 31.2, 31.1, 26.0, 26.0, 25.2, 23.0, 22.8, 22.7, 22.5, 20.6, 17.0

 $\begin{array}{ll} \mbox{HRMS (ESI)} & \mbox{calculated for $C_{68}H_{101}N_4O_{16}$ $[M_{2d}$ + H]^+$: 1229.7213; found: 1229.7211.} \\ & \mbox{calculated for $C_{84}H_{101}N_4O_{16}$ $[M_{2a}$ + H]^+$: 1421.7213; found: 1421.7194.} \end{array}$

Figure 11. ¹³C NMR spectrum of (L-2a)(D-2d)

Figure 12. HSQC spectrum of a reaction mixture after 1 day (CDCl₃, 298 K, 600 MHz). The highlighted peaks are for the benzoxazine N,O-acetal bridge.

Figure 13. DOSY spectrum of a reaction mixture after 1 day (CDCl₃, 298 K, 600 MHz). The highlighted peaks are for the benzoxazine N,O-acetal bridge.