## **Electronic Supplementary Information**

## Method: Hydrogenolysis/Hydrogenation of aryl ether compounds

The reaction was conducted in a 50 ml batch reactor containing catalyst, substrate (wt ratio of catalyst: substrate = 1: 5) and water placed in an oven with fan heater to maintain the constant temperature. After reaching the desired temperature, hydrogen of required pressure was first introduced into the reactor. Liquid  $CO_2$  was charged into the reactor using a high pressure liquid pump (JASCO). The reaction mixture was stirred continuously with a teflon coated magnetic bar during the reaction. After the reaction, the reactor was cooled by ice-water and depressurized carefully by the back-pressure regulator. The aqueous and the organic part were separated from the catalyst simply by filtration. The product mixture was identified and quantitatively analyzed by GC/MS (Varian Saturn 2200). Quantification of the products was obtained by a multi-point calibration curve for each product. The selectivity to each product was calculated by the following expression  $S_i = C_i / \Sigma C_p$ , where  $C_i$  is the concentration of the product 'i' and  $\Sigma C_p$  is the total concentration of the product.

## Phase change observations

*Method:* Visual observation of phase behaviour of diphenyl ether (DPE) in scCO<sub>2</sub> under the studied reaction condition was conducted separately using a 10 ml high pressure view cell fitted with a sapphire window. The cell was placed over a magnetic stirrer for stirring the content and connected to a pressure controller, to regulate the pressure inside the view cell. In addition, temperature controller was used to maintain the desired temperature of 80 °C. In the beginning, DPE was introduced into the view cell at a constant H<sub>2</sub> pressure of 0.5 MPa while CO<sub>2</sub> pressure was varied in the range of 7-16 MPa and the phase change was shown in ESI Figure 1. **ESI Figure 1**: Phase change observations of DPE at 80 °C and  $P_{H2}$ = 0.5 MPa: (a) 10 MPa and (b) 16 MPa







Reaction condition: catalyst: substrate = 1: 5, temperature=  $80^{\circ}$ C, reaction time = 5h,  $P_{H2}$ = 0.5 MPa,  $P_{CO2}$ = 10 MPa

**ESI Table 1**: Combined effect of different organic solvent and water in DPE hydrogenolysis/hydrogenation

| Entry | Solvent                  | Conv. | Product selectivity (%) |      |      |      |
|-------|--------------------------|-------|-------------------------|------|------|------|
|       |                          | (%)   | DCHE                    | CHPE | СНОН | СН   |
| 1     | Water only               | 14.8  | 68.0                    | 0.0  | 22.5 | 9.5  |
| 2     | Methanol/water           | 47.6  | 13.2                    | 11.5 | 58.9 | 16.4 |
| 3     | Ethanol/water            | 60.2  | 2.4                     | 0.0  | 84.2 | 13.4 |
| 4     | Isopropanol/water        | 85.6  | 0.0                     | 6.8  | 92.0 | 1.2  |
| 5     | Tetrahydrofuran/water    | 92.1  | 57.3                    | 0.0  | 37.6 | 5.1  |
| 6     | Hexane/water             | 100.0 | 70.3                    | 0.0  | 27.7 | 2.3  |
| 7     | scCO <sub>2</sub> /water | 100   | 0.0                     | 0.0  | 96.0 | 2.2  |
| 8     | scCO <sub>2</sub> /water | 94.5  | 0.0                     | 0.0  | 97.2 | 1.8  |

Reaction condition: catalyst: substrate = 1: 5, temperature=  $80^{\circ}$ C, reaction time = 5h, amount of water= 4 ml, P<sub>H2</sub>= 0.5 MPa, solvent= 5 ml; DCHE= dicyclohexyl ether, CHPE= cyclohexylphenyl ether, CHOH= cyclohexanol, CH= cyclohexane; Entry 7 and 8= results after 1<sup>st</sup> and 5<sup>th</sup> recycling of the catalyst.