Supplementary Information

Structural Transition and Unusually Strong Antiferromagnetic Superexchange Coupling in Perovskite KAgF₃

Dominik Kurzydłowski,^{*a} Zoran Mazej,^b Zvonko Jagličić,^c Yaroslav Filinchuk^d and Wojciech Grochala^{*a,e}

1.	Details of KAgF ₄ synthesis	!		
2.	Room temperature x-ray powder diffraction pattern of KAgF ₃	;		
3.	Details of temperature resolved XRDP pattern of KAgF ₃ 4	ŀ		
4.	Temperature dependence of the volume and goodness of fit (χ^2) for <i>Pnma</i> and <i>Pcma</i> models	3		
of KAgF ₃ 5				
5.	Results of Rietveld refinement of patterns at two selected temperatures6	5		
6.	Fit of the magnetic susceptibility to the model of a spin-1/2 uniform antiferromagnetic	;		
Hei	Heisenberg chain7			
7.	DFT+U calculations	;;		

KAgF₄ has been synthesized by fluorinating an equimolar mixture of KF and AgF₂ with 2000 Torr of F₂. The reagents were placed in a nickel reactor connected to a nickel-Teflon® vacuum line. The reaction was conducted for four days at 300°C.

Raman scattering of the obtained product (black line) has been recorded using a high-resolution spectrometer (LabRAM, Horiba Jobin-Yvon) at the 632.81 nm excitation line of He-Ne laser. The resulting spectra is in good accordance with previous data for $KAgF_4^{-1}$ (red bars).

¹ K. Lutar, S. Milicev, B. Žemva, B. G. Müller, G. Bachmann, R. Hoppe, *Eur. J. Solid State Inorg. Chem.* 1991, 28, 1335.

2. Room temperature x-ray powder diffraction pattern of KAgF₃

The room temperature x-ray powder diffraction pattern (black dots) has been collected from a 0.3 mm capillary with the use of Bruker D8 Discover diffractometer. A 18 mm parallel beam from the Cu-K α X-ray tube ($\lambda = 1.5406$ Å) was used to record diffractograms with a Vantec detector. The measurements were carried out in the range of 2θ from 10° to 70° with a 0.018° step (the counting time per step was 2245 seconds).

Rietveld refinement (red lines; difference plot – green lines) has been carried in the JANA2006 software.² The model included KAgF₃ and AgF (rock salt structure, observed reflexes marked by blue arrows). The absorption correction for a cylindrical sample (μ ·*r*) has been set at 6.0 (μ ·*r* for 100 % efficient packing equals 9.15). The final reliability parameters of the model were: $\chi^2 = 1,86$, $R_p = 2,60$ %, $R_{wp} = 4,00$ % with the mass percent of AgF equal to 3.8 % (*i.e.* 6,0 % mole percent).

² V. Petricek, M. Dusek, L. Palatinus, *Jana2006. The Crystallographic Computing System*, Institue Of Physics, Praga, **2006**.

4. Temperature dependence of the volume and goodness of fit (χ^2) for *Pnma* and *Pcma* models of KAgF₃

Dots/crosses mark values obtained for the *Pnma/Pcma* model. Dotted vertical lines mark the range of the phase transition (225 K – 235 K). Note that the high values of χ^2 are the result of extremely high counting statistic of a 2D detector.³

³ See: Y.-S. Lee, Y. Filinchuk, H.-S. Lee, J.-Y. Suh, J. W. Kim, J.-S. Yu, and Y. W. Cho, *J. Phys. Chem. C*, 2011, **115**, 10298.

5. Results of Rietveld refinement of patterns at two selected temperatures

6. Fit of the magnetic susceptibility to the model of a spin-1/2 uniform antiferromagnetic Heisenberg chain

An attempt to fit the experimental values of χ with the model of a spin-1/2 uniform antiferromagnetic Heisenberg chain⁴ was made. A constant positive term corresponding to the Van Vleck paramagnetic susceptibility (χ_{VV}) was also included in the fit. The value of the g-factor was not refined - its value (2.21) was taken from previous electron spin resonance measurements.⁵ The model obtained after least-square refinement (red dashed line) fits the experimental data very well. The refined values of χ_{VV} and J are equal to 11.4·10⁻⁵ emu/mol and -97.0 meV, respectively. The Van Vleck term is comparable to that reported for other fluoroargentates(II) (2.3·10⁻⁵ emu/mol for Cs₂AgF₄⁶, 0.9·10⁻⁵ emu/mol for Na₂CuF₄⁷). The slightly larger value of χ_{VV} obtained for KAgF₃ might originate from not including in the fit the contribution from the paramagnetic impurity.

⁴ D. Johnston, R. K. Kremer, M. Troyer, X. Wang, A. Klümper, S. Bud'ko, A. Panchula, P. Canfield, *Phys. Rev. B*, 2000, **61**, 9558.

⁵ Z. Mazej, E. Goreshnik, Z. Jagličić, B. Gaweł, W. Łasocha, D. Grzybowska, T. Jaroń, D. Kurzydłowski, P. J. Malinowski, W. Koźmiński, J. Szydłowska, P. J. Leszczyński, W. Grochala, *CrystEngComm* 2009, **11**, 1702.

⁶ J. Tong, R. K. Kremer, J. Köhler, A. Simon, C. Lee, E. Kan, M.-H. Whangbo, Z. Kristallogr., 2010, 225, 498.

⁷ D. Kurzydłowski, Z. Mazej, and W. Grochala, *Dalton Trans.*, 2013, **42**, 2167.

Experiment $T = 80 \text{ K}$	DFT+U calculations
Pnma	Pnma
n.a.	-17.351783
6.382	6.577 (3%)
8.254	8.425 (2%)
6.058	6.197 (2%)
90 90 90	90 90 90
319.10	343.36 (8%)
2.121	2.169 (2%)
153.2	152.4
2.000	2.094 (5%)
2.490	2.553 (3%)
	Experiment T = 80 K Pnma n.a. 6.382 8.254 6.058 90 90 90 319.10 2.121 153.2 2.000 2.490

7. DFT+U calculations

[†] Length of the Ag-F bonds and the Ag-F-Ag angle along the $[AgF_{2+2/2}]^-$ chains; [‡] length of the Ag-F bonds in the direction perpendicular to these chains; differences (in %) between the experimental and theoretical models are given in brackets.

Note that the calculated tilt angles of $[AgF_6]^{4-}$ octahedra in *Pnma* (13.1°/12.1°/4.3° for tilts about the a/b/c vectors) are in very good agreement with experimental values $(13.1^{\circ}/10.3^{\circ}/3.0^{\circ})$ at 80 K).

DFT+U calculations were performed in the formalism of Liechtenstein et al.⁸ with the value of U equal to 5 eV. The Perdew-Burke-Ernzerhof exchange-correlation functional, 9 and the projector-augmented-wave method¹⁰ were used as implemented in the VASP 5.2 code. The cutoff energy of the plane wave basis set was equal to 800 eV with a self-consistent-field convergence criterion of $1 \cdot 10^{-7}$ eV. The k-point mesh spacing was set to 0.16 Å⁻¹. Optimization of cell as well as atomic parameters was continued until the forces acting on individual atoms were less than 0.002 eV/Å. The geometry optimization were performed for magnetic models characterized by AFM ordering within the $[AgF_{2+2/2}]^{-}$ chains and inter-chain FM ordering, as it

 ⁸ A. I. Liechtenstein, J. Zaanen, *Phys. Rev. B*, 1995, **52**, R5467.
⁹ J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865.

¹⁰ P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953; G. Kresse, D. Joubert *Phys. Rev. B*, 1999, **59**, 1758.

has been shown that these are the lowest lying spin-ordered states of $KAgF_3$.¹¹ Structure visualization has been performed with the use of the VESTA software.¹²

For the *Pnma* structure of KAgF₃ one can define the coupling constant between nearest neighbours along the $[AgF_{2+2/2}]^-$ chain (*J*) as well as an inter-chain constant (*J* \perp). The values of these parameters were extracted from single point calculations on optimized structures with the use of the formulae given by Zhang *et al.*¹¹. The obtained values of *J* and *J* \perp (-125.4 meV and 2.6 meV, respectively) are in good agreement with those given by these authors (-136.0 meV / 5.8 meV) and indicate that KAgF₃ should exhibit quasi-1D AFM properties with strong intra-chain coupling.

¹¹ X. Zhang, G. Zhang, T. Jia, Y. Guo, Z. Zeng, and H. Q. Lin, *Phys. Lett. A*, 2011, **375**, 2456.

¹² K. Momma, F. Izumi, J. Appl. Crystallogr., 2008, **41**, 653.