Supporting information for

Stereoselective titanium-mediated aldol reactions from a chiral isopropyl ketone

Joana Zambrana, Pedro Romea* and Fèlix Urpí*

1. Spectroscopic data of adducts 2	S2
2. Spectroscopic data of complex I and II	S5
3. X-ray crystal structure of adduct 2f	S6

1. Spectroscopic data of adducts 2

(2*S*,*SS*)-1-Benxyloxy-5-hydroxy-2,4,4,6-tetramethyl-3-heptanone (2a). Colorless oil. R_f (hexane/EtOAc 7:3) = 0.50. HPLC (hexane/EtOAc 97:3) t_R = 23.6 min. $[\alpha]_D$ = -3.6 (*c* 1.33, CHCl₃). IR (film) v 3462, 3031, 2970, 2873, 1705, 1496, 1470, 1096. ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.26 (5H, m, Ar<u>H</u>), 4.50 (1H, d, *J* = 12.0 Hz, PhC<u>H</u>_xH_y), 4.42 (1H, d, *J* = 12.0 Hz, PhCH_x<u>H</u>_y), 3.70 (1H, dd, *J* = 9.5, 8.4 Hz, BnOC<u>H</u>_xH_y), 3.64 (1H, dd, *J* = 6.5, 3.3 Hz, C<u>H</u>OH), 3.45–3.39 (1H, m, C<u>H</u>CH₃), 3.36 (1H, d, *J* = 6.5 Hz, O<u>H</u>), 3.34 (1H, dd, *J* = 8.4, 4.5 Hz, BnOCH_x<u>H</u>_y), 1.92–1.81 (1H, m, C<u>H</u>(CH₃)₂), 1.18 (3H, s, C(C<u>H</u>₃)_x(CH₃)_y), 1.15 (3H, s, C(CH₃)_x(C<u>H</u>₃)_y), 1.00 (3H, d, *J* = 6.8 Hz, CH(C<u>H</u>₃)_x(CH₃)_y), 0.99 (3H, d, *J* = 6.8 Hz, CHC<u>H</u>₃), 0.88 (3H, d, *J* = 6.8 Hz, CH(CH₃)_x). ¹³C NMR (100.6 MHz, CDCl₃) δ 218.7 (C), 137.3 (C), 128.4 (CH), 127.8 (CH), 127.7 (CH), 79.3 (CH), 73.6 (CH₂), 73.4 (CH₂), 53.8 (C), 40.5 (CH), 29.0 (CH), 23.2 (CH₃), 22.3 (CH₃), 18.3 (CH₃), 17.5 (CH₃), 15.6 (CH₃). HRMS (+ESI) *m/z* calcd for C₁₈H₂₈NaO₃ [M+Na]⁺: 315.1931, found: 315.1937.

(2*S*,5*S*)-1-Benxyloxy-5-hydroxy-2,4,4,7-tetramethyl-3-octanone (2b). Colorless oil. \mathbf{R}_{f} (hexane/EtOAc 9:1) = 0.65. $[\alpha]_{D}$ = -19.9 (*c* 1.20, CHCl₃). **IR** (film) v 3465, 3031, 2955, 2869, 1707, 1468, 1367, 1078. ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.25 (5H, m, Ar<u>H</u>), 4.48 (1H, d, *J* = 11.9 Hz, PhC<u>H</u>_xH_y), 4.42 (1H, d, *J* = 11.9 Hz, PhCH_x<u>H</u>_y), 3.87 (1H, ddd, *J* = 10.6, 5.6, 1.6 Hz, C<u>H</u>OH), 3.74 (1H, dd, *J* = 10.1, 8.3 Hz, BnOC<u>H</u>_xH_y), 3.51–3.42 (1H, m, C<u>H</u>CH₃), 3.36 (1H, dd, *J* = 8.3, 4.1 Hz, BnOCH_x<u>H</u>_y), 3.22 (1H, dd, *J* = 5.6, 1.2 Hz, O<u>H</u>), 1.81–1.70 (1H, m, C<u>H</u>(CH₃)₂), 1.29 (1H, ddd, *J* = 14.1, 10.6, 3.8 Hz, C<u>H</u>_xH_yCH(CH₃)₂), 1.13–1.07 (1H, m, CH_x<u>H</u>_yCH(CH₃)₂), 1.12 (3H, s, C(C<u>H</u>₃)_x(CH₃)_y), 0.88 (3H, d, *J* = 6.5 Hz, CH(CH₃)_x(CH₃)_y), 0.88 (3H, d, *J* = 6.5 Hz, CH(CH₃)_x(CH₃)_y)). ¹³C NMR (100.6 MHz, CDCl₃) δ 218.4 (C), 137.0 (C), 128.5 (CH), 127.9 (CH), 127.8 (CH), 73.8 (CH₂), 73.5 (CH₂), 73.1 (CH), 53.7 (C), 40.2 (CH), 39.4 (CH₂), 24.7 (CH), 24.0 (CH₃), 21.4 (CH₃), 21.4 (CH₃), 17.0 (CH₃), 15.5 (CH₃). **HRMS** (+ESI) *m/z* calcd for C₁₉H₃₀NaO₃ [M+Na]⁺: 329.2087, found: 329.2081.

(2*S*,5*S*)-1-Benxyloxy-5-hydroxy-2,4,4-trimethyl-3-octanone (2c). Colorless oil. \mathbf{R}_{f} (hexane/EtOAc 7:3) = 0.55. $[\alpha]_{\mathbf{D}} = -11.4$ (*c* 1.08, CHCl₃). **IR** (film) v 3465, 3031, 2959, 2871, 1706, 1455, 1366, 1099. ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.25 (5H, m, Ar $\underline{\mathrm{H}}$), 4.48 (1H, d, *J* = 11.9 Hz, PhC $\underline{\mathrm{H}}_{x}$ H_y), 4.42 (1H, d, *J* = 11.9 Hz, PhCH_xH_y), 3.81–3.76 (1H, m, C $\underline{\mathrm{H}}$ OH), 3.74 (1H, dd, *J* = 10.1, 8.3 Hz, BnOC $\underline{\mathrm{H}}_{x}$ H_y), 3.50–3.41 (1H, m, C $\underline{\mathrm{H}}$ CH₃), 3.36 (1H, dd, *J* = 8.3, 4.1 Hz, BnOCH_xH_y), 3.25 (1H, dd, *J* = 5.6, 1.0 Hz, O $\underline{\mathrm{H}}$), 1.60–1.47 (1H, m, C $\underline{\mathrm{H}}_{x}$ H_yCH₃), 1.42–1.19 (3H, m, C $\underline{\mathrm{H}}_{2}$ CH_xH_yCH₃), 1.13 (3H, s, C(CH₃)_x(CH₃)_y), 1.06 (3H, s, C(CH₃)_x(C $\underline{\mathrm{H}}_{3}$)_y), 0.97 (3H, d, *J* = 6.8 Hz, CHCH₃), 0.90 (3H, t, *J* = 7.1 Hz, CH₂CH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ 218.4 (C), 137.1 (C), 128.4 (CH), 127.9 (CH), 127.8 (CH), 75.1 (CH), 73.8 (CH₂), 73.5 (CH₂), 53.7 (C), 40.2 (CH), 32.5 (CH₂), 21.5 (CH₃), 20.0 (CH₂), 17.1 (CH₃), 15.5 (CH₃), 14.0 (CH₃). HRMS (+ESI) *m*/*z* calcd for C₁₈H₂₈NaO₃ [M+Na]⁺: 315.1931, found: 315.1928.

(2*S*,5*S*,6*E*)-1-Benxyloxy-5-hydroxy-2,4,4-trimethyl-6-octen-3-one (2d). Colorless oil. \mathbf{R}_{f} (hexane/EtOAc 8:2) = 0.40. HPLC (hexane/EtOAc 9:1) \mathbf{t}_{R} = 9.5 min. $[\alpha]_{D}$ = -16.3 (*c* 0.95, CHCl₃). IR (film) v 3454, 3030, 2937, 2875, 1704, 1454, 1364, 1091. ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.25 (5H, m, Ar<u>H</u>), 5.70 (1H, dqd, *J* = 15.2, 6.4, 0.9 Hz, CH=C<u>H</u>CH₃), 5.44 (1H, ddq, *J* = 15.2, 7.5, 1.5 Hz, C<u>H</u>=CHCH₃), 4.49 (1H, d, *J* = 12.1 Hz, PhC<u>H</u>_xH_y), 4.42 (1H, d, *J* = 12.1 Hz, PhCH_x<u>H</u>_y), 4.31–4.27 (1H, m, C<u>H</u>OH), 3.70 (1H, dd, *J* = 9.8, 8.3 Hz, BnOC<u>H</u>_xH_y), 3.49–3.40 (1H, m, BnOCH₂C<u>H</u>), 3.42 (1H, d, *J* = 4.9 Hz, O<u>H</u>), 3.35 (1H, dd, *J* = 8.3, 4.5 Hz, BnOCH_x<u>H</u>_y), 1.71 (3H, dd, *J* = 6.4, 1.5 Hz, CH=CHC<u>H</u>₃),

1.09 (3H, s, $C(CH_3)_x(CH_3)_y$), 1.08 (3H, s, $C(CH_3)_x(CH_3)_y$), 0.98 (3H, d, J = 6.8 Hz, $BnOCH_2CHCH_3$). ¹³C **NMR** (100.6 MHz, $CDCl_3$) δ 218.4 (C), 137.1 (C), 129.1 (CH), 128.6 (CH), 128.4 (CH), 127.8 (CH), 127.7 (CH), 76.8 (CH), 73.5 (CH₂), 73.4 (CH₂), 53.4 (C), 40.2 (CH), 21.7 (CH₃), 17.8 (CH₃), 17.2 (CH₃), 15.3 (CH₃). **HRMS** (+ESI) *m/z* calcd for $C_{18}H_{25}O_2$ [M-OH]⁺: 273.1849, found: 273.1852.

(2*S*,*SS*)-1-Benxyloxy-5-hydroxy-2,4,4,6-tetramethyl-6-hepten-3-one (2e). Colorless oil. \mathbf{R}_{f} (hexane/EtOAc 7:3) = 0.60. HPLC (hexane/EtOAc 97:3) \mathbf{t}_{R} = 23.1 min. $[\alpha]_{D}$ = -11.3 (*c* 1.10, CHCl₃). IR (film) v 3447, 2974, 2936, 2874, 1706, 1455, 1371, 1075, 1026. ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.26 (5H, m, Ar<u>H</u>), 5.02–5.00 (1H, m, C=C<u>H</u>_xH_y), 4.91–4.90 (1H, m, C=CH_x<u>H</u>_y), 4.52 (1H, d, *J* = 12.3 Hz, PhC<u>H</u>_xH_y), 4.47 (1H, d, *J* = 4.7 Hz, C<u>H</u>OH), 4.43 (1H, d, *J* = 12.3 Hz, PhCH_x<u>H</u>_y), 3.69 (1H, dd, *J* = 9.7, 8.4 Hz, BnOC<u>H</u>_xH_y), 3.58 (1H, d, *J* = 4.7 Hz, O<u>H</u>), 3.50–3.41 (1H, m, C<u>H</u>CH₃), 3.34 (1H, dd, *J* = 8.4, 4.5 Hz, BnOCH_x<u>H</u>_y), 1.79 (3H, s, C=CC<u>H</u>₃), 1.13 (3H, s, C(C<u>H</u>₃)_x(CH₃)_y), 1.12 (3H, s, C(CH₃)_x(C<u>H</u>₃)_y), 0.99 (3H, d, *J* = 6.8 Hz, CHC<u>H</u>₃). ¹³C NMR (100.6 MHz, CDCl₃) δ 218.3 (C), 143.9 (C), 137.2 (C), 128.4 (CH), 127.9 (CH), 127.8 (CH), 114.5 (CH₂), 78.5 (CH), 73.4 (CH₂), 73.3 (CH₂), 53.7 (C), 40.3 (CH), 22.4 (CH₃), 20.2 (CH₃), 17.6 (CH₃), 15.4 (CH₃). **HRMS** (+ESI) *m/z* calcd for C₁₈H₂₆NaO₃ [M+Na]⁺: 313.1774, found: 313.1773.

(1*S*,4*S*)-5-Benxyloxy-1-hydroxy-2,2,4-trimethyl-1-phenyl-3-pentanone (2f). White solid. $P_f = 70-72$ °C. R_f (hexane/EtOAc 7:3) = 0.65. $[\alpha]_D = +15.0$ (*c* 1.00, CHCl₃). IR (KBr) v 3508, 2976, 2866, 1695, 1494, 1454, 1077, 1055. ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.26 (10H, m, ArH), 5.11 (1H, d, *J* = 4.2 Hz, CHOH), 4.55 (1H, d, *J* = 12.3 Hz, PhCH_xHy), 4.45 (1H, d, *J* = 12.3 Hz, PhCH_xHy), 3.83 (1H, d, *J* = 4.2 Hz, OH), 3.73 (1H, dd, *J* = 10.0, 8.3 Hz, BnOCH_xHy), 3.60–3.51 (1H, m, CHCH₃), 3.39 (1H, dd, *J* = 8.3, 4.4 Hz, BnOCH_xHy), 1.03 (3H, s, C(CH₃)_x(CH₃)_y), 1.02 (3H, d, *J* = 6.6 Hz, CHCH₃), 1.02 (3H, s, C(CH₃)_x(CH₃)_y). ¹³C NMR (100.6 MHz, CDCl₃) δ 218.3 (C), 139.5 (C), 137.1 (C), 128.5 (CH), 127.9 (CH), 127.8 (CH), 127.6 (CH), 127.4 (CH), 76.9 (CH), 73.5 (CH₂), 73.4 (CH₂), 54.3 (C), 40.2 (CH), 22.2 (CH₃), 16.3 (CH₃), 15.4 (CH₃). HRMS (+ESI) *m/z* calcd for C₂₁H₂₆NaO₃ [M+Na]⁺: 349.1774, found: 349.1773.

(2*S*,*SS*)-1-Benxyloxy-6-*tert*-butyldiphenylsilyloxy-5-hydroxy-2,4,4-trimethyl-3-hexanone (2h). Yellowish oil. \mathbf{R}_{f} (hexane/EtOAc 9:1) = 0.20. HPLC (hexane/EtOAc 97:3) \mathbf{t}_{R} = 9.4 min. $[\alpha]_{D}$ = -8.1 (*c* 1.30, CHCl₃). IR (film) v 3453, 3070, 2932, 2858, 1708, 1472, 1428, 1112. ¹H NMR (400 MHz, CDCl₃) δ 7.70–7.66 (4H, m, Ar<u>H</u>), 7.44–7.24 (11H, m, Ar<u>H</u>), 4.45 (1H, d, *J* = 12.0 Hz, PhC<u>H</u>_xH_y), 4.38 (1H, d, *J* = 12.0 Hz, PhCH_x<u>H</u>_y), 4.02 (1H, dt, *J* = 7.6, 3.7 Hz, C<u>H</u>OH), 3.73 (1H, dd, *J* = 10.6, 3.5 Hz, SiOC<u>H</u>_xH_y), 3.67–3.63 (1H, m, BnOC<u>H</u>_xH_y), 3.61 (1H, dd, *J* = 10.5, 7.7 Hz, SiOCH_x<u>H</u>_y), 3.40–3.31 (2H, m, BnOCH_x<u>H</u>_yC<u>H</u>), 3.26 (1H, d, *J* = 4.0 Hz, O<u>H</u>), 1.06 (3H, s, C(C<u>H</u>₃)_x(CH₃)_y), 1.06 (9H, s, SiC(C<u>H</u>₃)₃), 1.02 (3H, s, C(CH₃)_x(C<u>H</u>₃)_y), 0.97 (3H, d, *J* = 6.6 Hz, CHC<u>H</u>₃). ¹³C NMR (100.6 MHz, CDCl₃) δ 217.3 (C), 137.5 (C), 135.6 (CH), 133.4 (C), 133.2 (C), 129.7 (CH), 129.7 (CH), 128.4 (CH), 127.7 (CH), 127.6 (CH), 75.6 (CH), 73.5 (CH₂), 73.3 (CH₂), 64.7 (CH₂), 51.8 (C), 40.4 (CH), 26.8 (CH₃), 20.8 (CH₃), 19.2 (C), 18.0 (CH₃), 15.4 (CH₃). HRMS (+ESI) *m/z* calcd for C₃₂H₄₆NO₄Si [M+NH₄]⁺: 536.3191, found: 536.3191.

(2S,5S)-1-Benxyloxy-7-tert-butyldimethylsilyloxy-5-hydroxy-2,4,4-trimethyl-3-heptanone(2i).Yellowish oil. \mathbf{R}_{f} (hexane/EtOAc 7:3) = 0.70. HPLC (hexane/EtOAc 97:3) \mathbf{t}_{R} = 7.5 min. $[\alpha]_{D}$ = -20.4 (c1.00, CHCl_3). IR (film) v 3469, 2954, 2928, 2856, 1708, 1469, 1251, 1082. ¹H NMR (400 MHz, CDCl_3) δ 7.36–7.23 (5H, m, ArH), 4.48 (1H, d, J = 11.9 Hz, PhCH_xH_y), 4.43 (1H, d, J = 11.9 Hz, PhCH_xH_y), 4.05

(1H, ddd, J = 10.5, 4.2, 1.7 Hz, C<u>H</u>OH), 3.75–3.69 (3H, m, BnOC<u>H</u>_xH_y i SiOC<u>H</u>₂), 3.51 (1H, dd, J = 4.2, 1.1 Hz, O<u>H</u>), 3.50–3.39 (1H, m, BnOCH₂C<u>H</u>), 3.36 (1H, dd, J = 8.3, 4.6 Hz, BnOCH_x<u>H</u>_y), 1.68–1.57 (1H, m, SiOCH₂C<u>H</u>_xH_y), 1.52–1.40 (1H, m, SiOCH₂CH_x<u>H</u>_y), 1.12 (3H, s, C(C<u>H</u>₃)_x(CH₃)_y), 1.09 (3H, s, C(CH₃)_x(CH₃)_y), 1.00 (3H, d, J = 6.8 Hz, CHC<u>H</u>₃), 0.91 (9H, s, OSiC(C<u>H</u>₃)₃), 0.06 (3H, s, OSi(C<u>H</u>₃)_x(CH₃)_y), 0.06 (3H, s, OSi(C<u>H</u>₃)_x(CH₃)_y), 0.06 (3H, s, OSi(CH₃)_x(CH₃)_y). ¹³C NMR (100.6 MHz, CDCl₃) δ 218.1 (C), 137.3 (C), 128.4 (CH), 127.8 (CH), 127.8 (CH), 73.7 (CH₂), 73.5 (CH₂), 72.7 (CH), 61.1 (CH₂), 53.3 (C), 40.3 (CH), 33.4 (CH₂), 25.9 (CH₃), 21.0 (CH₃), 18.3 (C), 17.4 (CH₃), 15.5 (CH₃), -5.4 (CH₃), -5.4 (CH₃). HRMS (+ESI) *m*/z calcd for C₂₃H₄₁O₄Si [M+H]⁺: 409.2769, found: 409.2766.

(2*S*,5*S*,6*S*)-1-Benxyloxy-6-*tert*-butyldiphenylsilyloxy-5-hydroxy-2,4,4-trimethyl-3-heptanone (2j). Colorless oil. **R**_f (hexane/EtOAc 9:1) = 0.30. HPLC (hexane/EtOAc 97:3) t_{R} = 18.7 min. [α]_D = -15.4 (*c* 0.95, CHCl₃). **IR** (film) v 3443, 3070, 2970, 2932, 2858, 1709, 1472, 1428, 1362, 1110. ¹H NMR (400 MHz, CDCl₃) δ 7.75–7.69 (5H, m, Ar<u>H</u>), 7.43–7.23 (10H, m, Ar<u>H</u>), 4.48 (1H, d, *J* = 12.1 Hz, PhC<u>H</u>_xH_y), 4.40 (1H, d, *J* = 12.1 Hz, PhCH_xH_y), 3.99–3.93 (2H, m, SiOC<u>H</u>C<u>H</u>OH), 3.63 (1H, dd, *J* = 9.4, 8.3 Hz, BnOC<u>H</u>_xH_y), 3.33 (1H, d, *J* = 4.7 Hz, O<u>H</u>), 3.29 (1H, dd, *J* = 8.3, 4.7 Hz, BnOCH_x<u>H</u>_y), 3.26–3.19 (1H, m, BnOCH₂C<u>H</u>), 1.10 (3H, d, *J* = 6.1 Hz, SiOCHC<u>H</u>₃), 1.06 (9H, s, SiC(C<u>H</u>₃)₃), 1.01 (3H, s, C(C<u>H</u>₃)_x(CH₃)_y), 0.91 (3H, d, *J* = 6.7 Hz, BnOCH₂CHC<u>H</u>₃), 0.90 (3H, s, C(CH₃)_x(C<u>H</u>₃)_y). ¹³C NMR (100.6 MHz, CDCl₃) δ 217.3 (C), 137.3 (C), 135.9 (C), 135.8 (C), 134.4 (CH), 133.9 (CH), 129.7 (CH), 129.6 (CH), 128.4 (CH), 127.7 (CH), 127.7 (CH), 127.5 (CH), 78.3 (CH), 73.4 (CH₂), 73.4 (CH₂), 70.2 (CH), 52.5 (C), 40.2 (CH), 27.0 (CH₃), 21.5 (CH₃), 19.2 (C), 19.1 (CH₃), 17.8 (CH₃), 15.6 (CH₃). **HRMS** (+ESI) *m/z* calcd for C₃₃H₄₈NO₄Si [M+NH₄]⁺: 550.3347, found: 550.3338.

(2*S*,5*S*,6*R*)-1-Benxyloxy-6-*tert*-butyldiphenylsilyloxy-5-hydroxy-2,4,4-trimethyl-3-heptanone (2k). Colorless oil. **R**_f (hexane/EtOAc 9:1) = 0.30. HPLC (hexane/EtOAc 97:3) t_R = 16.5 min. [α]_D = +12.6 (*c* 1.45, CHCl₃). **IR** (film) v 3513, 3070, 2968, 2933, 2858, 1701, 1472, 1428, 1362, 1111. ¹H NMR (400 MHz, CDCl₃) δ 7.75–7.64 (5H, m, Ar<u>H</u>), 7.45–7.24 (10H, m, Ar<u>H</u>), 4.47 (1H, d, *J* = 12.1 Hz, PhCH_xH_y), 4.40 (1H, d, *J* = 12.1 Hz, PhCH_xH_y), 3.93 (1H, qd, *J* = 6.3, 3.0 Hz, SiOC<u>H</u>), 3.70 (1H, dd, *J* = 6.8, 3.0 Hz, C<u>H</u>OH), 3.61–3.55 (1H, m, BnOC<u>H</u>_xH_y), 3.37–3.28 (2H, m, BnOCH_xH_yC<u>H</u>), 3.26 (1H, d, *J* = 6.8 Hz, O<u>H</u>), 1.20 (3H, s, C(C<u>H</u>₃)_x(CH₃)_y), 1.06 (3H, s, C(CH₃)_x(C<u>H</u>₃)_y), 6.06–6.03 (6H, m, BnOCH₂CHC<u>H</u>₃ + SiOCHC<u>H</u>₃), 1.03 (9H, s, SiC(C<u>H</u>₃)₃). ¹³C NMR (100.6 MHz, CDCl₃) δ 217.9 (C), 135.9 (CH), 135.8 (CH), 129.9 (CH), 129.7 (CH), 128.3 (CH), 127.8 (CH), 127.5 (CH), 127.4 (CH), 77.9 (CH), 73.2 (CH₂), 73.2 (CH₂), 69.7 (CH), 52.4 (C), 40.9 (CH), 27.1 (CH₃), 23.1 (CH₃), 21.5 (CH₃), 20.1 (CH₃), 19.3 (C), 15.5 (CH₃). **HRMS** (+ESI) *m/z* calcd for C₃₃H₄₈NO₄Si [M+NH₄]⁺: 550.3347, found: 550.3343.

(2S,5S,6R)-1-Benxyloxy-7-tert-butyldiphenylsilyloxy-5-hydroxy-2,4,4,6-tetramethyl-3-heptanone

(21). Colorless oil. \mathbf{R}_{f} (hexane/EtOAc 9:1) = 0.30. HPLC (hexane/EtOAc 97:3) $\mathbf{t}_{\mathbf{R}}$ = 22.0 min. $[\boldsymbol{\alpha}]_{\mathbf{D}}$ = -13.4 (*c* 1.05, CHCl₃). IR (film) v 3460, 3070, 2932, 2858, 1708, 1471, 1428, 1112. ¹H NMR (400 MHz, CDCl₃) δ 7.70–7.67 (5H, m, Ar<u>H</u>), 7.43–7.23 (10H, m, Ar<u>H</u>), 4.50 (1H, d, *J* = 12.2 Hz, PhC<u>H_xH_y</u>), 4.43 (1H, d, *J* = 12.2 Hz, PhCH_x<u>H_y</u>), 4.25 (1H, dd, *J* = 5.3, 0.9 Hz, C<u>H</u>OH), 3.69 (1H, dd, *J* = 9.7, 8.4 Hz, BnOC<u>H_x</u>H_y), 3.59 (1H, dd, *J* = 9.7, 8.1 Hz, SiOC<u>H_x</u>H_y), 3.51 (1H, dd, *J* = 9.7, 5.5 Hz, SiOCH_x<u>H_y</u>), 3.46–3.40 (1H, m, BnOCH₂C<u>H</u>), 3.36 (1H, d, *J* = 5.3 Hz, O<u>H</u>), 3.33 (1H, dd, *J* = 8.4, 4.4 Hz, BnOCH_x<u>H_y</u>), 1.96–1.87 (1H, m, SiOCH₂C<u>H</u>), 1.14 (3H, s, C(C<u>H₃)_x(CH₃)_y), 1.13 (3H, s, C(CH₃)_x(C<u>H₃)_y</u>), 1.08 (9H, s, SiC(C<u>H₃)₃), 0.98 (3H, d, *J* = 6.8 Hz, BnOCH₂CHC<u>H</u>₃), 0.84 (3H, d, *J* = 6.9 Hz, SiOCH₂CHC<u>H</u>₃). ¹³C</u></u>

NMR (100.6 MHz, CDCl₃) δ 218.4 (C), 137.2 (C), 135.6 (C), 135.6 (C), 133.8 (CH), 133.8 (CH), 129.6 (CH), 128.4 (CH), 127.8 (CH), 127.7 (CH), 73.6 (CH₂), 73.4 (CH₂), 73.1 (CH), 68.4 (CH₂), 54.0 (C), 40.2 (CH), 35.8 (CH), 26.9 (CH₃), 21.9 (CH₃), 19.3 (C), 18.3 (CH₃), 15.6 (CH₃), 11.0 (CH₃). **HRMS** (+ESI) *m/z* calcd for C₃₄H₄₇O₄Si [M+H]⁺: 547.3238, found: 547.3235.

(2S,5S,6S)-1-Benxyloxy-7-tert-butyldiphenylsilyloxy-5-hydroxy-2,4,4,6-tetramethyl-3-heptanone

(2m). Colorless oil. \mathbf{R}_{f} (hexane/EtOAc 9:1) = 0.30. HPLC (hexane/EtOAc 97:3) \mathbf{t}_{R} = 22.2 min. $[\alpha]_{D}$ = +7.0 (*c* 1.00, CHCl₃). IR (film) v 3460, 3070, 2962, 2932, 2858, 1708, 1471, 1428, 1112 . ¹H NMR (400 MHz, CDCl₃) δ 7.70–7.65 (5H, m, Ar<u>H</u>), 7.44–7.21 (10H, m, Ar<u>H</u>), 4.45 (1H, d, *J* = 12.0 Hz, PhC<u>H</u>_xH_y), 4.39 (1H, d, *J* = 12.0 Hz, PhCH_x<u>H</u>_y), 3.90 (1H, t, *J* = 5.1 Hz, BnOC<u>H</u>_xH_y), 3.81 (1H, d, *J* = 4.9 Hz, BnOCH_x<u>H</u>_y), 3.72–3.67 (2H, sistema <u>ABX</u> segon ordre, C<u>HOH</u>), 3.66 (1H, t, *J* = 8.2 Hz, SiOC<u>H</u>_xH_y), 3.41–3.36 (1H, m, BnOCH₂C<u>H</u>), 3.33 (1H, dd, *J* = 15.8, 7.7 Hz, SiOCH_x<u>H</u>_y), 1.89–1.80 (1H, m, SiOCH₂C<u>H</u>), 1.14 (3H, s, C(C<u>H</u>₃)_x(CH₃)_y), 1.11 (3H, s, C(CH₃)_x(C<u>H</u>₃)_y), 1.05 (9H, s, SiC(C<u>H</u>₃)₃), 1.04 (3H, d, *J* = 7.0 Hz, SiOCH₂C<u>HC</u><u>H</u>₃), 1.00 (3H, d, *J* = 6.6 Hz, BnOCH₂C<u>HC</u><u>H</u>₃). ¹³C NMR (100.6 MHz, CDCl₃) δ 218.0 (C), 137.6 (CH), 135.6 (CH), 135.6 (CH), 133.4 (CH), 129.7 (CH), 129.6 (CH), 128.4 (CH), 127.7 (CH), 78.6 (CH), 73.5 (CH₂), 73.3 (CH₂), 67.4 (CH₂), 53.7 (C), 40.6 (CH), 37.0 (CH), 26.9 (CH₃), 21.0 (CH₃), 19.2 (C), 18.7 (CH₃), 17.4 (CH₃), 15.8 (CH₃). HRMS (+ESI) *m/z* calcd for C₃₄H₄₇O₄Si [M+H]⁺: 547.3238, found: 547.3233.

2. Spectroscopic data of complex I and II

I. ¹**H NMR** (300 MHz, CDCl₃) δ 7.60–7.34 (5H, m, Ar<u>H</u>), 5.45 (2H, s, PhC<u>H</u>₂), 4.23 (1H, dd, *J* = 13.0, 2.0 Hz, BnOC<u>H</u>_xH_y), 4.14 (1H, dd, *J* = 13.0, 5.8 Hz, BnOCH_x<u>H</u>_y), 3.32–3.08 (2H, m, C<u>H</u>CH₃ i C<u>H(</u>CH₃)₂), 1.47 (3H, d, *J* = 7.6 Hz, CHC<u>H</u>₃), 1.34 (3H, d, *J* = 7.1 Hz, CH(C<u>H</u>₃)_x(CH₃)_y), 1.28 (3H, d, *J* = 6.4 Hz, CH(CH₃)_x(C<u>H</u>₃)_y).

II. ¹**H NMR** (500 MHz, CDCl₃) δ 7.46–7.24 (5H, m, Ar<u>H</u>), 5.77 (1H, d, J = 14.0 Hz, PhC<u>H</u>_xH_y), 4.84 (1H, d, J = 14.2 Hz, PhCH_x<u>H</u>_y), 4.34 (1H, d, J = 11.7 Hz, BnOC<u>H</u>_xH_y), 3.56 (1H, d, J = 10.6 Hz, BnOCH_x<u>H</u>_y), 3.00–2.85 (1H, m, C<u>H</u>CH₃), 1.83 (3H, s, C(C<u>H</u>₃)_x(CH₃)_y), 1.59 (3H, s, C(CH₃)_x(C<u>H</u>₃)_y), 1.34 (3H, d, J = 5.8 Hz, CHC<u>H</u>₃). ¹³C **NMR** (125.0 MHz, CDCl₃) δ 82.0 (CH₂), 76.5 (CH₂), 31.9 (CH), 18.3 (CH₃), 17.3 (CH₃), 17.2 (CH₃).

3. X-ray crystal structure of adduct 2f

Table 1. Crystal data and structure refinement for uroc10a.

	Identification code	uroc10a
	Empirical formula	C_{21} H ₂₆ O ₃
	Formula weight	326.42
	Temperature	293(2) K
	Wavelength	0.71073 Å
	Crystal system, space group	Triclinic, Pl
0	Unit cell dimensions	a = 8.284(7) Å α = 108.28(2)
•		b = 9.776(2) Å β = 99.72(4)
°.		c = 12.577(3) Å γ= 104.90(3)
	Volume	899.4(8) Å ³
	Z, Calculated density	2, 1.205 Mg/m ³
	Absorption coefficient	0.079 mm^{-1}
	F(000)	352
	Crystal size	0.2 x 0.1 x 0.1 mm
	Theta range for data collection	2.33 to 29.97 °.
0<=1<	Limiting indices =17	-11<=h<=11, -13<=k<=13,
	Reflections collected / unique	5243 / 5243 [R(int) = 0.0307]
	Completeness to theta = 29.97	100.0 %
	Absorption correction	Empirical
	Max. and min. transmission	0.99 and 0.98
	Refinement method	Full-matrix least-squares on F^2
	Data / restraints / parameters	5243 / 16 / 217
	Goodness-of-fit on F^2	0.882
	Final R indices [I>2 σ (I)]	R1 = 0.0359, $wR2 = 0.0781$
	R indices (all data)	R1 = 0.1223, wR2 = 0.1001
	Largest diff. peak and hole	0.169 and -0.243 e.Å $^{-3}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Table 2. Atomic coordinates ($x\ 10^4)$ and equivalent isotropic displacement parameters (Å $^2\ x\ 10^3)$ for uroc10a. U(eq) is defined as one third of the trace of the orthogonalized

 \mathtt{U}_{ij} tensor.

	х	У	Z	U(eq)
 0(1)	9818(1)	6558(1)	3179(1)	48(1)
0(2)	6079(1)	5339(1)	1155(1)	46(1)
0(3)	2676(1)	3191(1)	486(1)	53(1)
C(1)	13869(2)	7988(2)	4557(1)	52(1)
C(2)	15563(2)	8017(2)	4572(2)	63(1)
C(3)	16225(2)	8234(2)	3688(2)	68(1)
C(4)	15242(2)	8465(2)	2809(2)	71(1)
C(5)	13558(2)	8449(2)	2799(1)	58(1)
C(6)	12857(2)	8198(2)	3665(1)	45(1)
C(7)	10994(2)	8094(2)	3630(1)	52(1)
C(8)	9670(2)	5779(2)	1993(1)	44(1)
C(9)	8240(2)	4245(1)	1534(1)	40(1)
C(10)	6468(2)	4430(1)	1532(1)	35(1)
C(11)	5211(1)	3462(1)	1983(1)	37(1)
C(12)	3425(2)	3714(2)	1710(1)	39(1)
C(13)	2085(2)	2916(1)	2200(1)	38(1)
C(14)	968(2)	1438(2)	1558(1)	48(1)
C(15)	-267(2)	726(2)	2002(1)	55(1)
C(16)	-403(2)	1469(2)	3085(1)	54(1)
C(17)	690(2)	2936(2)	3730(1)	53(1)
C(18)	1917(2)	3653(2)	3284(1)	45(1)
C(19)	8195(2)	3341(2)	291(1)	56(1)
C(20)	5006(2)	1769(2)	1426(1)	55(1)
C(21)	6004(2)	4045(2)	3298(1)	50(1)

	1 4105 (1.6)
O(1) -C(8)	1.4135(16)
O(1) - C(7)	1.4325(1/)
O(2) - C(10)	1.2158(14)
O(3) - C(12)	1.4268(16)
O(3) - H(30)	0.8200
C(1) = C(6)	1.385(2)
C(1) - C(2)	1.392(2)
C(1) - H(1)	0.9500
C(2) = C(3)	1.370(2)
C(2) = H(2) C(3) = C(4)	1 373 (2)
C(3) - U(3)	1.373(2)
C(3) = H(3)	1 389(2)
C(4) - H(4)	0 9300
C(4) = C(6)	1 3759(19)
C(5) = H(5)	0 9300
C(6) = C(7)	1 512(2)
C(7) - H(7A)	0 9700
C(7) - H(7B)	0 9700
C(8) - C(9)	1 5160(19)
C(8) = H(8A)	0.9700
C(8) = H(8B)	0.9700
C(9) - C(19)	1,5241 (18)
C(9) - C(10)	1.524(2)
C(9) -H(9)	0.9800
C(10) - C(11)	1.5264(18)
C(11) - C(21)	1.5293(19)
C(11) - C(20)	1.5321(18)
C(11) - C(12)	1.561(2)
C(12)-C(13)	1.5195(18)
С(12)-Н(12)	0.9800
C(13)-C(18)	1.3777(18)
C(13)-C(14)	1.3870(19)
C(14)-C(15)	1.383(2)
C(14) - H(14)	0 9300
C(15) - C(16)	1 367(2)
C(15) - H(15)	0 9300
C(16) - C(17)	1 374(2)
C(16) - H(16)	0.9300
C(17) - C(18)	1,383(2)
C(17) - H(17)	0.9300
C(18) - H(18)	0.9300
C(19) - H(19A)	0.9600
C(19) -H(19B)	0.9600
С(19)-Н(19С)	0.9600
С(20)-Н(20А)	0.9600
С(20) – Н(20В)	0.9600
С(20) – Н(20С)	0.9600
С(21)-Н(21А)	0.9600
С(21)-Н(21В)	0.9600
С(21)-Н(21С)	0.9600
C(8) = O(1) = C(7)	112 55(11)
C(12) = O(1) = C(7) C(12) = O(3) = H(3O)	109 5
C(6) - C(1) - C(2)	120 68(15)
\bigcirc	

Table 3. Bond lengths $[{\rm \AA}]$ and angles $[^{\circ}]$ for uroc10a.

C (6) - C (1) - H (1) $C (2) - C (1) - H (1)$ $C (3) - C (2) - C (1)$ $C (3) - C (2) - H (2)$ $C (1) - C (2) - H (2)$ $C (2) - C (3) - C (4)$ $C (2) - C (3) - H (3)$ $C (4) - C (3) - H (3)$ $C (3) - C (4) - C (5)$ $C (3) - C (4) - H (4)$ $C (5) - C (4) - H (4)$ $C (6) - C (5) - C (4)$ $C (6) - C (5) - H (5)$ $C (4) - C (5) - H (5)$ $C (5) - C (6) - C (1)$ $C (5) - C (6) - C (7)$	119.7 119.7 119.65(16) 120.2 120.2 120.18(16) 119.9 120.11(17) 119.9 120.50(16) 119.8 119.8 119.8 118.85(14) 120.99(13)
C(1) - C(6) - C(7) $O(1) - C(7) - H(7A)$ $C(6) - C(7) - H(7A)$ $O(1) - C(7) - H(7B)$ $C(6) - C(7) - H(7B)$ $H(7A) - C(7) - H(7B)$ $O(1) - C(8) - C(9)$ $O(1) - C(8) - H(8A)$ $C(9) - C(8) - H(8A)$ $O(1) - C(8) - H(8B)$ $C(9) - C(8) - H(8B)$ $C(9) - C(8) - H(8B)$ $C(9) - C(8) - H(8B)$ $C(8) - C(9) - C(10)$ $C(19) - C(9) - C(10)$ $C(19) - C(9) - H(9)$ $C(10) - C(9) - H(9)$ $C(10) - C(9) - H(9)$ $C(10) - C(9) - H(9)$ $O(2) - C(10) - C(11)$ $C(10) - C(11) - C(21)$ $C(10) - C(11) - C(20)$ $C(21) - C(11) - C(22)$ $C(21) - C(11) - C(12)$ $C(20) - C(12) - C(11)$ $C(13) - C(12) - C(11)$ $C(13) - C(12) - C(11)$ $C(13) - C(12) - H(12)$ $C(13) - C(12) - H(12)$ $C(11) - C(13) - C(14)$ $C(18) - C(13) - C(12)$	120.13(13) 113.55(12) 108.9 108.9 108.9 108.9 107.7 109.59(11) 109.8 109.8 109.8 109.8 109.8 109.63(12) 111.51(11) 109.1 109.1 109.1 109.1 109.1 109.1 109.1 109.1 118.86(11) 121.37(11) 119.76(11) 106.00(11) 111.05(10) 109.99(11) 108.42(10) 110.59(11) 110.68(11) 106.95(11) 111.31(11) 114.09(11) 108.1 108.1 108.1 118.06(13) 120.90(12)
C (14) -C (13) -C (12) C (15) -C (14) -C (13) C (15) -C (14) -H (14) C (13) -C (14) -H (14) C (16) -C (15) -C (14) C (16) -C (15) -H (15) C (14) -C (15) -H (15)	121.03(12) 120.75(14) 119.6 119.6 120.40(14) 119.8 119.8

C(15)-C(16)-C(17)	119.59(14)
С(15)-С(16)-Н(16)	120.2
С(17)-С(16)-Н(16)	120.2
C(16)-C(17)-C(18)	120.06(14)
С(16)-С(17)-Н(17)	120.0
С(18)-С(17)-Н(17)	120.0
C(13)-C(18)-C(17)	121.14(13)
С(13)-С(18)-Н(18)	119.4
С(17)-С(18)-Н(18)	119.4
С(9)-С(19)-Н(19А)	109.5
С(9)-С(19)-Н(19В)	109.5
H(19A)-C(19)-H(19B)	109.5
С(9)-С(19)-Н(19С)	109.5
H(19A)-C(19)-H(19C)	109.5
Н(19В)-С(19)-Н(19С)	109.5
C(11)-C(20)-H(20A)	109.5
С(11)-С(20)-Н(20В)	109.5
H(20A)-C(20)-H(20B)	109.5
С(11)-С(20)-Н(20С)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
С(11)-С(21)-Н(21А)	109.5
С(11)-С(21)-Н(21В)	109.5
H(21A)-C(21)-H(21B)	109.5
С(11)-С(21)-Н(21С)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($Å^2 \ge 10^3$) for urocl0a. The anisotropic displacement factor exponent takes the form:

-2	π^2	[h^2	a*²	U_{11}	+		+	2	h	k	a*	b*	U_{12}]
----	---------	---	-------	-----	----------	---	--	---	---	---	---	----	----	----------	---

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	
0(1)	40(1)	54(1)	49(1)	20(1)	13(1)	
12(1) 0(2)	39(1)	53(1)	55(1)	29(1)	14(1)	
16(1) O(3)	38(1)	68(1)	53(1)	31(1)	10(1)	
10(1) C(1)	50(1)	49(1)	57(1)	22(1)	13(1)	
15(1) C(2)	50(1)	60(1)	77(1)	27(1)	11(1)	
18(1) C(3)	47(1)	62(1)	90(1)	21(1)	21(1)	
16(1) C(4)	57(1)	73(1)	77(1)	24(1)	25(1)	
12 (1)	52(1)	60(1)	56(1)	22(1)	1/1 (1)	
11 (1)	52(1)	00(1)	50(1)	22(1)	10(1)	
10(1)	39(1)	41(1)	50(1)	14(1)	10(1)	
C(7) 16(1)	44(1)	52(1)	59(1)	20(1)	14(1)	
C(8) 12(1)	33(1)	53(1)	48(1)	21(1)	12(1)	
C(9) 14(1)	30(1)	47(1)	46(1)	22(1)	10(1)	
C(10)	29(1)	40(1)	36(1)	15(1)	8(1)	
C (11)	30(1)	42(1)	43(1)	21(1)	11(1)	
C (12)	32(1)	39(1)	48(1)	19(1)	11(1)	
C (13)	27(1)	44(1)	46(1)	22(1)	9(1)	
C(14)	41(1)	49(1)	51(1)	18(1)	11(1)	
9(1) C(15)	44(1)	54(1)	62(1)	23(1)	11(1)	
8(1) C(16)	43(1)	61(1)	61(1)	31(1)	16(1)	
13(1) C(17)	44(1)	63(1)	57(1)	26(1)	17(1)	
19(1) C(18)	37(1)	47(1)	51(1)	17(1)	11(1)	
13(1) C(19)	51(1)	63(1)	55(1)	22(1)	18(1)	
20 (1) C (20)	48(1)	49(1)	72(1)	25(1)	19(1)	
18(1)	10(1)	65 (1)	/ <u>(</u> (<u>+</u>)	20(1)	11(1)	
17(1)	41(1)	UJ (⊥)	49(1)	∠0(⊥)	±±(±)	

_

	х	У	Z	U(eq)
 ц (20)	2264	2600	104	7.0
н(30)	12/1/	2009	194 5151	62
п(1)	16240	7027	5190	02
п(2)	17240	7090	2004	70
H(3)	1 5 4 4	0220	2004	02
H(4)	15705	8632	2218	85
H(5)	12899	8608	2202	69
H(/A)	10935	8608	4412	63
H(/B)	10625	8627	3154	63
H(8A)	10762	5630	1908	53
H(8B)	9406	6382	1548	53
Н(9)	8475	3675	2025	48
H(12)	3622	4813	2045	47
H(14)	1049	921	820	58
H(15)	-1009	-264	1561	66
H(16)	-1229	985	3383	64
H(17)	605	3446	4468	63
H(18)	2640	4651	3723	54
H(19A)	7297	2366	6	83
H(19B)	9295	3194	279	83
H(19C)	7965	3893	-194	83
H(20A)	4207	1185	1720	83
H(20B)	6113	1634	1611	83
H(20C)	4570	1426	597	83
H(21A)	5259	3472	3628	75
H(21B)	6126	5106	3640	75
H(21C)	7123	3924	3450	75

Table 5. Hydrogen coordinates (x $10^4)$ and isotropic displacement parameters (Å 2 x $10^3)$ for uroc10a.