SI supporting information

Selective cleavage of 3,5-bis-(trifluoromethyl) benzylcarbamate by $SmI_2/Et_3N/H_2O$

Tobias Ankner, Anna Said and Göran Hilmersson

Table of contents

General	2
Preparation of SmI ₂ in THF	2
General procedure for protection	2
Deprotection using Mg/MeOH	4
Competitive experiments using SmI ₂ or Mg	4
Stability experiments	4
¹ H NMR spectrum of compound 1	5
¹³ C NMR spectrum of compound 1	5
¹ H NMR spectrum of compound 4a	6
¹³ C NMR spectrum of compound 4a	6
¹ H NMR spectrum of compound 4b	7
¹³ C NMR spectrum of compound 4b	7
¹ H NMR spectrum of compound 5a	8
¹³ C NMR spectrum of compound 5 a	8
¹ H NMR spectrum of compound 5b	9
¹³ C NMR spectrum of compound 5b	9
¹ H NMR spectrum of compound 6a	10
¹³ C NMR spectrum of compound 6a	10
¹ H NMR spectrum of compound 6b	11
¹³ C NMR spectrum of compound 6b	11
¹ H NMR spectrum of compound $7a$	12
¹³ C NMR spectrum of compound 7a	12
¹ H NMR spectrum of compound 7b	13
¹³ C NMR spectrum of compound 7b	13
¹ H NMR spectrum of compound 7 c	14
¹³ C NMR spectrum of compound 7 c	14

General All reactions were performed under nitrogen atmosphere (using standard Schlenk technique or glove-box). All commercial reagents were used as received. Phosgene solution was commercial and used as received. Mono protected diamines were commercial and used as received. Tetrahydrofuran was distilled from benzophenone/sodium and stored over sodium in a glovebox. NMR spectra were recorded at 400 MHz in deuterated chloroform.

Gas chromatography/mass spectrometry analyses were performed on a DB-5 equivalent capillary column (length 30m, i.d. 25 μ m) using helium as carrier gas. Injector temperature 300 °C. Temperature program: 40 to 330 °C (12 °C/min) with 4 minutes hold time. The MS detector consisted of an ion trap with 70 eV ionization.

Preparation of Sml₂ in THF Diiodoethane (12 mmol, 3.37 g) was added to THF (100 ml). To this was added samarium metal (19 mmol, 2.85 g, powder). The mixture was allowed to stir at room temperature under a nitrogen atmosphere for one hour. This yields a deep-blue 0.12 M solution of Sml₂.

General procedure for protection To a 3,5-bis-trifluoromethylbenzylalcohol solution in dry THF (2 mmol in 5 mL, 0.4 M) was added a phosgene solution (4 mmol, 20% solution in toluene) under nitrogen. The contents were allowed to stir for 24 hours and evaporated to remove solvent and remaining phosgene (CAUTION!). The resulting chloroformate was dissolved in acetone (5 mL) and added to a solution of the amine (2.0 mmol) and NaHCO₃ in acetone/water (9:1, 10 mL). After the reaction was complete (as judged by TLC or GC/MS analysis) the contents was evaporated and partitioned between water and ethyl acetate. The organic phase was washed with water twice and last with saturated ammonium chloride, dried over sodium sulphate and evaporated to yield the crude carbamate. Purification by passing through a short silica plug using dichloromethane is usually enough to recover the pure product in almost quantitative yield, but some derivatives demanded proper flash chromatography.

Compound **1**: ¹H NMR (400 MHz, CDCl₃): δ_H ¹H: 7.81 (s, 1H), 7.78 (s, 2H), 5.14 (s, 2H), 4.70 (s, 1H), 2.09 (s, 3H), 1.94 (s, 6H), 1.67 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): $δ_c$ 139.6, 132.0, 131.6, 127.5, 124.5, 121.8, 51.1, 41.7, 36.2, 29.5. HRMS (ESI-MS) [M+H⁺] calcd for C₂₀H₂₂F₆NO₂: 422.1555. Found: 422.1554

Compound **4a**: ¹H NMR (400 MHz, CDCl₃): δ_{H} 7.83 (1H, s), 7.80 (2H, s), 5.23 (2H, s), 3.95 (1H, m), 3.65 (2H, m), 3.46-3.43 (2H, m), 1.72 (2H, m), 1.55 (2H, m), 0.90 (9H, s), 0.07 (6H, s). ¹³C

NMR (100 MHz, CDCl₃): δ_c 157.3, 142.4, 134.5 (q, J=33Hz), 130.3, 125.8 (q, J=273 Hz), 124.5 (m), 69.1, 67.9, 43.3, 36.8, 36.5, 28.4, 20.7, -2.13. HRMS (ESI-MS) [M+H]⁺, calcd for C₂₁H₃₀F₆NO₃Si: 486.1899 Found: 486.1885.

Compound **4b**: Identical with the commercially available material.

Compound **5a**: ¹H NMR (400 MHz, CDCl₃): δ_{H} 7.82 (1H, s), 7.79 (2H,s), 5.14 (2H, s), 4.71 (1H, bs), 2.10 (3H, m), 1.96 (6H, m), 1.68 (6H). ¹³C NMR (100 MHz, CDCl₃): δ_{c} 154.5, 139.2, 131.9 (q, J=33.7 Hz), 127.8, 124.5, 123.1 (q, J=273 Hz), 122.1, 80.3, 65.6, 43.7, 28.4, 28.3. HRMS (ESI-MS) calcd C₁₉H₂₃F₆N₂O₄: 457.1562 Found: 457.1562.

Compound **5b**: Spectral properties identical with the commercially available material.

Compound **6a**: ¹H NMR (400 MHz, CDCl₃): δ_{H} 7.83 (1H), 7.80 (2H), 7.32 (5H), 5.19 (2H, s), 4.79 (1H, br s), 3.53 (3H), 2.84 (2H, m), 2.15 (2H, m), 1.94 (2H, m), 1.55 (2H, m). ¹³C NMR (100 MHz, CDCl₃): δ_{c} 154.1, 139.3, 138.3, 131.8 (q, J=33.8 Hz), 129.1, 128.2, 127.7, 127.0, 123.1 (q, J=274 Hz), 121.9 m, J=3.5 Hz), 64.8, 63.0, 52.1, 48.5.

HRMS (ESI-MS) calcd for C₂₂H₂₃F₆N₂O₂: 461.1664 Found: 461.1657.

Compound **6b**: Identical with the commercially available material.

Compound **7a**: ¹H NMR (400 MHz, CDCl₃): δ_{H} 7.77 (s, 1H), 7.73 (s, 2H), 7.32-7.24 (m, 5H), 5.17 (s, 2H), 5.08 (s, 2H), 3.44 (br s, 8H). ¹³C NMR (100 MHz, CDCl₃): δ_{c} 155.1, 154.5, 139.1, 136.3, 132.0 (q, J=34 Hz), 128.5, 128.2, 128.0, 127.9, 123.1 (q, J=274 Hz), 122.1 (q, J=3.5 Hz) 67.5, 65.7, 43.7, 26.5.HRMS (ESI-MS) calcd for C₂₂H₂₁F₆N₂O₄: 491.1406. Found: 491.1401

Compound **7b**: Identical with the commercially available material.

Compound **7c**: ¹H NMR (400 MHz, CDCl₃): δ_{H} 7.75 (s, 1H), 7.73 (s, 2H), 5.16 (s, 2H), 3.44 (m, 4H), 2.80 (s, 4H), 2.45 (s, NH) ¹³C NMR (100 MHz, CDCl₃): δ_{c} 154.6, 139.4, 131.8 (²*J*=33.5 Hz), 127.7 (q), 123.1 (q, ¹*J*=272.4 Hz), 121.9 (q, *J*=3.8 Hz), 65.4, 45.6, 44.8.

HRMS (ESI-MS) calcd for C₁₄H₁₅F₆N₂O₂: 357.1038. Found: 357.1044

Deprotection using Mg/MeOH To a solution of the carbamate (0.06 mmol in 3 mL dry MeOH, 0.02 M) and dodecane (0.06 mmol, 13.6 μ l, 0.02M) was added magnesium powder (50 mg, approx. 30 eq). The solution was stirred under nitrogen over night. The reaction mixture was filtered and and 10 ml K₂CO₃/potassium-sodium tartrate solution was added followed by 10 mL Et₂O. The organic phase was analyzed using GC. The conversion was calculated based on the reduction in starting material and appearance of 3,5-bis-trifluoromethyltoluene.

Competitive experiments using SmI₂ or Mg Equimolar amounts of CBz-protected adamantylamine, 1 and dodecane (as internal standard) was subjected to either a SmI₂/Et₃N/H₂O solution in THF or a suspension of magnesium powder in dry methanol. Samples were withdrawn and analysed using gas chromatography and the decrease of carbamate (as well as increase of 3,5-bis-trifluorotoluene) was plotted against time.

Stability experiments In 0.5-1 ml of solvent (see table) was dissolved 0.05 mmol 1 and 0.05 mmol dodecane (as internal standard). A sample was taken, and the reagent was added to make approx. 1 mL. At 10 min, one hour and 24 hours samples were withdrawn and analysed using gas chromatography. A decrease in carbamate concentration was taken as evidence of breakdown.

220 210

