Superhydrophobic perfluorinated metal-organic frameworks

<u>Teng-Hao Chen, Ilya Popov,* Oussama Zenasni, Olafs Daugulis and Ognjen Š. Miljanić*</u> University of Houston • Department of Chemistry 136 Fleming Building • Houston, TX 77204-5003 • USA email: ilja.popovs@gmail.com; miljanic@uh.edu • phone: 832.842.8827

Supporting Information

Table of Contents

Section S1. General Considerations and Materials	S2
Section S2. Synthesis of Starting Materials	S3–S5
Section S3. ¹⁹ F, ¹ H and ¹³ C NMR Spectra of Starting Materials	S6–S8
Section S4. Synthesis of MOFFs	S9–S10
Section S5. X-ray Crystallographic Analysis of MOFFs	S10–S14
Section S6. Fourier-Transform Infrared Spectra of MOFFs	S14–S15
Section S7. Thermogravimetric Analysis Traces of MOFFs	S16–S17
Section S8. Powder X-Ray Diffraction Patterns of MOFFs	S18–S19
Section S9. Nitrogen Adsorption Isotherms	S19–S20
Section S10. Water Vapor Adsorption Isotherms	S20–S21
Section S11. Dynamic Contact Angle Measurements	S22
Section S12. References	S23

Section S1. General Considerations and Materials

General Considerations. Schlenk flasks or vials with PTFE/Liner caps were used as reaction vessels for the synthesis of precursors, while standard scintillation vials were used as vessels for the synthesis of MOFFs. Solvents THF, Et₂O and pentane were dried over activated alumina in an mBraun solvent purification system. Flash chromatography was performed on 60 Å silica gel (Sorbent Technologies). GC-MS analyses were performed on a Shimadzu GCMS-QP5000 chromatograph equipped with a Restek column (Rtx-XLB, 30 m×0.25 mm I.D.). The ¹H. ¹³C and ¹⁹F NMR spectra were recorded on JEOL ECA-500 or ECX-400P spectrometers using the peaks of TMS or residual solvent as standards. Trifluorotoluene (PhCF₃, $\delta = -63.72$ ppm) was used as the internal standard in ¹⁹F NMR spectra. Melting points were measured in a Barnstead International Mel-TEMP[®] apparatus and are uncorrected. Analytical thin layer chromatography was performed on Fluka silica gel/TLC plates with a fluorescent indicator that emitted when irradiated at 254 nm. Infrared spectra were recorded on a Perkin-Elmer Spectrum 100 FT-IR spectrophotometer using Pike MIRacle Micrometer pressure clamp. Microanalyses were conducted by Intertek USA, Inc. Thermogravimetric analyses (TGA) were carried out on a TA Instruments TGA 2050 thermogravimetric analyzer at a temperature ramping rate of 2 °C/min under the flow of N_2 gas. Powder X-ray diffraction (PXRD) data were collected at 25 °C on a Phillips X'pert Pro diffractometer. Simulated PXRD patterns were calculated with the Material Studio software package¹ employing the structure model from the obtained single crystal data.

Materials. The following starting materials and solvents were obtained from the respective commercial sources and used without further purification: ZnCl₂ (Alfa Aesar); dioxane, K₃PO₄, CuI and phenanthroline (Acros); 2,3,5,6-tetrafluorobenzonitrile and NaN₃ (TCI America); triflic Labs): *n*-hexadecane. cis-perfluorodecalin and CuCl₂ acid (SynOuest (Aldrich); Cu(NO₃)₂·2.5H₂O and CuCl₂·2H₂O (JT Baker); water (Milli-Q, deionized). Compound 2,3,5,6tetrafluoro-4-iodo-benzonitrile² was prepared from 2,3,5,6-tetrafluorobenzonitrile by reaction with *t*-BuOLi and iodine.³ All the solvents for synthesizing MOFFs were obtained from commercial sources and used without further purification. Polished Silicon (100) wafers were purchased from Silicon Inc. and rinsed with absolute EtOH (Aaper Alcohol and Chemical Co) before use.

Experiments are presented in the order following the discussion of the manuscript. Compound numbers are identical to those in the main text of the manuscript.

Section S2. Synthesis of the Starting Materials

2,2',3,3',5,5',6,6'-Octafluorobiphenyl-4,4'-dicarbonitrile (2)

A 40 mL scintillation vial was equipped with a magnetic stirbar and charged with 2,3,5,6tetrafluorobenzonitrile (2.27 g, 13.0 mmol) and 2,3,5,6-tetrafluoro-4-iodo-benzonitrile (3.01 g, 10.0 mmol). Vial was purged with N_2 and placed inside a nitrogen-filled glovebox. Phenanthroline (0.90 g, 5.00 mmol) and CuI (0.95 g, 5.00 mmol) were added, followed by K₃PO₄ (6.40 g, 30.0 mmol) and dioxane (12 mL). Vial was capped and taken out of the glovebox. Reaction mixture was stirred for 2 min at 25 °C and then placed inside an aluminum reaction block preheated to 125 °C, where it was stirred vigorously for 12 h. Reaction mixture was cooled to 25 °C, diluted with CH₂Cl₂ (50 mL) and filtered through the plug of Celite to remove the inorganic salts. Filter cake was washed with additional CH₂Cl₂ (3×25 mL). Resulting organic phases were combined and dry-absorbed on silica gel. After purification by column chromatography on silica gel using CH_2Cl_2 / hexanes (gradient 10 % to 50% of CH_2Cl_2) as eluent and evaporation of the fractions containing the product, title compound was obtained as a white crystalline solid (2.30 g, 66 %). $R_{\rm f} = 0.27$ (SiO₂, hexanes/EtOAc 19/1), mp 124–127 °C (hexanes/CH₂Cl₂). ¹³C NMR (125 MHz, CDCl₃) & 148.5–148.2 and 146.4–146.1 (m, 4C), 145.0– 144.8 and 143.1–142.8 (m, 4C), 111.9–111.5 (m, 2C), 106.6–106.4 (m, 2C), 97.3–97.1 (m, 2C) ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ –134.4 to –134.7 (m, 4F), –138.0 to –138.2 (m, 4F) ppm. FT-IR (neat): v 2249, 1729, 1484, 1289, 1267, 1005, 991, 975 cm⁻¹. ESI MS m/z: 348 (100 %), 279 (24 %), 349 (16 %), 174 (15 %), 248 (7 %).

2,2',3,3',5,5',6,6'-Octafluorobiphenyl-4,4'-dicarboxylic acid (3)

A 120 mL glass pressure vessel was equipped with a magnetic stirbar and charged with dinitrile **2** (3.56 g, 10.0 mmol) followed by trifluoroacetic acid (15 mL) and triflic acid (13.2 g, 88.0 mmol). Reaction mixture was stirred until all solids completely dissolved. Deionized H₂O (7 mL) was carefully added, causing a **highly exothermic reaction (CAUTION!)**. This glass vessel was capped and placed inside an oil bath preheated to 130 °C, and the reaction mixture was vigorously stirred at this temperature for 48 h. After completion, reaction mixture was cooled to 25 °C and diluted with 1M HCl (100 mL) causing the precipitation of the reaction product. White solid was filtered off and washed with additional 1M HCl (2×50 mL) followed by H₂O (20 mL). Solid was dried under high vacuum for 24 h over P₂O₅ affording the title compound (3.70 g, 96 %) as a white solid, mp 310–312 °C (dec). ¹H NMR (500 MHz, DMSO-*d*₆) δ 14.5 (br s, 2H) ppm. ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ –136.7 to –137.9 (m, 4F), –140.4 to –140.6 (m, 4F) ppm. FT-IR (neat): $\tilde{\nu}$ 1719, 1477, 1418, 1307 1262, 1231, 1004, 981 cm⁻¹.

5,5'-(Perfluorobiphenyl-4,4'-diyl)bis(1*H*-tetrazole) (4)

A 120 mL glass pressure vessel was equipped with a magnetic stirbar and charged with $ZnCl_2$ (6.00 g, 44 mmol) and NaN₃ followed by deionized H₂O (7 mL). Mixture was stirred until all inorganic salts dissolved. Glacial acetic acid (35 mL) was added, followed by dinitrile **2** (1.40 g, 4.00 mmol) and additional acetic acid (7 mL). Pressure vessel was capped and placed in an oil bath preheated to 105 °C. Reaction mixture was vigorously stirred at that temperature for 24 h. After completion, reaction mixture was cooled to 25 °C and poured into a 1M aqueous solution of HCl (200 mL), causing the precipitation of the product. White solid was filtered and washed with additional 1M HCl (2×50 mL), followed by H₂O (20 mL). Solid was dried under high

vacuum for 24 h over P₂O₅, affording the title compound (1.74 g, 94 %) as a white solid, mp 260–263 °C (dec). ¹³C NMR (125 MHz, DMSO- d_6) δ 147.8 (s, 2C), 145.3–144.7 (m, 4C), 143.3–142.8 (m, 4C), 109.4–109.0 (m, 2C), 108.2–107.6 (m, 2C) ppm. ¹⁹F NMR (470 MHz, DMSO- d_6) δ –137.1 to –137.3 (m, 4F), –137.3 to –137.4 (m, 4F) ppm. FT-IR (neat): \tilde{v} 3459, 1571, 1500, 1475, 1372, 1303, 1242, 1122, 1053, 999, 973 cm⁻¹.

Section S3. ¹⁹F, ¹H and ¹³C NMR Spectra of Starting Materials.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2013

Section S4. Synthesis of MOFFs

Synthesis of MOFF-1, CuC₁₅O₅F₈H₄

Ligand **3** (30.0 mg, 0.077 mmol) and Cu(NO₃)₂·2.5H₂O (18.0 mg, 0.077 mmol) were added to a 20 mL glass scintillation vial. Solvents DMF (0.3 mL), MeOH (5.4 mL) and H₂O (0.3 mL) were added to the solids, and the mixture was sonicated until dissolved. The vial was capped and placed into an oven at 40 °C for 4 d. The resulting greenish crystals were washed with MeOH and dried under reduced pressure. Yield calculated from the evacuated sample was 80 % based on Cu. FT-IR (neat): $\tilde{v} = 1605$ (s), 1460 (s), 1384 (s), 1269 (w), 1005 (m), 978 (s), 811 (m), 774 (m), 720 (s) cm⁻¹. Anal. calcd (%) for C₂₈F₁₆O₈Cu₂: C 37.54; Found: C 37.06.

Crystals of **MOFF-1** are stable in THF, MeOH, CH₂Cl₂, DMF, toluene, DMSO, acetone and ether. They are rapidly decomposed in H₂O, 2M HCl, 10% H₂SO₄, 2M NaOH, and 10% KOH, as well as in EtOH.

Synthesis of MOFF-2, CuC₁₇O₄NF₈H₆

Ligand **3** (75.0 mg, 0.19 mmol), 1,4-diazabicyclo[2.2.2]octane (DABCO, 11.0 mg, 0.098 mmol) and Cu(NO₃)₂·2.5H₂O (45.0 mg, 0.19 mmol) were added to a 20 mL glass scintillation vial. Solvents DMF (1 mL), MeOH (6 mL) and H₂O (0.3 mL) were added to the solids, and the mixture was sonicated until dissolved. The vial was capped and placed into an oven at 60 °C for 2 d. The resulting green crystals were washed with MeOH and dried under reduced pressure. Yield calculated from evacuated sample was 77 % based on Cu. FT-IR (neat): $\tilde{v} = 1663$ (s), 1630 (m), 1472 (s), 1408 (s), 999 (m), 980 (s), 802 (w), 774 (s), 720 (s) cm⁻¹. Anal. calcd (%) for C₃₄H₁₂N₂F₁₆O₈Cu₂: C 40.51, H 1.20, N 2.78; Found: C 40.56, H 0.98, N 2.85.

Crystals of **MOFF-2** are stable in THF, MeOH, EtOH, CH_2Cl_2 , DMF, toluene, DMSO, acetone and ether. They are rapidly decomposed in H_2O , 2M HCl, 10% H_2SO_4 , 2M NaOH, and 10% KOH.

Synthesis of MOFF-3, CuC₁₄ON₈F₈H₂

Ligand 4 (50.0 mg, 0.12 mmol) and CuCl₂·2H₂O (20.0 mg, 0.12 mmol) were added to a 20 mL glass scintillation vial. Solvent DMF (5 ml) was added to the solids, and the mixture was sonicated until dissolved. The vial was capped and placed into an oven at 70 °C for 4 d. The resulting blue crystals were washed with DMF. The activated crystals were obtained by heating them in a 120 °C oven for 1 d under reduced pressure. Yield calculated from evacuated sample was 26 % based on Cu. FT-IR (neat): $\tilde{v} = 1642$ (s), 1493 (m), 1469 (s), 1420 (w), 1387 (w), 1266 (w), 1108 (s), 999 (s), 971 (s), 874 (s), 725 (s) cm⁻¹. Anal. calcd (%) for C₁₄N₈F₈Cu: C 33.88, N 22.60; Found: C 34.80, N 21.75.

Crystals of **MOFF-3** are stable in H_2O , as well as in THF, MeOH, EtOH, CH_2Cl_2 , DMF, toluene, DMSO, acetone and ether. They are rapidly decomposed in 2M HCl, 10% H_2SO_4 , 2M NaOH, and 10% KOH.

Section S5. X-ray Crystallographic Analysis of MOFFs

Crystal Data for MOFF-1

A blue plate $0.10\times0.10\times0.04$ mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 40 mm and exposure time was 10 s per frame using a scan width of 0.5 °. Data collection was 99.8% complete to 25.00 ° in θ . A total of 27288 reflections were collected covering the indices, -20 <=h <=20, -18 <=k <=18, -18 <=l <=19. 6865 reflections were found to be symmetry independent, with an R_{int} of 0.0272. Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be P2/c (No. 13). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-2011) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-97). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97. Crystallographic twofold symmetry was imposed on the structure during the refinement.

Empirical formula	$C_{32}H_{16}Cu_2F_{16}O_{12}$	
Formula weight	1023.53	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	<i>P</i> 2/c	
Unit cell dimensions	<i>a</i> = 16.7149(9) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 15.1584(8) Å	$\beta = 112.098(2)$ °
	c = 15.9373(8) Å	$\gamma = 90$ °
Volume	3741.4(3) Å ³	
Ζ	4	
Density (calculated)	1.817 Mg/m^3	
Absorption coefficient	1.278 mm^{-1}	

<i>F</i> (000)	2024
Crystal size	$0.10 \times 0.10 \times 0.04 \text{ mm}^3$
θ range for data collection	1.31 ° to 25.39 °
Index ranges	$-20 \le h \le 20, -18 \le k \le 18, -18 \le l \le 19$
Reflections collected	27288
Independent reflections	6865 [<i>R</i> (int) = 0.0272]
Completeness to $\theta = 25.00^{\circ}$	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9507 and 0.8829
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	6865 / 0 / 573
Goodness-of-fit on F^2	1.091
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0394, wR_2 = 0.1050$
<i>R</i> indices (all data)	$R_1 = 0.0488, wR_2 = 0.1110$
Largest diff. peak and hole	$0.846 \text{ and } -0.808 \text{ e/Å}^{-3}$

Crystal Data for MOFF-2

A green prism 0.30×0.25×0.25 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected at 298(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 40 s per frame using a scan width of 0.3 °. Data collection was 99.8 % complete to 25.00 ° in θ . A total of 13682 reflections were collected covering the indices, $-25 \le h \le 25$, $0 \le k \le 21$, $0 \le l \le 10$. 3310 reflections were found to be symmetry independent, with an R_{int} of 0.0631. Indexing and unit cell refinement indicated a C-centered, monoclinic lattice. The space group was found to be C2/c (No. 15). All measurements were made with a Siemens SMART platform diffractometer equipped with a 4K CCD APEX II detector. A hemisphere of data (1271 frames at 6 cm detector distance) was collected using a narrow-frame algorithm with scan widths of 0.30\% in omega and an exposure time of 40 s/frame. The data were integrated using the Bruker-Nonius SAINT program, with the intensities corrected for Lorentz factor, polarization, air absorption, and absorption due to variation in the path length through the detector faceplate. A psi scan absorption correction was applied based on the entire data set. Redundant reflections were averaged. Final cell constants were refined using 2215 reflections having I > 10 (I), and these, along with other information pertinent to data collection and refinement, are listed in Table 1. The Laue symmetry was determined to be 2/m, and from the systematic absences noted the space group was shown to be either Cc or C_2/c . The data crystal was found to be twinned, consisting of two major domains. A twinned integration was performed on the two separate domains to correct for overlap. Final least squares was done using the independent structure factors measured from each domain, with a normalizing scale factor between them. The asymmetric unit consists of one Cu atom, one fluorinated dicarboxylate ligand, and one-half DABCO molecule situated about a two-fold axis. The dicarboxylate was found to be disordered over two slightly different orientations, and this was treated by use of ideal rigid body refinement. The DABCO was found to be seriously disordered over three different orientations, and this was treated using distance constraints based on literature values. The dicarboxylate ligand was refined anisotropically using restraints to make the U(ij) components approximate isotropic behavior. DABCO was refined isotropically. The final difference density map showed one very large peak of about 4.5 e⁻/Å³ located on the two-fold axis between equivalent Cu atoms, and another smaller but significant peak of about 1.5 e^{-1}/A^{-3} between Cu and DABCO. The distance between these peaks is 2.7A, virtually identical to the distance between the refined Cu atom and its two-fold relative. This larger density was included in the final refinement as atom C25X in order to improve the least squares model, however since it does not make chemical sense to belong to the structure it was omitted from all other calcuations. Because the distance between the "ghost peaks" coicides with the observed $[Cu \cdots Cu']$ separation, they are presumed to be the locations of Cu atoms in very minor third and fourth orientations of the unit cell which could not be identified during twin analysis due to very weak scattering.

Empirical formula	$C_{34}H_{12}Cu_2F_{16}N_2O_8$	$C_{34}H_{12}Cu_2F_{16}N_2O_8$	
Formula weight	1007.54		
Temperature	298(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 23.065(5) Å	$\alpha = 90$ °	
	b = 19.498(4) Å	$\beta = 94.91(3)^{\circ}$	
	c = 9.529(2) Å	$\gamma = 90$ °	
Volume	4269.7(16) Å ³		
Ζ	8		
Density (calculated)	1.567 Mg/m ³		
Absorption coefficient	1.113 mm^{-1}		
<i>F</i> (000)	1984		
Crystal size	$0.30 \times 0.25 \times 0.25 \text{ mm}^3$		
θ range for data collection	1.37 $^\circ$ to 23.60 $^\circ$	1.37 ° to 23.60 °	
Index ranges	$-25 \le h \le 25, 0 \le k \le 2$	$-25 \le h \le 25, 0 \le k \le 21, 0 \le l \le 10$	

Reflections collected	13682
Independent reflections	3310 [<i>R</i> (int) = 0.0631]
Completeness to $\theta = 25.00^{\circ}$	99.8 %
Absorption correction	Empirical
Max. and min. transmission	0.7449 and 0.5664
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1752 / 261 / 345
Goodness-of-fit on F^2	1.030
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0551, wR_2 = 0.1586$
<i>R</i> indices (all data)	$R_1 = 0.1031, wR_2 = 0.1972$
Largest diff. peak and hole	0.577 and -0.621 e/Å^{-3}

Crystal Data for MOFF-3

A blue block 0.12×0.06×0.04 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-todetector distance was 40 mm and exposure time was 20 s per frame using a scan width of 1.0 °. Data collection was 99.8% complete to 25.00 ° in θ . A total of 37915 reflections were collected covering the indices, $-19 \le h \le 17$, $-37 \le k \le 36$, $-15 \le l \le 16$. 5907 reflections were found to be symmetry independent, with an R_{int} of 0.0693. Indexing and unit cell refinement indicated a C-centered, monoclinic lattice. The space group was found to be C2/m (No. 12). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-97) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-97). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97. SQUEEZE was used to treat the diffuse solvent contribution in the crystal. Its use has been noted in the CIF file. Crystallographic symmetry was imposed upon this complex during the refinement; for example, Cu1 and Cu3 atoms are at sites with 2/m symmetry, while Cu2 and water oxygens O1 and O2 lie on a mirror plane.

Empirical formula	$C_{14}H_2CuF_8N_8O$
Formula weight	513.78
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	<i>C</i> 2/m

Unit cell dimensions	a = 15.8991(10) Å	$\alpha = 90^{\circ}$	
	<i>b</i> = 31.5712(18) Å	$\beta = 115.357(3)^{\circ}$	
	c = 13.8721(8) Å	$\gamma = 90$ °	
Volume	6292.3(6) Å ³		
Ζ	8		
Density (calculated)	1.085 Mg/m^3		
Absorption coefficient	0.756 mm^{-1}		
F(000)	2008	2008	
Crystal size	$0.12 \times 0.06 \times 0.04 \text{ mm}^3$		
θ range for data collection	1.56 ° to 25.43 °		
Index ranges	$-19 \le h \le 17, -37 \le k \le 36, -15 \le l \le 16$		
Reflections collected	37915		
Independent reflections	5907 [<i>R</i> (int) = 0.0693]		
Completeness to $\theta = 25.00^{\circ}$	99.8 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9704 and 0.9148		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	5907 / 4 / 303		
Goodness-of-fit on F^2	1.119		
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0753, wR_2 = 0.2272$		
R indices (all data)	$R_1 = 0.0896, wR_2 = 0.2$	$R_1 = 0.0896$, w $R_2 = 0.2346$	
Largest diff. peak and hole	1.809 and -0.897 e/Å^-	$1.809 \text{ and } -0.897 \text{ e/A}^{-3}$	

Section S6. Fourier Transform Infrared Spectra of MOFFs

Fourier-Transform Infrared Spectrum of MOFF-1

Fourier-Transform Infrared Spectrum of MOFF-2

Fourier-Transform Infrared Spectrum of MOFF-3

S15

Section S7. Thermogravimetric Analyses Traces of MOFFs

Thermogravimetric Analysis Trace of MOFF-1

Thermogravimetric Analysis Trace of MOFF-2

Thermogravimetric Analysis Trace of MOFF-3

Section S8. Powder X-Ray Diffraction Patterns of MOFFs

Sample Activation

All MOFFs were dried in a 120 °C vacuum oven for 24 h. For **MOFF-3**, in order to retain the H_2O terminal groups in the channels, supercritical CO₂ drying (SCD) was also performed, using TousimisTM Samdri® PVT-30 critical point dryer.⁴

Powder X-Ray Diffraction Patterns of MOFF-1

Section S9. Nitrogen Adsorption Isotherms

Gas sorption measurements. A Micromeritics ASAP 2020 Surface Area and Porosity Analyzer was used to measure nitrogen adsorption isotherms. Oven-dried sample tubes equipped with TranSealsTM (Micrometrics) were evacuated and tared. Samples (100–500 mg) were transferred to the sample tube, which was then capped by a TranSealTM. Samples were heated to 150 °C under high vacuum (10^{-3} – 10^{-4} Torr) and held until the outgas rate was less than 2 mTorr/minute. The evacuated sample tubes were weighed again, and the sample mass was determined by subtracting the mass of the previously tared tubes. Nitrogen isotherms were measured using a liquid nitrogen bath (77 K). Ultra high purity grade (99.999% purity) N₂ and He, oil-free valves

and gas regulators were used for all free space corrections and measurements. Relative pressure (P/P_0) range for BET analysis was taken from 5×10^{-5} to 0.1.

Nitrogen Adsorption Isotherms

MOFF-1: BET surface area is $580 \text{ m}^2\text{g}^{-1}$ **MOFF-2**: BET surface area is $444 \text{ m}^2\text{g}^{-1}$

MOFF-3: BET surface area is not available from N₂ adsorption isotherm

Section S10. Water Vapor Adsorption Isotherms

Gas sorption measurements. A Micromeritics ASAP 2020 Surface Area and Porosity Analyzer was used to measure H₂O adsorption isotherms. Oven-dried sample tubes equipped with TranSealsTM (Micrometrics) were evacuated and tared. Samples (100–500 mg) were transferred to the sample tube, which was then capped by a TranSealTM. Samples were heated to 150 °C under high vacuum (10^{-3} – 10^{-4} Torr) and held until the outgas rate was less than 2 mTorr/minute. The evacuated sample tubes were weighed again, and the sample mass was determined by subtracting the mass of the previously tared tubes. H₂O isotherms were measured at 293 K with temperature control provided by Neslab LT-50DD refrigerated circulating bath. Ultra high purity

grade (99.999% purity) N_2 and He, oil-free valves and gas regulators were used for all free space corrections and measurements.

Water Vapor Adsorption Isotherms

Section S11. Dynamic Contact Angle Measurements

Before the measurements, all MOFFs were dried in a 120 °C vacuum oven for 24 h. In addition, **MOFF-1** was air-dried, and **MOFF-3** was SCD-dried in order to retain their terminal MeOH and H₂O groups, respectively. The finely ground MOFFs crystals were pressed between two Silicon (100) slides that had been previously rinsed with absolute EtOH and dried with a stream of nitrogen gas. After removing the upper slide, the exposed crystal surface was used for conducting contact angle measurements. A ramé-hart model 100 contact angle goniometer was employed to measure the contact angle of H₂O, *n*-hexadecane and cis–perfluorodecalin on the MOFFs. The contacting liquids were dispensed on the surface of the MOFFs using a Matrix Technologies micro-Electrapette 25 at the slowest speed of 1 μ L/s. The measurements were performed at 293 K, with the pipet tip remaining in contact with the drop. The reported data for each sample were the average of three measurements obtained from three different slides for each MOFF with advancing contact angles (θ_a) recorded for both edges of the drop.

MOF	contact angle with:		
	water	<i>n</i> -hexadecane	<i>cis</i> -perfluorodecalin
MOFF-1, air-dried	~0°	~0°	~0°
MOFF-1, oven-dried	$108 \pm 2^{\circ}$	~0°	~0°
MOFF-2, oven-dried	151 ± 1°	~0°	~0°
MOFF-3, oven-dried	$134 \pm 1^{\circ}$	~0°	~0°
MOFF-3, SCD-dried	$135 \pm 2^{\circ}$	~0°	~0°

Dynamic Contact Angle of MOFFs

Pictures of oven-dried MOFF samples, after a drop of water was placed onto them

Section S12. References

- [1] *Materials Studio program*, version 5.5; Accelrys, San Diego, CA, 2011.
- [2] J. M. Birchall, R. N. Haszeldine and M. E. Jones, J. Chem. Soc. C, 1971, 1343–1348.
- [3] I. Popov, H.-Q. Do and O. Daugulis, J. Org. Chem., 2009, 74, 8309–8313.
- [4] A. P. Nelson, O. K. Farha, K. L. Mulfort and J. T. Hupp, J. Am. Chem. Soc., 2009, 131, 458–460.
- [5] C. Yang, U. Kaipa, Q. Z. Mather, X. Wang, V. Nesterov, A. F. Venero and M. A. Omary, J. Am. Chem. Soc., 2011, 133, 18094–18097.